首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Candida albicans gene PGA26 encodes a small cell wall protein and is upregulated during de novo wall synthesis in protoplasts. Disruption of PGA26 caused hypersensitivity to cell wall-perturbing compounds (Calcofluor white and Congo red) and to zymolyase, which degrades the cell wall β-1,3-glucan network. However, susceptibility to caspofungin, an inhibitor of β-1,3-glucan synthesis, was decreased. In addition, pga26Δ mutants show increased susceptibility to antifungals (fluconazol, posaconazol or amphotericin B) that target the plasma membrane and have altered sensitivities to environmental (heat, osmotic and oxidative) stresses. Except for a threefold increase in β-1,6-glucan and a slightly widened outer mannoprotein layer, the cell wall composition and structure was largely unaltered. Therefore, Pga26 is important for proper cell wall integrity, but does not seem to be directly involved in the synthesis of cell wall components. Deletion of PGA26 further leads to hyperfilamentation, increased biofilm formation and reduced virulence in a mouse model of disseminated candidiasis. We propose that deletion of PGA26 may cause an imbalance in the morphological switching ability of Candida, leading to attenuated dissemination and infection.  相似文献   

2.
The Saccharomyces cerevisiae essential gene YNL158w/PGA1 encodes an endoplasmic reticulum (ER)-localized membrane protein. We constructed temperature-sensitive alleles of PGA1 by error-prone polymerase chain reaction mutagenesis to explore its biological role. Pulse-chase experiments revealed that the pga1(ts) mutants accumulated the ER-form precursor of Gas1 protein at the restrictive temperature. Transport of invertase and carboxypeptidase Y were not affected. Triton X-114 phase separation and [(3)H]inositol labeling indicated that the glycosylphosphatidylinositol (GPI)-anchoring was defective in the pga1(ts) mutants, suggesting that Pga1 is involved in GPI synthesis or its transfer to target proteins. We found GPI18, which was recently reported to encode GPI-mannosyltransferase II (GPI-MT II), as a high-copy suppressor of the temperature sensitivity of pga1(ts). Both Gpi18 and Pga1 were detected in the ER by immunofluorescence, and they were coprecipitated from the Triton X-100-solubilized membrane. The gpi18(ts) and pga1(ts) mutants accumulated the same GPI synthetic intermediate at the restrictive temperature. From these results, we concluded that Pga1 is an additional essential component of the yeast GPI-MT II.  相似文献   

3.
Iron scavenging constitutes a crucial challenge for survival of pathogenic microorganisms in the iron-poor host environment. Candida albicans, like many microbial pathogens, is able to utilize iron from hemoglobin, the largest iron pool in the host''s body. Rbt5 is an extracellular glycosylphosphatidylinositol (GPI)-anchored heme-binding protein of the CFEM family that facilitates heme-iron uptake by an unknown mechanism. Here, we characterize an additional C. albicans CFEM protein gene, PGA7, deletion of which elicits a more severe heme-iron utilization phenotype than deletion of RBT5. The virulence of the pga7−/− mutant is reduced in a mouse model of systemic infection, consistent with a requirement for heme-iron utilization for C. albicans pathogenicity. The Pga7 and Rbt5 proteins exhibit distinct cell wall attachment, and discrete localization within the cell envelope, with Rbt5 being more exposed than Pga7. Both proteins are shown here to efficiently extract heme from hemoglobin. Surprisingly, while Pga7 has a higher affinity for heme in vitro, we find that heme transfer can occur bi-directionally between Pga7 and Rbt5, supporting a model in which they cooperate in a heme-acquisition relay. Together, our data delineate the roles of Pga7 and Rbt5 in a cell surface protein network that transfers heme from extracellular hemoglobin to the endocytic pathway, and provide a paradigm for how receptors embedded in the cell wall matrix can mediate nutrient uptake across the fungal cell envelope.  相似文献   

4.
The outer layer of the Candida albicans cell wall is enriched in highly glycosylated proteins. The major class, the GlycosylPhosphatidylInositol (GPI)-anchored proteins are tethered to the wall by GPI-anchor remnants and include adhesins, glycosyltransferases, yapsins and superoxide dismutases. In silico analysis suggested that C. albicans possesses 115 putative GPI anchored proteins (GpiPs), almost twice the number reported for Saccharomyces cerevisiae. A global approach to characterise in silico predicted GpiPs has been initiated by generating a library of 45 mutants. This library was subjected to a screen for cell wall modifications by testing the cell wall integrity (SDS and Calcofluor White sensitivity) and response to caspofungin. We showed that, when caspofungin sensitivity was modified, in more than half of the cases the susceptibility can be correlated to the level of chitin and cell wall thickness: sensitive strains have low level of chitin and a thin cell wall. We also identified, for the first time, genes that when deleted lead to decreased caspofungin sensitivity: DFG5, PHR1, PGA4 and PGA62. The role of two unknown GpiPs, Pga31 and Pga62 in the cell wall structure and composition was clearly demonstrated during this study.  相似文献   

