首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Activation of NF-B requires the phosphorylation and degradation of its associated inhibitory proteins, IB. Previously, we reported that the extracellular signal-regulated kinase (ERK) is required for IL-1 to induce persistent activation of NF-B in cultured rat vascular smooth muscle cells (VSMCs). The present study examined the mechanism by which the ERK signaling cascade modulates the duration of NF-B activation. In cultured rat VSMCs, IL-1 activated ERK and induced degradation of both IB and IB, which was associated with nuclear translocation of both ribosomal S6 kinase (RSK)1 and NF-B p65. RSK1, a downstream kinase of ERK, was associated with an IB/NF-B complex, which was independent of the phosphorylation status of RSK1. Treatment of VSMCs with IL-1 decreased IB in the RSK1/IB/NF-B complex, an effect that was attenuated by inhibition of ERK activation. Knockdown of RSK1 by small interference RNA attenuated the IL-1-induced IB decrease without influencing ether ERK phosphorylation or the earlier IB degradation. By using recombinant wild-type and mutant IB proteins, both active ERK2 and RSK1 were found to directly phosphorylate IB, but only active RSK1 phosphorylated IB on Ser19 and Ser23, two sites known to mediate the subsequent ubiquitination and degradation. In conclusion, in the ERK signaling cascade, RSK1 is a key component that directly phosphorylates IB and contributes to the persistent activation of NF-B by IL-1. extracellular signal-regulated kinase; in vitro phosphorylation assay; recombinant proteins; small interference RNA; vascular smooth muscle cell  相似文献   

2.
Although 17-estradiol (E2) administration following trauma-hemorrhage prevents the suppression in splenocyte cytokine production, it remains unknown whether the salutary effects of 17-estradiol are mediated via estrogen receptor (ER)- or ER-. Moreover, it is unknown which signaling pathways are involved in 17-estradiol's salutary effects. Utilizing an ER-- or ER--specific agonist, we examined the role of ER- and ER- in E2-mediated restoration of T-cell cytokine production following trauma-hemorrhage. Moreover, since MAPK, NF-B, and activator protein (AP)-1 are known to regulate T-cell cytokine production, we also examined the activation of MAPK, NF-B, and AP-1. Male rats underwent trauma-hemorrhage (mean arterial pressure 40 mmHg for 90 min) and fluid resuscitation. ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic T cells were isolated, and their IL-2 and IFN- production and MAPK, NF-B, and AP-1 activation were measured. T-cell IL-2 and IFN- production was decreased following trauma-hemorrhage, and this was accompanied with a decrease in T-cell MAPK, NF-B, and AP-1 activation. PPT or 17-estradiol administration following trauma-hemorrhage normalized those parameters, while DPN administration had no effect. Since PPT, but not DPN, administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the T-cell suppression, it appears that ER- plays a predominant role in mediating the salutary effects of 17-estradiol on T cells following trauma-hemorrhage, and that such effects are likely mediated via normalization of MAPK, NF-B, and AP-1 signaling pathways. shock; MAPK; NF-B; activator protein-1; propyl pyrazole triol; diarylpropionitrile  相似文献   

3.
We measured innate immune responses by primary human tracheal epithelial (HTE) cells grown as confluent, pseudostratified layers during exposure to inflammatory activators on apical vs. basolateral surfaces. Apical Pseudomonas aeruginosa strain PAK (but not flagellin mutant PAK·fliC), flagellin, and flagellin + PAK·fliC activated NF-B and IL-8 expression and secretion. In contrast, HTE cells were insensitive to LPS compared to flagellin. Flagellin activated NF-B in columnar but not basal cells. IL-1 + TNF- elicited responses similar to those of flagellin. Basolateral flagellin or IL-1 + TNF- caused 1.5- to 4-fold larger responses, consistent with the fact that NF-B activation occurred in both columnar and basal cells. MyD88 (toll receptor-associated adapter), IL-1 receptor (IL1R)1, and TNF- receptor (TNFR)1 were expressed in columnar and basal cells. ZO-1 was localized to tight junctions of columnar cells but not to basal cells. We infer the following. 1) Flagellin is necessary and sufficient to trigger inflammatory responses in columnar cells during accumulation of P. aeruginosa in the airway surface liquid (ASL); columnar cells express toll-like receptor 5 and MyD88, often associated with flagellin-activated cell signaling. 2) IL-1 + TNF- in the ASL also activate columnar cells, and these cells also express IL1R1 and TNFR1. 3) Apical flagellin, IL-1, and TNF- do not activate basal cells because tight junctions between columnar cells prevent access from the apical surface to the basal cells. 4) Exposure of basolateral surfaces to inflammatory activators elicits larger responses because both columnar and basal cells are activated, likely because both cell types express receptors for flagellin, IL-1, and TNF-. toll-like receptor; nuclear factor-B; interleukin-8; tumor necrosis factor; interleukin-1  相似文献   

