首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies of mitochondrial DNA (mtDNA) variation in mammals and Drosophila have shown an excess of amino acid variation within species (replacement polymorphism) relative to the number of silent and replacement differences fixed between species. To examine further this pattern of nonneutral mtDNA evolution, we present sequence data for the ND3 and ND5 genes from 59 lines of Drosophila melanogaster and 29 lines of D. simulans. Of interest are the frequency spectra of silent and replacement polymorphisms, and potential variation among genes and taxa in the departures from neutral expectations. The Drosophila ND3 and ND5 data show no significant excess of replacement polymorphism using the McDonald-Kreitman test. These data are in contrast to significant departures from neutrality for the ND3 gene in mammals and other genes in Drosophila mtDNA (cytochrome b and ATPase 6). Pooled across genes, however, both Drosophila and human mtDNA show very significant excesses of amino acid polymorphism. Silent polymorphisms at ND5 show a significantly higher variance in frequency than replacement polymorphisms, and the latter show a significant skew toward low frequencies (Tajima's D = -1.954). These patterns are interpreted in light of the nearly neutral theory where mildly deleterious amino acid haplotypes are observed as ephemeral variants within species but do not contribute to divergence. The patterns of polymorphism and divergence at charge-altering amino acid sites are presented for the Drosophila ND5 gene to examine the evolution of functionally distinct mutations. Excess charge-altering polymorphism is observed at the carboxyl terminal and excess charge-altering divergence is detected at the amino terminal. While the mildly deleterious model fits as a net effect in the evolution of nonrecombining mitochondrial genomes, these data suggest that opposing evolutionary pressures may act on different regions of mitochondrial genes and genomes.   相似文献   

2.
Unraveling Selection in the Mitochondrial Genome of Drosophila   总被引:15,自引:6,他引:9  
JWO. Ballard  M. Kreitman 《Genetics》1994,138(3):757-772
We examine mitochondrial DNA variation at the cytochrome b locus within and between three species of Drosophila to determine whether patterns of variation conform to the predictions of neutral molecular evolution. The entire 1137-bp cytochrome b locus was sequenced in 16 lines of Drosophila melanogaster, 18 lines of Drosophila simulans and 13 lines of Drosophila yakuba. Patterns of variation depart from neutrality by several test criteria. Analysis of the evolutionary clock hypothesis shows unequal rates of change along D. simulans lineages. A comparison within and between species of the ratio of amino acid replacement change to synonymous change reveals a relative excess of amino acid replacement polymorphism compared to the neutral prediction, suggestive of slightly deleterious or diversifying selection. There is evidence for excess homozygosity in our world wide sample of D. melanogaster and D. simulans alleles, as well as a reduction in the number of segregating sites in D. simulans, indicative of selective sweeps. Furthermore, a test of neutrality for codon usage shows the direction of mutations at third positions differs among different topological regions of the gene tree. The analyses indicate that molecular variation and evolution of mtDNA are governed by many of the same selective forces that have been shown to govern nuclear genome evolution and suggest caution be taken in the use of mtDNA as a ``neutral' molecular marker.  相似文献   

3.
To study the rate and pattern of nucleotide substitution in mitochondrial DNA (mtDNA), we cloned and sequenced a 975-bp segment of mtDNA from Drosophila melanogaster, D. simulans, and D. mauritiana containing the genes for three transfer RNAs and parts of two protein- coding genes, ND2 and COI. Statistical analysis of synonymous substitutions revealed a predominance of transitions over transversions among the three species, a finding differing from previous results obtained from a comparison of D. melanogaster and D. yakuba. The number of transitions observed was nearly the same for each species comparison, including D. yakuba, despite the differences in divergence times. However, transversions seemed to increase steadily with increasing divergence time. By contrast, nonsynonymous substitutions in the ND2 gene showed a predominance of transversions over transitions. Most transversions were between A and T and seemed to be due to some kind of mutational bias to which the A + T-rich mtDNA of Drosophila species may be subject. The overall rate of nucleotide substitution in Drosophila mtDNA appears to be slightly faster (approximately 1.4 times) than that of the Adh gene. This contrasts with the result obtained for mammals, in which the mtDNA evolves approximately 10 times faster than single-copy nuclear DNA. We have also shown that the start codon of the COI gene is GTGA in D. simulans and GTAA in D. mauritiana. These codons are different from that of D. melanogaster (ATAA).   相似文献   