5.
Heterotrimeric Gα protein Pga1 of Penicillium chrysogenum controls vegetative growth, conidiation and secondary metabolite production. In this work we studied the role of Pga1 in spore germination and resistance to different stress conditions. Strains G203R-T (expressing the dominant inactivating pga1(G203R) allele) and Δpga1 (deleted pga1) showed a delayed and asynchronic germination pattern, and a decrease in the percentage of germination, which occurred in only 70-80% of the total conidia. In contrast, in strains expressing the dominant activating pga1(G42R) allele, germination occurred at earlier times and in 100% of conidia. In addition, strains with the pga1(G42R) allele were able to bypass the carbon source (glucose or sucrose) requirement for germination in about 64% of conidia. Thus Pga1 plays an important, but not essential, role in germination, mediating carbon source sensing. Regulation of germination by Pga1 is probably mediated by cAMP, as intracellular levels of this secondary messenger undergo a peak before the onset of germination only in strains with an active Pga1. Pga1 activity is also a determinant factor in the resistance to different stress conditions. Absence or inactivation of Pga1 allow growth on SDS-containing minimal medium, increase resistance of conidia to thermal and oxidative stress, and increase resistance of vegetative mycelium to thermal and osmotic stress. In contrast, constitutive activation of Pga1 causes a decrease in the resistance of conidia to thermal stress and of vegetative mycelium to thermal and osmotic stress. Together with our previously reported results, we show in this work that Pga1 plays a central role in the regulation of the whole growth-developmental program of this biotechnologically important fungus.  相似文献   

6.
Fungal heterotrimeric G proteins regulate different processes related to development, such as colony growth and asexual sporulation, the main mechanism of propagation in filamentous fungi. To gain insight into the mechanisms controlling growth and differentiation in the industrial penicillin producer Penicillioum chrysogenum, we investigated the role of the heterotrimeric Galpha subunit Pga1 in conidiogenesis. A pga1 deleted strain (Deltapga1) and transformants with constitutively activated (pga1G42R) and inactivated (pga1G203R) Pga1 alpha subunits were obtained. They showed phenotypes that clearly implicate Pga1 as an important negative regulator of conidiogenesis. Pga1 positively affected the level of intracellular cAMP, which acts as secondary messenger of Pga1-mediated signalling. Although cAMP has some inhibitory effect on conidiation, the regulation of asexual development by Pga1 is exerted mainly via cAMP-independent pathways. The regulation of conidiation by Pga1 is mediated by repression of the brlA and wetA genes. The Deltapga1 strain and transformants with the constitutively inactive Pga1G203R subunit developed a sporulation microcycle in submerged cultures triggered by the expression of brlA and wetA genes, which are deregulated in the absence of active Pga1. Our results indicate that although basic mechanisms for regulating conidiation are similar in most filamentous fungi, there are differences in the degree of involvement of specific pathways, such as the cAMP-mediated pathway, in the regulation of this process.  相似文献   

7.
Several features and functions of a Candida albicans gene, PGA10 (also designated as RBT51), coding for a putative polypeptide species belonging to a subset of fungal proteins containing an eight-cysteine domain referred as CFEM (Common in several Fungal Extracellular Membrane proteins), are described. The ORF of the gene (ORF19.5674) encoded a protein of 250 amino acids, with a predicted molecular mass of 25.17 kDa. The product of the PGA10 gene also exhibited some features reminiscent of a class II-type hydrophobin. Deletion of PGA10 resulted in a cascade of pleiotropic effects, mostly affecting cell-surface-related properties. Thus, the null pga10Delta mutant displayed an increased sensitivity to cell-wall-perturbing agents and formed fragile biofilms that appeared partially split and weakly attached to the substratum. The biofilm-forming ability of several C. albicans mutants with single, double and triple deletions of genes encoding other protein species also containing the CFEM domain (RBT5 and WAP1/CSA1) was determined. These mutants also exhibited an abnormal ability to form biofilms. Overall, the evidence presented here suggests that fungal proteins containing the CFEM domain (Pga10p/Rbt51p, Rbt5p and Wap1p/Csa1p) may play a key role in the formation, development and/or maintenance of the biofilm structure in C. albicans.  相似文献   