4.
TNF is implicated in the attenuation of neutrophil constitutive apoptosis during sepsis. Antiapoptotic signaling is mediated principally through the TNF receptor-1 (TNFR-1). In adherent neutrophils, when -integrin signaling is activated, TNF phosphorylates TNFR-1 and activates prosurvival and antiapoptotic signaling. Previously, we identified the -PKC isotype and phosphatidylinositol (PI) 3-kinase as critical regulators of TNF signaling in adherent neutrophils. Both kinases associate with TNFR-1 in response to TNF and are required for TNFR-1 serine phosphorylation, NF-B activation, and inhibition of apoptosis. The purpose of this study was to examine the role of -PKC and PI 3-kinase in the assembly of TNFR-1 signaling complex that regulates NF-B activation and antiapoptotic signaling. Coimmunoprecipitation studies established that PI 3-kinase, -PKC, and TNFR-1 formed a signal complex in response to TNF. -PKC recruitment required both -PKC and PI 3-kinase activity, whereas PI 3-kinase recruitment was -PKC independent, suggesting that PI 3-kinase acts upstream of -PKC. An important regulatory step in control of antiapoptotic signaling is the assembly of the TNFR-1-TNFR-1-associated death domain protein (TRADD)-TNFR-associated factor 2 (TRAF2)-receptor interacting protein (RIP) complex that controls NF-B activation. Inhibition of either -PKC or PI 3-kinase decreased TNF-mediated recruitment of RIP and TRAF2 to TNFR-1. In contrast, TRADD recruitment was enhanced. Thus -PKC and PI 3-kinase are positive regulators of TNF-mediated association of TRAF2 and RIP with TNFR-1. Conversely, these kinases are negative regulators of TRADD association. These results suggest that -PKC and PI 3-kinase regulate TNF antiapoptotic signaling at the level of the TNFR-1 through control of assembly of a TNFR-1-TRADD-RIP-TRAF2 complex. inflammation; tumor necrosis factor receptor-1-associated death domain protein; receptor interacting protein; tumor necrosis factor receptor-associated factor 2; antiapoptotic signaling  相似文献   

5.
Matrix metalloproteinases (MMPs), a family of extracellular endopeptidases, are implicated in angiogenesis because of their ability to selectively degrade components of the extracellular matrix. Interleukin-1 (IL-1), increased in the heart post-myocardial infarction (post-MI), plays a protective role in the pathophysiology of left ventricular (LV) remodeling following MI. Here we studied expression of various angiogenic genes affected by IL-1 in cardiac microvascular endothelial cells (CMECs) and investigated the signaling pathways involved in the regulation of MMP-2. cDNA array analysis of 96 angiogenesis-related genes indicated that IL-1 modulates the expression of numerous genes, notably increasing the expression of MMP-2, not MMP-9. RT-PCR and Western blot analyses confirmed increased expression of MMP-2 in response to IL-1. Gelatin in-gel zymography and Biotrak activity assay demonstrated that IL-1 increases MMP-2 activity in the conditioned media. IL-1 activated ERK1/2, JNKs, and protein kinase C (PKC), specifically PKC/1, and inhibition of these cascades partially inhibited IL-1-stimulated increases in MMP-2. Inhibition of PKC/1 failed to inhibit ERK1/2. However, concurrent inhibition of PKC/1 and ERK1/2 almost completely inhibited IL-1-mediated increases in MMP-2 expression. Inhibition of p38 kinase and nuclear factor-B (NF-B) had no effect. Pretreatment with superoxide dismutase (SOD) mimetic, MnTMPyP, increased MMP-2 protein levels, whereas pretreatment with SOD and catalase mimetic, EUK134, partially inhibited IL-1-stimulated increases in MMP-2 protein levels. Exogenous H2O2 significantly increased MMP-2 protein levels, whereas superoxide generation by xanthine/xanthine oxidase had no effect. This in vitro study suggests that IL-1 modulates expression and activity of MMP-2 in CMECs. MMP-2; protein kinase C; ERK1/2; JNK  相似文献   