4.
S. Cirera  M. Aguade 《Genetics》1997,147(1):189-197
In Drosophila the products of the seminal fluid stimulate oviposition and suppress remating in the female. Of all the accessory gland peptides (Acp's) involved in these two responses, the sex-peptide (coded by the Acp70A gene) is among the best characterized at the functional level. A 1.2-kb fragment encompassing the Acp70A gene of nine lines from a natural population of D. melanogaster and one allele of D. sechellia was sequenced to study the forces shaping nucleotide variation within and between species. The coding region of D. simulans and D. mauritiana was also sequenced. A Ser to Ala replacement polymorphism at the last position of the signal peptide was detected in D. melanogaster. The Ser and Ala alleles are at intermediate frequencies. The level of nucleotide variation is lower for the derived Ala allele, which is compatible with a recent origin and an increase in frequency due to positive selection. Variation at the 5' flanking region is structured in two major highly differentiated haplotypes, whose distribution does not conform to neutral expectations. Selective and/or historical factors could contribute to the observed overall patterning of nucleotide variation at the Acp70A region.  相似文献   

5.
The nucleotide diversity across 1705 bp of the G6pd gene is studied in 50 Drosophila melanogaster and 12 D. simulans lines. Our earlier report contrasted intraspecific polymorphism and interspecific differences at silent and replacement sites in these species. This report expands the number of European and African lines and examines the pattern of polymorphism with respect to the common A/B allozymes. In D. melanogaster the silent nucleotide diversity varies 2.8-fold across localities. The B allele sequences are two- to fourfold more variable than the derived A allele, and differences between allozymes are twice as among B alleles. There is strong linkage disequilibrium across the G6pd region. In both species the level of silent polymorphism increases from the 5' to 3' ends, while there is no comparable pattern in level of silent site divergence or fixation. The neutral model is not rejected in either species. Using D. yakuba as an outgroup, the D. melanogaster lineage shows a twofold greater rate of silent fixation, but less than half the rate of amino acid replacement. Lineage-specific differences in mutation fixation are inconsistent with neutral expectations and suggest the interaction of species-specific population size differences with both weakly advantageous and deleterious selection.  相似文献   

6.
M Aguadé 《Genetics》1999,152(2):543-551
Nucleotide sequence variation at the Acp29AB gene region has been surveyed in Drosophila melanogaster from Spain (12 lines), Ivory Coast (14 lines), and Malawi (13 lines) and in one line of D. simulans. The approximately 1.7-kb region studied encompasses the Acp29AB gene that codes for a male accessory gland protein and its flanking regions. Seventy-seven nucleotide and 8 length polymorphisms were detected. Nonsynonymous polymorphism was an order of magnitude lower than synonymous polymorphism, but still high relative to other non-sex-related genes. In D. melanogaster variation at this region revealed no major genetic differentiation between East and West African populations, while differentiation was highly significant between the European and the two African populations. Comparison of polymorphism and divergence at synonymous and nonsynonymous sites showed an excess of fixed nonsynonymous changes, which indicates that the evolution of the Acp29AB protein has been driven by directional selection at least after the split of the D. melanogaster and D. simulans lineages. The pattern of variation in extant populations of D. melanogaster favors a scenario where the fixation of advantageous replacement substitutions occurred in the early stages of speciation and balancing selection is maintaining variation in this species.  相似文献   