8.
9.
10.
Cytokinin plays a critical role in plant growth and development by stimulating cell division and cell differentiation. Despite many years' research efforts, our current understanding of this hormone is still limited regarding both its biosynthesis and signaling. To genetically dissect the cytokinin pathway, we have used a functional screen to identify Arabidopsis gain-of-function mutations that enable shoot formation in the absence of exogenous cytokinins. By using a chemical-inducible activation tagging system, we have identified over 40 putative mutants, designated as pga (plant growth activators), which presumably were affected in key components of cytokinin biosynthesis and signaling pathway. Here, we report a detailed characterization of pga22, a representative mutant from this collection. A gain-of-function mutation in the PGA22 locus resulted in typical cytokinin responses. Molecular and genetic analyses indicated that PGA22 encodes an isopentenyl transferase (IPT) previously identified as AtIPT8. Plants of the pga22 mutant accumulated at remarkably higher levels of isopentenyladenosine-5'-monophosphate and isopentenyladenosine when analyzed by mass spectrometry, suggesting that AtIPT8/PGA22 is a functional IPT that may direct the biosynthesis of cytokinins in planta via an isopentenyladenosine-5'-monophosphate-dependent pathway.  相似文献   

11.
12.
The fungal wall mediates cell-environment interactions. Galactofuranose (Galf), the five-member ring form of galactose, has a relatively low abundance in Aspergillus walls yet is important for fungal growth and fitness. Aspergillus nidulans strains deleted for Galf biosynthesis enzymes UgeA (UDP-glucose-4-epimerase) and UgmA (UDP-galactopyranose mutase) lacked immunolocalizable Galf, had growth and sporulation defects, and had abnormal wall architecture. We used atomic force microscopy and force spectroscopy to image and quantify cell wall viscoelasticity and surface adhesion of ugeAΔ and ugmAΔ strains. We compared the results for ugeAΔ and ugmAΔ strains with the results for a wild-type strain (AAE1) and the ugeB deletion strain, which has wild-type growth and sporulation. Our results suggest that UgeA and UgmA are important for cell wall surface subunit organization and wall viscoelasticity. The ugeAΔ and ugmAΔ strains had significantly larger surface subunits and lower cell wall viscoelastic moduli than those of AAE1 or ugeBΔ hyphae. Double deletion strains (ugeAΔ ugeBΔ and ugeAΔ ugmAΔ) had more-disorganized surface subunits than single deletion strains. Changes in wall surface structure correlated with changes in its viscoelastic modulus for both fixed and living hyphae. Wild-type walls had the largest viscoelastic modulus, while the walls of the double deletion strains had the smallest. The ugmAΔ strain and particularly the ugeAΔ ugmAΔ double deletion strain were more adhesive to hydrophilic surfaces than the wild type, consistent with changes in wall viscoelasticity and surface organization. We propose that Galf is necessary for full maturation of A. nidulans walls during hyphal extension.  相似文献   

13.
Ito W  Li X  Irie K  Mizuno T  Irie K 《Eukaryotic cell》2011,10(10):1340-1347
The Saccharomyces cerevisiae RNA-binding protein Khd1/Hek2 associates with hundreds of potential mRNA targets preferentially, including the mRNAs encoding proteins localized to the cell wall and plasma membrane. We have previously revealed that Khd1 positively regulates expression of MTL1 mRNA encoding a membrane sensor in the cell wall integrity (CWI) pathway. However, a khd1Δ mutation has no detectable phenotype on cell wall synthesis. Here we show that the khd1Δ mutation causes a severe cell lysis when combined with the deletion of the CCR4 gene encoding a cytoplasmic deadenylase. We identified the ROM2 mRNA, encoding a guanine nucleotide exchange factor (GEF) for Rho1, as a target for Khd1 and Ccr4. The ROM2 mRNA level was decreased in the khd1Δ ccr4Δ mutant, and ROM2 overexpression suppressed the cell lysis of the khd1Δ ccr4Δ mutant. We also found that Ccr4 negatively regulates expression of the LRG1 mRNA encoding a GTPase-activating protein (GAP) for Rho1. The LRG1 mRNA level was increased in the ccr4Δ and khd1Δ ccr4Δ mutants, and deletion of LRG1 suppressed the cell lysis of the khd1Δ ccr4Δ mutant. Our results presented here suggest that Khd1 and Ccr4 modulate a signal from Rho1 in the CWI pathway by regulating the expression of RhoGEF and RhoGAP.  相似文献   