6.
Endothelial cells actively participate in inflammatory events by regulating leukocyte recruitment via the expression of inflammatory genes such as E-selectin, VCAM-1, ICAM-1, IL-6, IL-8, and cyclooxygenase (COX)-2. In this study we showed by real-time RT-PCR that activation of human umbilical vein endothelial cells (HUVEC) by TNF- and IL-1 differentially affected the expression of these inflammatory genes. Combined treatment with TNF- and IL-1 resulted in nonadditive, additive, and even synergistic induction of expression of VCAM-1, IL-8, and IL-6, respectively. Overexpression of dominant-negative inhibitor B protein blocking NF-B signaling confirmed a major role of this pathway in controlling both TNF-- and IL-1-induced expression of most of the genes studied. Although dexamethasone exerted limited effects at 1 µM, the thioredoxin inhibitor MOL-294, which regulates the redox state of NF-B, mainly inhibited adhesion molecule expression. Its most pronounced effect was seen on VCAM-1 mRNA levels, especially in IL-1-activated endothelium. One micromolar RWJ-67657, an inhibitor of p38 MAPK activity, diminished TNF-- and IL-1-induced expression of IL-6, IL-8, and E-selectin but had little effect on VCAM-1 and ICAM-1. Combined treatment of HUVEC with MOL-294 and RWJ-67657 resulted in significant blocking of the expression of E-selectin, IL-6, IL-8, and COX-2. The inhibitory effects were much stronger than those observed with single drug treatment. Application of combinations of drugs that affect multiple targets in activated endothelial cells may therefore be considered as a potential new therapeutic strategy to inhibit inflammatory disease activity. inflammatory gene expression; anti-inflammatory drugs; pharmacology; combination treatment  相似文献   

7.
Although 17-estradiol administration following trauma-hemorrhage prevents the suppression in splenic macrophage cytokine production, it remains unknown whether the salutary effects are mediated via estrogen receptor (ER)- or ER- and which signaling pathways are involved in such 17-estradiol effects. Utilizing ER-- or ER--specific agonists, this study examined the role of ER- and ER- in 17-estradiol-mediated restoration of macrophage cytokine production following trauma-hemorrhage. In addition, since MAPK and NF-B are known to regulate macrophage cytokine production, we also examined the activation of those signaling molecules. Male rats underwent trauma-hemorrhage (mean arterial pressure of 40 mmHg for 90 min) and fluid resuscitation. The ER- agonist propyl pyrazole triol (PPT; 5 µg/kg), the ER- agonist diarylpropionitrile (DPN; 5 µg/kg), 17-estradiol (50 µg/kg), or vehicle (10% DMSO) was injected subcutaneously during resuscitation. Twenty-four hours thereafter, splenic macrophages were isolated, and their IL-6 and TNF- production and activation of MAPK and NF-B were measured. Macrophage IL-6 and TNF- production and MAPK activation were decreased, whereas NF-B activity was increased, following trauma-hemorrhage. PPT or 17-estradiol administration after trauma-hemorrhage normalized those parameters. DPN administration, on the other hand, did not normalize the above parameters. Since PPT but not DPN administration following trauma-hemorrhage was as effective as 17-estradiol in preventing the suppression in macrophage cytokine production, it appears that ER- plays the predominant role in mediating the salutary effects of 17-estradiol on macrophage cytokine production following trauma-hemorrhage and that such effects are likely mediated via normalization of MAPK but not NF-B signaling pathways. shock; mitogen-activated protein kinase; nuclear factor-B; propyl pyrazole triol; diarylpropionitrile  相似文献   