7.
Morton RA  Choudhary M  Cariou ML  Singh RS 《Genetica》2004,120(1-3):101-114
Comparison of synonymous and nonsynonymous variation/substitution within and between species at individual genes has become a widely used general approach to detect the effect of selection versus drift. The sibling species group comprised of two cosmopolitan (Drosophila melanogaster and Drosophila simulans) and two island (Drosophila mauritiana and Drosophila sechellia) species has become a model system for such studies. In the present study we reanalyzed the pattern of protein variation in these species, and the results were compared against the patterns of nucleotide variation obtained from the literature, mostly available for melanogaster and simulans. We have mainly focused on the contrasting patterns of variation between the cosmopolitan pair. The results can be summarized as follows: (1) As expected the island species D. mauritiana and D. sechellia showed much less variation than the cosmopolitan species D. melanogaster and D. simulans. (2) The chromosome 2 showed significantly less variation than chromosome 3 and X in all four species which may indicate effects of past selective sweeps. (3) In contrast to its overall low variation, D. mauritiana showed highest variation for X-linked loci which may indicate introgression from its sibling, D. simulans. (4) An average population of D. simulans was as heterozygous as that of D. melanogaster (14.4% v.s. 13.9%) but the difference was large and significant when considering only polymorphic loci (37.2% v.s. 26.1%). (5) The species-wise pooled populations of these two species showed similar results (all loci = 18.3% v.s. 20.0%, polymorphic loci = 47.2% v.s. 37.6%). (6) An average population of D. simulans had more low-frequency alleles than D. melanogaster, and the D. simulans alleles were found widely distributed in all populations whereas the D. melanogaster alleles were limited to local populations. As a results of this, pooled populations of D. melanogaster showed more polymorphic loci than those of D. simulans (48.0% v.s. 32.0%) but the difference was reduced when the comparison was made on the basis of an average population (29.1% v.s. 21.4%). (7) While the allele frequency distributions within populations were nonsignificant in both D. melanogaster and D. simulans, melanogaster had fewer than simulans, but more than expected from the neutral theory, low frequency alleles. (8) Diallelic loci with the second allele with a frequency less than 20% had similar frequencies in all four species but those with the second allele with a frequency higher than 20% were limited to only melanogaster the latter group of loci have clinal (latitudinal) patterns of variation indicative of balancing selection. (9) The comparison of D. simulans/D. melanogaster protein variation gave a ratio of 1.04 for all loci and 1.42 for polymorphic loci, against a ratio of approximately 2-fold difference for silent nucleotide sites. This suggests that the species ratios of protein and silent nucleotide polymorphism are too close to call for selective difference between silent and allozyme variation in D. simulans. In conclusion, the contrasting levels of allozyme polymorphism, distribution of rare alleles, number of diallelic loci and the patterns of geographic differentiation between the two species suggest the role of natural selection in D. melanogaster, and of possibly ancient population structure and recent worldwide migration in D. simulans. Population size differences alone are insufficient as an explanation for the patterns of variation between these two species.  相似文献   

8.
Andolfatto P  Kreitman M 《Genetics》2000,154(4):1681-1691
A previous study of nucleotide polymorphism in a Costa Rican population of Drosophila melanogaster found evidence for a nonneutral deficiency in the number of haplotypes near the proximal breakpoint of In(2L)t, a common inversion polymorphism in this species. Another striking feature of the data was a window of unusually high nucleotide diversity spanning the breakpoint site. To distinguish between selective and neutral demographic explanations for the observed patterns in the data, we sample alleles from three additional populations of D. melanogaster and one population of D. simulans. We find that the strength of associations among sites found at the breakpoint varies between populations of D. melanogaster. In D. simulans, analysis of the homologous region reveals unusually elevated levels of nucleotide polymorphism spanning the breakpoint site. As with American populations of D. melanogaster, our D. simulans sample shows a marked reduction in the number of haplotypes but not in nucleotide diversity. Haplotype tests reveal a significant deficiency in the number of haplotypes relative to the neutral expectation in the D. simulans sample and some populations of D. melanogaster. At the breakpoint site, the level of divergence between haplotype classes is comparable to interspecific divergence. The observation of interspecific polymorphisms that differentiate major haplotype classes in both species suggests that haplotype classes at this locus are considerably old. When considered in the context of other studies on patterns of variation within and between populations of D. melanogaster and D. simulans, our data appear more consistent with the operation of selection than with simple demographic explanations.  相似文献   