14.
Covalently linked cell wall proteins (CWPs) of the dimorphic fungus Candida albicans are implicated in virulence. We have carried out a comprehensive proteomic analysis of the covalently linked CWPs in exponential-phase yeast cells. Proteins were liberated from sodium dodecyl sulfate (SDS)-extracted cell walls and analyzed using immunological and advanced protein sequencing (liquid chromatography-tandem mass spectrometry [LC/MS/MS]) methods. HF-pyridine and NaOH were used to chemically release glycosylphosphatidylinositol-dependent proteins (GPI proteins) and mild alkali-sensitive proteins, respectively. In addition, to release both classes of CWPs simultaneously, cell walls were digested enzymatically with a recombinant beta-1,3-glucanase. Using LC/MS/MS, we identified 14 proteins, of which only 1 protein, Cht2p, has been previously identified in cell wall extracts by using protein sequencing methods. The 14 identified CWPs include 12 GPI proteins and 2 mild alkali-sensitive proteins. Nonsecretory proteins were absent in our cell wall preparations. The proteins identified included several functional categories: (i) five CWPs are predicted carbohydrate-active enzymes (Cht2p, Crh11p, Pga4p, Phr1p, and Scw1p); (ii) Als1p and Als4p are believed to be adhesion proteins. In addition, Pga24p shows similarity to the flocculins of baker's yeast. (iii) Sod4p/Pga2p is a putative superoxide dismutase and is possibly involved in counteracting host defense reactions. The precise roles of the other CWPs (Ecm33.3p, Pir1p, Pga29p, Rbt5p, and Ssr1p) are unknown. These results indicate that a substantial number of the covalently linked CWPs of C. albicans are actively involved in cell wall remodeling and expansion and in host-pathogen interactions.  相似文献   

15.
Candida albicans is the most prominent opportunistic fungal pathogen in humans. Multiple factors are associated with the virulence of C. albicans, including morphogenesis, cell wall organization and growth rate. Here, we describe the identification and functional characterization of CaECM25, a gene that has not been reported before. We constructed Caecm25?/? mutants and investigated the role of the gene in morphogenesis, cell wall organization and virulence. CaECM25 deletion resulted in defects in cell separation, a slower growth rate, reduced filamentous growth and attenuated adherence to plastic surfaces. The Caecm25?/? mutant was also significantly less virulent than wild type when tested for systemic infection in mice. Therefore, CaECM25 plays important roles in morphogenesis, cell wall organization and virulence.  相似文献   

16.
The auxin receptor literature contains a glaring discrepancy that invites explanation. While some physiological experiments suggest that active auxin receptors are sited inside the cell, others point to action at the cell surface. Furthermore, although the major auxin-binding protein (ABP) of maize (Zea mays) coleoptiles is found in the lumen of the endoplasmic reticulum (ER), exogenous ABP can mediate auxin-dependent changes in the plasma membrane potential of protoplasts. How can an ER protein mediate changes in cell potential? To resolve this dilemma, I propose that ABP cycles through the cell. In response to auxin, ABP is released from the ER and follows a secretory pathway to the cell surface. After secretion, ABP would bind sites on the cell surface and become subject to endocytosis, cycling back to the ER. Elevated auxin would accelerate the cycling of ABP between the ER and the cell surface. If cell wall precursors interacted with ABP during their progression through the secretory pathway, this would provide a mechanism for regulating cell wall synthesis. At the cell surface ABP would regulate an enzyme responsible for maintaining membrane potential. Both of these responses are components of auxin-regulated growth. This hypothesis does not exclude other mechanisms of signal transduction, particularly in gene regulation.  相似文献   

17.
Poly-3-hydroxybutyrate (PHB) granules of Zoogloea ramigera I-16-M contained two major PHB granule-associated proteins (PGA12 and PGA16) as revealed by sodium dodecyl sulfate-polyacrylamide gel elecrophoresis. N-terminal amino acid sequences of these proteins were determined. The genes encoding these proteins were cloned and sequenced. The structural genes of PGA12 and PGA16 were 351 and 447 bp long, which encode polypeptides with deduced molecular masses of 12.3 and 16.0 kDa, respectively. PGA12 and PGA16 were expressed in Escherichia coli. PHB granules were isolated from cells of recombinant strains of E. coli JM109, which harbored and expressed the PHB-synthetic genes of Ralstonia eutropha H16 and PGA12 or PGA16. These PHB granules contained PGA12 or PGA16 as a major protein. The presence of pga12 or pga16 did not affect the amount of PHB synthesized in E. coli. PGA12 and PGA16 bound to crystalline and amorphous PHB granules.  相似文献   