8.
Numerous studies have demonstrated a central role of renal tubular epithelial cells in the etiology of kidney injury and disease through the elaboration of inflammatory mediators. However, little is known about the cellular signaling mechanisms involved in this process. In this study we employed normal rat kidney epithelial (NRK52E) cells to identify a novel LPS-induced signaling pathway in which RhoA-mediated AP-1 activity promotes expression of cyclooxygenase-2 (COX-2) with consequent feedback inhibition of NF-B activation through IKK. Inhibition of RhoA signaling using either the RhoA kinase inhibitor Y-27632 or a dominant negative mutant of RhoA (RhoA-DN) dramatically extended the duration of p65-DNA binding, IB phosphorylation, and IKK activity following LPS treatment. Prolongation of events associated with NF-B activation was also observed in cells pretreated and/or cotransfected with the JNK inhibitor SP600125 or deletion mutants of MEKK1 (MEKK1-KD) or Jun (Jun-DN). Conversely, constitutive expression of RhoA prevented NF-B activation by LPS, and this effect was reversed by cotransfection with MEKK1-KD. In addition, we found that the RhoA/AP-1 signaling axis plays a necessary role in COX-2 expression by LPS and that this effect is independent of NF-B activation. Moreover, inhibition of COX-2 activity results in persistent p65-DNA binding, IB phosphorylation, and IKK activity, similar to that observed after prevention of RhoA/AP-1 axis signaling. These findings suggest that COX-2 links the RhoA/AP-1 signaling cascade to NF-B activation, thereby defining a novel integrated model for regulation of the inflammatory response of kidney epithelial cells to LPS and potentially other external stimuli. AP-1; cyclooxygenase-2; inflammation; lipopolysaccharide, nuclear factor-B; IB kinase  相似文献   

9.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

10.
Pancreatic stellate cells (PSCs) are activated during pancreatitis and promote pancreatic fibrosis by producing and secreting ECMs such as collagen and fibronectin. IL-1 has been assumed to participate in pancreatic fibrosis by activating PSCs. Activated PSCs secrete various cytokines that regulate PSC function. In this study, we have examined IL-1 secretion from culture-activated PSCs as well as its regulatory mechanism. RT-PCR and ELISA have demonstrated that PSCs express IL-1 mRNA and secrete IL-1 peptide. Inhibition of TGF-1 activity secreted from PSCs by TGF-1-neutralizing antibody attenuated IL-1 secretion from PSCs. Exogenous TGF-1 increased IL-1 expression and secretion by PSCs in a dose-dependent manner. Adenovirus-mediated expression of dominant-negative (dn)Smad2/3 expression reduced both basal and TGF-1-stimulated IL-1 expression and secretion by PSCs. Coexpression of Smad3 with dnSmad2/3 restored IL-1 expression and secretion by PSCs, which were attenuated by dnSmad2/3 expression. In contrast, coexpression of Smad2 with dnSmad2/3 did not alter them. Furthermore, inhibition of IL-1 activity secreted from PSCs by IL-1-neutralizing antibody attenuated TGF-1 secretion from PSCs. Exogenous IL-1 enhanced TGF-1 expression and secretion by PSCs. IL-1 activated ERK, and PD-98059, a MEK1 inhibitor, blocked IL-1 enhancement of TGF-1 expression and secretion by PSCs. We propose that an autocrine loop exists between TGF-1 and IL-1 in activated PSCs through Smad3- and ERK-dependent pathways. fibrosis; cytokine; chronic pancreatitis  相似文献   

11.
NF-B signaling pathway has been known to play a major role in the pathological process of atherogenesis. Unlike high shear stress, in which the NF-B activity is transient, our earlier studies have demonstrated a persistent activation of NF-B in response to low shear stress in human aortic endothelial cells. These findings partially explained why low shear regions that exist at bifurcations of arteries are prone to atherosclerosis, unlike the relatively atheroprotective high shear regions. In the present study, we further investigated 1) the role of NF-B signaling kinases (IKK and ) that may be responsible for the sustained activation of NF-B in low shear stress and 2) the regulation of these kinases by reactive oxygen species (ROS). Our results demonstrate that not only is a significant proportion of low shear-induced-kinase activity is contributed by IKK, but it is also persistently induced for a prolonged time frame. The IKK activity (both and ) is blocked by apocynin (400 µM), a specific NADPH oxidase inhibitor, and diphenyleneiodonium chloride (DPI; 10 µM), an inhibitor of flavin-containing oxidases like NADPH oxidases. Determination of ROS also demonstrated an increased generation in low shear stress that could be blocked by DPI. These results suggest that the source of ROS generation in endothelial cells in response to low shear stress is NADPH oxidase. The DPI-inhibitable component of ROS is the primary regulator of specific upstream kinases that determine the persistent NF-B activation selectively in low shear-induced endothelial cells. upstream B kinases; laminar shear stress; oxidative stress; atherogenesis; reactive oxygen species  相似文献   