9.
Intraspecific nuclear DNA variation in Drosophila   总被引:18,自引:6,他引:12  
We have summarized and analyzed all available nuclear DNA sequence polymorphism studies for three species of Drosophila, D. melanogaster (24 loci), D. simulans (12 loci), and D. pseudoobscura (5 loci). Our major findings are: (1) The average nucleotide heterozygosity ranges from about 0.4% to 2% depending upon species and function of the region, i.e., coding or noncoding. (2) Compared to D. simulans and D. pseudoobscura (which are about equally variable), D. melanogaster displays a low degree of DNA polymorphism. (3) Noncoding introns and 3' and 5' flanking DNA shows less polymorphism than silent sites within coding DNA. (4) X-linked genes are less variable than autosomal genes. (5) Transition (Ts) and transversion (Tv) polymorphisms are about equally frequent in non-coding DNA and at fourfold degenerate sites in coding DNA while Ts polymorphisms outnumber Tv polymorphisms by about 2:1 in total coding DNA. The increased Ts polymorphism in coding regions is likely due to the structure of the genetic code: silent changes are more often Ts's than are replacement substitutions. (6) The proportion of replacement polymorphisms is significantly higher in D. melanogaster than in D. simulans. (7) The level of variation in coding DNA and the adjacent noncoding DNA is significantly correlated indicating regional effects, most notably recombination. (8) Surprisingly, the level of polymorphism at silent coding sites in D. melanogaster is positively correlated with degree of codon usage bias. (9) Three proposed tests of the neutral theory of DNA polymorphisms have been performed on the data: Tajima's test, the HKA test, and the McDonald-Kreitman test. About half of the loci fail to conform to the expectations of neutral theory by one of the tests. We conclude that many variables are affecting levels of DNA polymorphism in Drosophila, from properties of nucleotides to population history and, perhaps, mating structure. No simple, all encompassing explanation satisfactorily accounts for the data.   相似文献   

10.
C. F. Aquadro  K. M. Lado    W. A. Noon 《Genetics》1988,119(4):875-888
A 40-kb region around the rosy and snake loci was analyzed for restriction map variation among 60 lines of Drosophila melanogaster and 30 lines of Drosophila simulans collected together at a single locality in Raleigh, North Carolina. DNA sequence variation in D. simulans was estimated to be 6.3 times greater than in D. melanogaster (heterozygosities per nucleotide of 1.9% vs. 0.3%). This result stands in marked contrast to results of studies of phenotypic variation including proteins (allozymes), morphology and chromosome arrangements which are generally less variable and less geographically differentiated in D. simulans. Intraspecific polymorphism is not distributed uniformly over the 40-kb region. The level of heterozygosity per nucleotide varies more than 12-fold across the region in D. simulans, being highest over the hsc2 gene. Similar, though less extreme, variation in heterozygosity is also observed in D. melanogaster. Average interspecific divergence (corrected for intraspecific polymorphism) averaged 3.8%. The pattern of interspecific divergence over the 40-kb region shows some disparities with the spatial distribution of intraspecific variation, but is generally consistent with selective neutrality predictions: the most polymorphic regions within species are generally the most divergent between species. Sequence-length polymorphism is observed for D. melanogaster to be at levels comparable to other gene regions in this species. In contrast, no sequence length variation was observed among D. simulans chromosomes (limit of resolution approximately 100 bp). These data indicate that transposable elements play at best a minor role in the generation of naturally occurring genetic variation in D. simulans compared to D. melanogaster. We hypothesize that differences in species effective population size are the major determinant of the contrasting levels and patterns of DNA sequence and insertion/deletion variation that we report here and the patterns of allozyme and morphological variation and differentiation reported by other workers for these two species.  相似文献   