18.
Tobacco protoplasts begin to regenerate their own cell walls, the major components of which are β-glucans, soon after they are transferred into an adequate medium. During the cell wall regeneration the protoplasts secrete two isoforms of acid phosphatase (APase) in time-dependent manner. We determined that one of the isoforms, the Brefeldin A (BFA) sensitive one, is the cell wall resident APase (WP-II) by immunoblotting of the isoform with anti-WP-II antibody. We hypothesized that the WP-II may participate in the deposition of β-glucan microfibrils on the protoplast surface during cell wall regeneration. In order to examine this hypothesis, the protoplasts were cultivated in the cell wall regeneration medium containing the same amount of the BFA-sensitive APase (230 µg protein) as is secreted by the observed number of protoplasts (1.4 × 105 protoplasts) per plate (30-mm-diameter) during a 3-h cultivation after transfer to the cell wall regeneration medium. The addition of WP-II to the cell wall regeneration medium stimulated the deposition of β-glucan microfibrils on the surface of the protoplasts during cell wall regeneration. To determine the stimulative effect of the 60 kDa polypeptide of WP-II, protoplasts were cultivated in the medium containing the amount of anti-WP-II IgG (230 µg protein) equivalent to the BFA-sensitive APase. These results suggested that the 60 kDa polypeptide of WP-II is the BFA-sensitive APase which is responsible for the enhanced deposition of β-glucan microfibrils on the surface of the protoplasts.  相似文献   

19.
Fluorescein isothiocyanate labeled lectin binding techniques have revealed differences in the distribution pattern of glycosyl residues at the cell wall level between fungi that are hosts and those that are nonhosts of the mycoparasite Piptocephalis virginiana, and at the protoplast level between compatible and incompatible hosts. The cell wall of the compatible hosts (Choanephora cucurbitarum and Mortierella pusilla) and an incompatible host (Phascolomyces articulosus), as well as that of the mycoparasite itself, contains glucose and N-acetylglucosamine. However, the cell wall of a nonhost (Mortierella candelabrum) tested positive with lectins specific for various sugars, including not only glucose and N-acetylglucosamine, but also fucose, N-acetylgalactosamine, and galactose. These latter sugars could also be exposed at the surfaces of hosts and of the mycoparasite, but only after mild treatment with proteinase or when grown in a liquid culture. Pretreatment of the mycoparasite with glucose and N-acetylglucosamine inhibited its attachment to the host cell surface, but had no obvious effect on appressorium formation. On the other hand, appressorium formation was inhibited by heat treatment of host cell wall fragments which still permitted attachment, thus indicating that the factors responsible for attachment and for appressorium formation are different. The protoplast surfaces of compatible hosts contained all the sugars listed above and these protoplasts could attach to the germ tube of the mycoparasite. Only lectins specific for N-acetylglucosamine and for glucose were bound at the protoplast surface of the incompatible host; these protoplasts did not attach to the mycoparasite germ tube. Key words: mycoparasite, appressorium formation, lectins, host cell surface, attachment, protoplast surface.  相似文献   

20.
The cell wall of the human-pathogenic fungus Candida albicans is a robust but also dynamic structure which mediates adaptation to changing environmental conditions during infection. Sap9 and Sap10 are cell surface-associated proteases which function in C. albicans cell wall integrity and interaction with human epithelial cells and neutrophils. In this study, we have analyzed the enzymatic properties of Sap9 and Sap10 and investigated whether these proteases cleave proteins on the fungal cell surface. We show that Sap9 and Sap10, in contrast to other aspartic proteases, exhibit a near-neutral pH optimum of proteolytic activity and prefer the processing of peptides containing basic or dibasic residues. However, both proteases also cleaved at nonbasic sites, and not all tested peptides with dibasic residues were processed. By digesting isolated cell walls with Sap9 or Sap10, we identified the covalently linked cell wall proteins (CWPs) Cht2, Ywp1, Als2, Rhd3, Rbt5, Ecm33, and Pga4 as in vitro protease substrates. Proteolytic cleavage of the chitinase Cht2 and the glucan-cross-linking protein Pir1 by Sap9 was verified using hemagglutinin (HA) epitope-tagged versions of both proteins. Deletion of the SAP9 and SAP10 genes resulted in a reduction of cell-associated chitinase activity similar to that upon deletion of CHT2, suggesting a direct influence of Sap9 and Sap10 on Cht2 function. In contrast, cell surface changes elicited by SAP9 and SAP10 deletion had no major impact on the phagocytosis and killing of C. albicans by human macrophages. We propose that Sap9 and Sap10 influence distinct cell wall functions by proteolytic cleavage of covalently linked cell wall proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号