12.
Using monolayers of intestinal cells, we reported that upregulation of inducible nitric oxide synthase (iNOS) is required for oxidative injury and that activation of NF-B is key to cytoskeletal instability. In the present study, we hypothesized that NF-B activation is crucial to oxidant-induced iNOS upregulation and its injurious consequences: cytoskeletal oxidation and nitration and monolayer dysfunction. Wild-type (WT) cells were pretreated with inhibitors of NF-B, with or without exposure to oxidant (H2O2). Other cells were transfected with an IB mutant (an inhibitor of NF-B). Relative to WT cells exposed to vehicle, oxidant exposure caused increases in IB instability, NF-B subunit activation, iNOS-related activity (NO, oxidative stress, tubulin nitration), microtubule disassembly and instability (increased monomeric and decreased polymeric tubulin), and monolayer disruption. Monolayers pretreated with NF-B inhibitors (MG-132, lactacystin) were protected against oxidation, showing decreases in all measures of the NF-B iNOS NO pathway. Dominant mutant stabilization of IB to inactivate NF-B suppressed all measures of the iNOS/NO upregulation while protecting monolayers against oxidant insult. In these mutants, we found prevention of tubulin nitration and oxidation and enhancement of cytoskeletal and monolayer stability. We concluded that 1) NF-B is required for oxidant-induced iNOS upregulation and for the consequent nitration and oxidation of cytoskeleton; 2) NF-B activation causes cytoskeletal injury following upregulation of NO-driven processes; and 3) the molecular event underlying the destabilizing effects of NF-B appears to be increases in carbonylation and nitrotyrosination of the subunit components of cytoskeleton. The ability to promote NO overproduction and cytoskeletal nitration/oxidation is a novel mechanism not previously attributed to NF-B in cells. tubulin cytoskeleton; microtubules; oxidation/nitration; inducible nitric oxide synthase/peroxynitrite; inflammatory bowel disease; Caco-2 cells; gut barrier; nuclear factor-B/IB  相似文献   

13.
Cyclooxygenase-2 (COX-2) mediates various inflammatory responses and is expressed in pancreatic tissue from patients with chronic pancreatitis. To examine the role of COX-2 in chronic pancreatitis, we investigated its participation in regulating functions of pancreatic stellate cells (PSCs), using isolated rat PSCs. COX-2 was expressed in culture-activated PSCs but not in freshly isolated quiescent PSCs. TGF-1, IL-1, and IL-6 enhanced COX-2 expression in activated PSCs, concomitantly increasing the expression of -smooth muscle actin (-SMA), a parameter of PSC activation. The COX-2 inhibitor NS-398 blocked culture activation of freshly isolated quiescent PSCs. NS-398 also inhibited the enhancement of -SMA expression by TGF-1, IL-1, and IL-6 in activated PSCs. These data indicate that COX-2 is required for the initiation and promotion of PSC activation. We further investigated the mechanism by which cytokines enhance COX-2 expression in PSCs. Adenovirus-mediated expression of dominant negative Smad2/3 inhibited the increase in expression of COX-2, -SMA, and collagen-1 mediated by TGF-1 in activated PSCs. Moreover, dominant negative Smad2/3 expression attenuated the expression of COX-2 and -SMA enhanced by IL-1 and IL-6. Anti-TGF- neutralizing antibody also attenuated the increase in COX-2 and -SMA expression caused by IL-1 and IL-6. IL-6 as well as IL-1 enhanced TGF-1 secretion from PSCs. These data indicate that Smad2/3-dependent pathway plays a central role in COX-2 induction by TGF-1, IL-1, and IL-6. Furthermore, IL-1 and IL-6 promote PSC activation by enhancing COX-2 expression indirectly through Smad2/3-dependent pathway by increasing TGF-1 secretion from PSCs. transforming growth factor-; interleukin; Smad; autocrine; pancreatic fibrosis  相似文献   