11.
Rand DM  Fry A  Sheldahl L 《Genetics》2006,172(1):329-341
Under the mitochondrial theory of aging, physiological decline with age results from the accumulated cellular damage produced by reactive oxygen species generated during electron transport in the mitochondrion. A large body of literature has documented age-specific declines in mitochondrial function that are consistent with this theory, but relatively few studies have been able to distinguish cause from consequence in the association between mitochondrial function and aging. Since mitochondrial function is jointly encoded by mitochondrial (mtDNA) and nuclear genes, the mitochondrial genetics of aging should be controlled by variation in (1) mtDNA, (2) nuclear genes, or (3) nuclear-mtDNA interactions. The goal of this study was to assess the relative contributions of these factors in causing variation in Drosophila longevity. We compared strains of flies carrying mtDNAs with varying levels of divergence: two strains from Zimbabwe (<20 bp substitutions between mtDNAs), strains from Crete and the United States (approximately 20-40 bp substitutions between mtDNAs), and introgression strains of Drosophila melanogaster carrying mtDNA from Drosophila simulans in a D. melanogaster Oregon-R chromosomal background (>500 silent and 80 amino acid substitutions between these mtDNAs). Longevity was studied in reciprocal cross genotypes between pairs of these strains to test for cytoplasmic (mtDNA) factors affecting aging. The intrapopulation crosses between Zimbabwe strains show no difference in longevity between mtDNAs; the interpopulation crosses between Crete and the United States show subtle but significant differences in longevity; and the interspecific introgression lines showed very significant differences between mtDNAs. However, the genotypes carrying the D. simulans mtDNA were not consistently short-lived, as might be predicted from the disruption of nuclear-mitochondrial coadaptation. Rather, the interspecific mtDNA strains showed a wide range of variation that flanked the longevities seen between intraspecific mtDNAs, resulting in very significant nuclear x mtDNA epistatic interaction effects. These results suggest that even "defective" mtDNA haplotypes could extend longevity in different nuclear allelic backgrounds, which could account for the variable effects attributable to mtDNA haplogroups in human aging.  相似文献   

12.
Schmid KJ  Nigro L  Aquadro CF  Tautz D 《Genetics》1999,153(4):1717-1729
We present a survey of nucleotide polymorphism of three novel, rapidly evolving genes in populations of Drosophila melanogaster and D. simulans. Levels of silent polymorphism are comparable to other loci, but the number of replacement polymorphisms is higher than that in most other genes surveyed in D. melanogaster and D. simulans. Tests of neutrality fail to reject neutral evolution with one exception. This concerns a gene located in a region of high recombination rate in D. simulans and in a region of low recombination rate in D. melanogaster, due to an inversion. In the latter case it shows a very low number of polymorphisms, presumably due to selective sweeps in the region. Patterns of nucleotide polymorphism suggest that most substitutions are neutral or nearly neutral and that weak (positive and purifying) selection plays a significant role in the evolution of these genes. At all three loci, purifying selection of slightly deleterious replacement mutations appears to be more efficient in D. simulans than in D. melanogaster, presumably due to different effective population sizes. Our analysis suggests that current knowledge about genome-wide patterns of nucleotide polymorphism is far from complete with respect to the types and range of nucleotide substitutions and that further analysis of differences between local populations will be required to understand the forces more completely. We note that rapidly diverging and nearly neutrally evolving genes cannot be expected only in the genome of Drosophila, but are likely to occur in large numbers also in other organisms and that their function and evolution are little understood so far.  相似文献   

13.
A. J. Berry  J. W. Ajioka    M. Kreitman 《Genetics》1991,129(4):1111-1117
Evolutionary processes can be inferred from comparisons of intraspecific polymorphism and interspecific divergence. We sequenced a 1.1-kb fragment of the cubitus interruptus Dominant (ciD) locus located on the nonrecombining fourth chromosome for ten natural lines of Drosophila melanogaster and nine of Drosophila simulans. We found no polymorphism within D. melanogaster and a single polymorphism within D. simulans; divergence between the species was about 5%. Comparison with the alcohol dehydrogenase gene and its two flanking regions in D. melanogaster, for which comparable data are available, revealed a statistically significant departure from neutrality in all three tests. This lack of polymorphism in the ciD locus may reflect recent positive selective sweeps on the fourth chromosome with extreme hitchhiking generated by the lack of recombination. By simulation, we estimate there to be a 50% chance that the selective sweeps occurred within the past 30,000 years in D. melanogaster and 75,000 in D. simulans.  相似文献   