14.
To elucidate signaling pathways activated by IL-1 and IL-6 that contribute to increased expression of plasminogen activator inhibitor-1 (PAI-1), we studied human hepatoma (HepG2) cells and primary mouse hepatocytes. HepG2 cell PAI-1 mRNA increased in response to IL-1, IL-6, and IL-1 plus IL-6 as shown by real-time PCR. Activity of the transiently transfected PAI-1 promoter (–829 to +36 bp) increased as well. Systematic promoter deletion assays showed that the region from –239 to –210 bp containing a putative CCAAT-enhancer binding protein (C/EBP) binding site was critical. Point mutations in this region abolished the IL-1 and IL-6 responses. Antibody interference electrophoretic mobility shift assays showed that C/EBP (but not C/EBP or C/EBP) binding and protein were increased by IL-1, IL-6, and IL-1 plus IL-6 in HepG2 cells. IL-1 and IL-6 increased expression of both PAI-1 mRNA and C/EBP mRNA in mouse primary hepatocytes as well. Downregulation of C/EBP induced with small interfering RNA (siRNA) decreased secretion of PAI-1. As judged from results obtained with inhibitors, signal transduction in all three of the mitogen-activated protein kinase pathways was involved in IL-1-inducible PAI-1 expression. By contrast, JAK signaling was responsible for the IL-6-induced inducible expression. Thus IL-1 and IL-6 exert directionally similar effects on PAI-1 expression, but the induction involves distinct signaling pathways with a final common mediator, C/EBP. CCAAT-enhancer binding protein; interleukin-1; interleukin-6; statins; thrombosis  相似文献   

15.
Stimulation of -adrenergic receptors (-AR) induces apoptosis in adult rat ventricular myocytes (ARVMs) via the JNK-dependent activation of mitochondrial death pathway. Recently, we have shown that inhibition of matrix metalloproteinase-2 (MMP-2) inhibits -AR-stimulated apoptosis and that the apoptotic effects of MMP-2 are possibly mediated via its interaction with 1 integrins. Herein we tested the hypothesis that MMP-2 impairs 1 integrin-mediated survival signals, such as activation of focal adhesion kinase (FAK), and activates the JNK-dependent mitochondrial death pathway. Inhibition of MMP-2 using SB3CT, a selective gelatinase inhibitor, significantly increased FAK phosphorylation (Tyr-397 and Tyr-576). TIMP-2, tissue inhibitor of MMP-2, produced a similar increase in FAK phosphorylation, whereas treatment of ARVMs with purified active MMP-2 significantly inhibited FAK phosphorylation. Inhibition of MMP-2 using SB3CT inhibited -AR-stimulated activation of JNKs and levels of cytosolic cytochrome c. Treatment of ARVMs with purified MMP-2 increased cytosolic cytochrome c release. Furthermore, inhibition of MMP-2 using SB3CT and TIMP-2 attenuated -AR-stimulated decreases in mitochondrial membrane potential. Overexpression of 1 integrins using adenoviruses expressing the human 1A-integrin decreased -AR-stimulated cytochrome c release and apoptosis. Overexpression of 1 integrins also inhibited apoptosis induced by purified active MMP-2. These data suggest that MMP-2 interferes with the 1 integrin survival signals and activates JNK-dependent mitochondrial death pathway leading to apoptosis. matrix metalloproteinases; focal adhesion kinase; c-Jun NH2-terminal kinase; cytochrome c  相似文献   

16.
Focal adhesion kinase (FAK) integrates various extracellular and intracellular signals and is implicated in a variety of biological functions, but its exact role and downstream targeting signals in the regulation of apoptosis in intestinal epithelial cells (IECs) remains unclear. The current study tested the hypothesis that FAK has an antiapoptotic role in the IEC-6 cell line by altering NF-B signaling. Induced FAK expression by stable transfection with the wild-type (WT)-FAK gene increased FAK phosphorylation, which was associated with an increase in NF-B activity. These stable WT-FAK-transfected IECs also exhibited increased resistance to apoptosis when they were exposed to TNF- plus cycloheximide (TNF-/CHX). Specific inhibition of NF-B by the recombinant adenoviral vector containing the IB superrepressor prevented increased resistance to apoptosis in WT-FAK-transfected cells. In contrast, inactivation of FAK by ectopic expression of dominant-negative mutant of FAK (DNM-FAK) inhibited NF-B activity and increased the sensitivity to TNF-/CHX-induced apoptosis. Furthermore, induced expression of endogenous FAK by depletion of cellular polyamines increased NF-B activity and resulted in increased resistance to TNF-/CHX-induced apoptosis, both of which were prevented by overexpression of DNM-FAK. These results indicate that increased expression of FAK suppresses TNF-/CHX-induced apoptosis, at least partially, through the activation of NF-B signaling in IECs. polyamines; -difluoromethylornithine; X-linked inhibitor of apoptosis protein; IB  相似文献   

17.
Integrin mechanotransduction is a ubiquitous biological process. Mechanical forces are transduced transmembranously by an integrin's ligand-bound extracellular domain through its -subunit's cytoplasmic domain connected to the cytoskeleton. This often culminates in the activation of tyrosine kinases directing cell responses. The delicate balance between hemostasis and thrombosis requires exquisitely fine-tuned integrin function, and balance is maintained in vivo despite that the major platelet integrin IIb3 is continuously subjected to frictional or shearing forces generated by laminar blood flow. To test the hypothesis that platelet function is regulated by the direct effects of mechanical forces on IIb3, we examined IIb3/cytoskeletal interactions in human platelets exposed to shear stress in a cone-plate viscometer. We observed that -actinin, myosin heavy chain, and Syk coimmunoprecipitate with IIb3 in resting platelets and that 120 dyn/cm2 shear stress leads to their disassociation from IIb3. Shear-induced disassociation of -actinin and myosin heavy chain from the 3 tail is unaffected by blocking von Willebrand factor (VWF) binding to glycoprotein (Gp) Ib-IX-V but abolished by blocking VWF binding to IIb3. Syk's disassociation from 3 is inhibited when VWF binding to either GpIb-IX-V or IIb3 is blocked. Shear stress-induced phosphorylation of SLP-76 and its association with tyrosine-phosphorylated adhesion and degranulation-promoting adapter protein are inhibited by blocking ligand binding to IIb3 but not by blocking ligand binding to GpIb-IX-V. Chinese hamster ovary cells expressing IIb3 with 3 truncated of its cytoskeletal binding domains demonstrate diminished shear-dependent adhesion and cohesion. These results support the hypothesis that shear stress directly modulates IIb3 function and suggest that shear-induced IIb3-mediated signaling contributes to the regulation of platelet aggregation by directing the release of constraining cytoskeletal elements from the 3-tail. platelets; mechanoreceptor; integrin; shear stress; signal transduction  相似文献   

18.
We previously reported that uniaxial continuous stretch in human umbilical vein endothelial cells (HUVECs) induced interleukin-6 (IL-6) secretion via IB kinase (IKK)/nuclear factor-B (NF-B) activation. The aim of the present study was to clarify the upstream signaling mechanism responsible for this phenomenon. Stretch-induced IKK activation and IL-6 secretion were inhibited by application of 51 integrin-inhibitory peptide (GRGDNP), phosphatidylinositol 3-kinase inhibitor (LY-294002), phospholipase C- inhibitor (U-73122), or protein kinase C inhibitor (H7). Although depletion of intra- or extracellular Ca2+ pool using thapsigargin (TG) or EGTA, respectively, showed little effect, a TG-EGTA mixture significantly inhibited stretch-induced IKK activation and IL-6 secretion. An increase in the intracellular Ca2+ concentration ([Ca2+]i) upon continuous stretch was observed even in the presence of TG, EGTA, or GRGDNP, but not in a solution containing the TG-EGTA mixture, indicating that both integrin activation and [Ca2+]i rise are crucial factors for stretch-induced IKK activation and after IL-6 secretion in HUVECs. Furthermore, while PKC activity was inhibited by the TG-EGTA mixture, GRGDNP, LY-294002, or U-73122, PLC- activity was retarded by GRGDNP or LY-294002. These results indicate that continuous stretch-induced IL-6 secretion in HUVECs depends on outside-in signaling via integrins followed by a PI3-K-PLC--PKC-IKK-NF-B signaling cascade. Another crucial factor, [Ca2+]i increase, may at least be required to activate PKC needed for NF-B activation. nuclear factor-B; phosphatidylinositol 3-kinase; phospholipase C-; protein kinase C; intracellular Ca2+ concentration  相似文献   