14.
Intra- and interspecific nucleotide variation for the major developmental gene runt in Drosophila was studied in D. melanogaster and D. simulans. The 1.5-kb protein-coding region and the 0.4-kb intron of the runt gene were sequenced for 11 alleles in each species. The D. melanogaster alleles originated from east Africa. Estimated parameters of intraspecific variation in D. melanogaster (exons: theta = 0.018, pi = 0.018; intron: theta = 0.014, pi = 0.014) and D. simulans (exons: theta = 0.007, pi = 0.005; intron: theta = 0.008, pi = 0.005) were below average for other X-linked genes, while divergence between species (exons: D = 0.094; intron: D = 0.069) fell within the normal range for both silent and replacement changes. This estimate for runt, along with published values for three other genes in regions of normal recombination, show east African D. melanogaster to be roughly twice as polymorphic as D. simulans. The majority of nucleotide variation, silent and replacement, in both species was found to be selectively neutral using various statistical tests (HKA, McDonald-Kreitman, Tajima, and Fu and Li tests). Monte Carlo simulations of the coalescent process significantly rejected a Wright-Fisher model with respect to an amino acid polymorphism and the distribution of polymorphic sites among the D. simulans lines. This indicated an old lineage and may reflect ancestral population substructuring in D. simulans.  相似文献   

15.
Identical satellite DNA sequences in sibling species of Drosophila   总被引:4,自引:0,他引:4  
The evolution of simple satellite DNAs was examined by DNA-DNA hybridization of ten Drosophila melanogaster satellite sequences to DNAs of the sibling species, Drosophila simulans and Drosophila erecta. Seven of these repeat types are present in tandem arrays in D. simulans and each of the ten sequences is repeated in D. erecta. In thermal melts, six of the seven satellite sequences in D. simulans and seven of the ten sequences in D. erecta melted within 1 deg.C of the corresponding values in D. melanogaster. The remaining sequences melted within 3 deg.C of the homologous hybrids. Therefore, there is little or no alteration in those satellite sequences held in common, despite a period of about ten million years since the divergence of D. melanogaster and D. simulans from a common ancestor. Simple satellite sequences appear to be more highly conserved than coding regions of the genome, on a per nucleotide basis. Since multiple copies of three satellite sequences could not be detected in D. simulans yet are present in D. erecta, a species more distantly related to D. melanogaster than is D. simulans, these sequences show discontinuities in evolution. There were major quantitative variations between species, showing that satellite DNAs are prone to massive amplification or diminution events over timespans as short as those separating sibling species. In D. melanogaster, these sequences amount to 21% of the genome but only 5% in D. simulans and 0.4% in D. erecta. There was a general trend of lower abundance with evolutionary distance for most satellites, suggesting that the amounts of different satellite sequences do not vary independently during evolution.  相似文献   

16.
The results of a comparative study of cloned DNA fragments of Drosophila simulans, D. mauritiana, D. teissieri, and D. erecta are presented. The fragments were amplified in PCR with primers specified to the region of D. melanogaster interband 61C7/C8. The uniqueness of all cloned fragments in the genomes of these species was confirmed. A comparative analysis of nucleotide sequences revealed that the rate of evolution of DNA from D. melanogaster interband 61C7/C8 is close to the rate of neutral evolution in the genus Drosophila.  相似文献   

17.
Surveys of nucleotide sequence polymorphism in Drosophila melanogaster and Drosophila simulans were performed at 2 interacting loci crucial for gametogenesis: bag-of-marbles (bam) and benign gonial cell neoplasm (bgcn). At the polymorphism level, both loci appear to be evolving under the expectations of the neutral theory. However, ratios of polymorphism and divergence for synonymous and nonsynonymous mutations depart significantly from neutral expectations for both loci consistent with a previous observation of positive selection at bam. The deviations suggest either an excess of synonymous polymorphisms or an excess of nonsynonymous fixations at both loci. Synonymous evolution appears to conform to neutrality at bam. At bgcn, there is evidence of positive selection affecting preferred synonymous mutations along the D. simulans lineage. However, there is also a significantly higher rate of nonsynonymous fixations at bgcn within D. simulans. Thus, the deviation from neutrality detected by the McDonald-Kreitman test at these 2 loci is likely due to the selective acceleration of nonsynonymous fixations. Differences in the pattern of amino acid fixations between these 2 interacting proteins suggest that the detected positive selection is not due to a simple model of coevolution.  相似文献   

18.
DNA sequence variation in a 1.1-kb region including the coding portion of the Tpi locus was examined in 25 homozygous third-chromosome lines of Drosophila melanogaster, nine lines of Drosophila simulans, and one line of Drosophila yakuba. Our data show that the widespread allozyme polymorphism observed in cosmopolitan D. melanogaster is due to a glutamic acid substitution occurring in a phylogenetically conserved lysine that has been identified as part of the "hinged-lid" active site of the enzyme. This observation suggests that the replacement polymorphism may have important functional consequences. One replacement polymorphism was also observed in D. simulans, although its functional relevance is more difficult to assess, since it affects a site that is not strongly conserved. This amino acid change in D. simulans is associated with a single lineage possessing seven unique silent substitutions, which may be indicative of balancing selection or population subdivision. The absence of fixed amino acid differences between D. melanogaster and D. simulans and only a single difference with D. yakuba suggests that triose phosphate isomerase is under strong functional constraint. Silent variation is slightly higher for D. melanogaster than for D. simulans. Finally, we outline the general lack of evidence for old balanced polymorphisms at allozyme loci in D. melanogaster.   相似文献   

19.
D. J. Begun  C. F. Aquadro 《Genetics》1995,140(3):1019-1032
We surveyed nucleotide variation at vermilion in population samples of Drosophila melanogaster from Africa, Asia and the Americas to test the hypothesis that the vermilion gene was a target of balancing selection and to improve our understanding of geographic differentiation. Patterns of polymorphism and divergence showed no evidence for non-neutral evolution. However, the frequency spectrum of polymorphic sites in some non-African samples departed from the neutral equilibrium expectation. Furthermore, there were high levels of linkage disequilibrium in non-African samples, despite apparently high rates of crossing over in the vermilion region. In the absence of comparable data from other loci in these same population samples, we cannot determine whether the unusual patterns of variation at vermilion reflect demographic as opposed to locus-specific events. We found surprisingly high levels of differentiation at vermilion between U.S. and Congo samples of D. simulans. In light of previously published allozyme and mtDNA data that provided no evidence for significant differentiation between African and non-African D. simulans populations, the vermilion data raise the possibility that both mtDNA and allozymes have been influenced by selection.  相似文献   

20.
Kern AD  Begun DJ 《Genetics》2008,179(2):1021-1027
Although Drosophila melanogaster has been the subject of intensive analysis of polymorphism and divergence, little is known about the distribution of variation at the most distal regions of chromosomes arms. Here we report a survey of genetic variation on the tip of 3L in D. melanogaster and D. simulans. Levels of single nucleotide polymorphism in the most distal euchromatic sequence are approximately one order of magnitude less than that typically observed in genomic regions of normal crossing over, consistent with what might be expected under models of linked selection in regions of low crossing over. However, despite this reduced level of nucleotide variation, we found abundant deletion polymorphism. These deletions create at least three gene presence/absence polymorphisms within D. melanogaster: the putative G-protein coupled receptor mthl-8 (which is the most distal known or predicted gene on 3L) and the unannotated mRNAs AY060886 and BT006009. Strikingly, D. simulans is also segregating deletions that cause mthl8 presence/absence polymorphism. Breakpoint sequencing and tests of correlations with segregating SNPs in D. melanogaster suggest that each deletion is unique. Cloned breakpoint sequences revealed the presence of Het-A elements just distal to unique, canonical euchromatic sequences. This pattern suggests a model in which repeated telomeric deficiencies cause deletions of euchromatic sequence followed by subsequent "healing" by retrotranposition of Het-A elements. These data reveal the dominance of telomeric dynamics on the evolution of closely linked sequences in Drosophila.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号