19.
We investigated the involvement of PKC- in apical actin remodeling in carbachol-stimulated exocytosis in reconstituted rabbit lacrimal acinar cells. Lacrimal acinar PKC- cosedimented with actin filaments in an actin filament binding assay. Stimulation of acini with carbachol (100 µM, 2–15 min) significantly (P 0.05) increased PKC- recovery with actin filaments in two distinct biochemical assays, and confocal fluorescence microscopy showed a significant increase in PKC- association with apical actin in stimulated acini as evidenced by quantitative colocalization analysis. Overexpression of dominant-negative (DN) PKC- in lacrimal acini with replication-defective adenovirus (Ad) resulted in profound alterations in apical and basolateral actin filaments while significantly inhibiting carbachol-stimulated secretion of bulk protein and -hexosaminidase. The chemical inhibitor GF-109203X (10 µM, 3 h), which inhibits PKC-, -, -, and -, also elicited more potent inhibition of carbachol-stimulated secretion relative to Gö-6976 (10 µM, 3 h), which inhibits only PKC- and -. Transduction of lacrimal acini with Ad encoding syncollin-green fluorescent protein (GFP) resulted in labeling of secretory vesicles that were discharged in response to carbachol stimulation, whereas cotransduction of acini with Ad-DN-PKC- significantly inhibited carbachol-stimulated release of syncollin-GFP. Carbachol also increased the recovery of secretory component in culture medium, whereas Ad-DN-PKC- transduction suppressed its carbachol-stimulated release. We propose that DN-PKC- alters lacrimal acinar apical actin remodeling, leading to inhibition of stimulated exocytosis and transcytosis. lacrimal gland; acinar epithelial cell; exocytosis; polymeric immunoglobulin A receptor  相似文献   

20.
This study investigated if an osteoclastic protein-tyrosine phosphatase (PTP), PTP-oc, plays a role in the functional activity and differentiation of osteoclastic cells by determining the effects of overexpression of wild-type (WT)- or phosphatase-deficient (PD)-PTP-oc on bone resorption activity and differentiation of human promyelomonocytic U-937 cells, which could be induced to differentiate into "osteoclast-like" cells by phorbol ester/1,25(OH)2D3 treatment. U-937 cells overexpressing WT- or PD-PTP-oc were produced with a transposon-based vector. The size and depth of resorption pits created by WT-PTP-oc-overexpressing osteoclast-like cells were greater, while those by PD-PTP-oc-overexpressing osteoclast-like cells were less, than those created by control osteoclast-like cells. Overexpression of WT-PTP-oc also enhanced, while overexpression of PD-PTP-oc suppressed, their differentiation into osteoclast-like cells. Overexpression of WT-PTP-oc increased apoptosis and proliferation of U-937 cells, and overexpression of PD-PTP-oc reduced cell proliferation. Cells overexpressing WT-PTP-oc has also led to greater c-Src and NF- activation, whereas cells overexpressing PD-PTP-oc resulted in less c-Src and NF- activation. c-Src activation and NF- activation each correlated with resorption activity and differentiation into osteoclast-like cells. In summary, these results show that 1) PTP-oc regulates both the activity and the differentiation of osteoclast-like cells derived from U-937 cells; 2) PTP-oc enzymatic activity is important to these processes; 3) high PTP-oc enzymatic activity caused an increase in U-937 cell apoptosis and proliferation, leading to no significant changes in the number of viable cells; and 4) some of the PTP-oc actions are mediated in part by the c-Src and/or NF- pathways. osteoclast; resorption; nuclear factor-; c-Src  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号