首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The small GTPase Rab6 regulates retrograde membrane traffic from endosomes to the Golgi apparatus and from the Golgi to the endoplasmic reticulum (ER). We examined the role of a Rab6-binding protein, TMF/ARA160 (TATA element modulatory factor/androgen receptor-coactivator of 160 kDa), in this process. High-resolution immunofluorescence imaging revealed that TMF signal surrounded Rab6-positive Golgi structures and immunoelectron microscopy revealed that TMF is concentrated at the budding structures localized at the tips of cisternae. The knockdown of either TMF or Rab6 by RNA interference blocked retrograde transport of endocytosed Shiga toxin from early/recycling endosomes to the trans-Golgi network, causing missorting of the toxin to late endosomes/lysosomes. However, the TMF knockdown caused Rab6-dependent displacement of N-acetylgalactosaminyltransferase-2 (GalNAc-T2), but not beta1,4-galactosyltransferase (GalT), from the Golgi. Analyses using chimeric proteins, in which the cytoplasmic regions of GalNAc-T2 and GalT were exchanged, revealed that the cytoplasmic region of GalNAc-T2 plays a crucial role in its TMF-dependent Golgi retention. These observations suggest critical roles for TMF in two Rab6-dependent retrograde transport processes: one from endosomes to the Golgi and the other from the Golgi to the ER.  相似文献   

2.
We have determined the concentrations of the secretory proteins amylase and chymotrypsinogen and the membrane proteins KDELr and rBet1 in COPII- and COPI-coated pre-Golgi compartments of pancreatic cells by quantitative immunoelectron microscopy. COPII was confined to ER membrane buds and adjacent vesicles. COPI occurred on vesicular tubular clusters (VTCs), Golgi cisternae, the trans-Golgi network, and immature secretory granules. Both secretory proteins exhibited a first, significant concentration step in noncoated segments of VTC tubules and were excluded from COPI-coated tips. By contrast, KDELr and rBet1 showed a first, significant concentration in COPII-coated ER buds and vesicles and were prominently present in COPI-coated tips of VTC tubules. These data suggest an important role of VTCs in soluble cargo concentration by exclusion from COPI-coated domains.  相似文献   

3.
Lysosomal membrane proteins are delivered from their synthesis site, the endoplasmic reticulum (ER) to late endosomes/lysosomes through the Golgi complex. It has been proposed that after leaving the Golgi they are transported either directly or indirectly (via the cell surface) to late endosomes/lysosomes. In the present study, we examined the transport routes taken by two structurally different lysosomal membrane proteins, LGP85 and LGP107, in rat 3Y1-B cells. Here we show that newly synthesized LGP85 and LGP107 are delivered to late endosomes/lysosomes via a direct route without passing through the cell surface. Interestingly, although LGP107 is delivered from the Golgi to early endosomes containing internalized horseradish peroxidase-conjugated transferrin (HRP-Tfn) en route to lysosomes, LGP85 does not pass through the HRP-Tfn-positive early endosomes. These results suggest, therefore, that LGP85 and LGP107 are sorted into distinct transport vesicles at the post-Golgi, presumably the trans-Golgi network (TGN), after which LGP85 is delivered directly to late endosomes/lysosomes, but significant fractions of LGP107 are targeted to early endosomes before transport to late endosomes/lysosomes. This study provides the first evidence that after exiting from the Golgi, LGP85 and LGP107 are targeted to late endosomes/lysosomes via a different pathway.  相似文献   

4.
Rab GTPases are localized to various intracellular compartments and are known to play important regulatory roles in membrane trafficking. Here, we report the subcellular distribution and function of Rab14. By immunofluorescence and immunoelectron microscopy, both endogenous as well as overexpressed Rab14 were localized to biosynthetic (rough endoplasmic reticulum, Golgi, and trans-Golgi network) and endosomal compartments (early endosomal vacuoles and associated vesicles). Notably overexpression of Rab14Q70L shifted the distribution toward the early endosome associated vesicles, whereas the S25N and N124I mutants induced a shift toward the Golgi region. A similar, although less pronounced, redistribution of the transferrin receptor was also observed in cells overexpressing Rab14 mutants. Impairment of Rab14 function did not however affect transferrin uptake or recycling kinetics. Together, these findings suggest that Rab14 is involved in the biosynthetic/recycling pathway between the Golgi and endosomal compartments.  相似文献   

5.
Tyrosinase-related protein (TRP)-1 is one of the most abundant melanosomal glycoproteins involved in melanogenesis. This report summarizes our recent research efforts related to the biological role and biosynthesis of TRP-1 and its transport from TGN (trans-Golgi network) to the stage I melanosome. Our UV irradiation and tyrosinase and TRP-1 cDNA co-transfection studies indicated that human TRP-1 is involved in not only melanogenesis but also prevention of melanocyte death, which may occur during biosynthesis of melanin pigment in the presence of tyrosinase. Furthermore, a coordinated gene interaction was indicated between tyrosinase and TRP-1, resulting in upregulation of mRNA and protein expression of LAMP (lysosome-associated membrane protein)-1 that would directly prevent the tyrosinase-mediated programmed cell death of melanocytes. Similar to tyrosinase, however, TRP-1 appears to require a molecular chaperone, calnexin, which we have cloned recently. Our cDNA transfection study of tyrosinase with calnexin showed clearly the necessity of calnexin in order to have efficient, functional activity of melanosomal glycoprotein, especially tyrosinase. Once glycosylation is completed, TRP-1 will be transported from TGN to the stage I melanosome. At this stage, TRP-1 will have its own target signal, in particular, tyrosine-rich leucine residues in cytoplasmic tail. Our TRP-1 cDNA transfection and immunoelectron microscopy study shows that TRP-1 will be transported through small vesicles, probably non-clathrin-coated type, to large vacuoles, identical to the MPR (mannose-6-phosphate receptor)-positive, late endosomes. In this transport process, a low molecular weight G-protein, rab-7, was isolated from the purified melanosomal protein on 2D-PAGE and identified by subsequent sequencing and PCR amplification. Confocal microscopy with double immunostaining and immunoelectron microscopy confirmed the co-localization of rab-7 and TRP-1 in the melanosomes with early stages of maturation (I-III). Furthermore, this process will also be regulated by phosphatidylinositol 3-kinase (PI-3 kinase).  相似文献   

6.
Expression of the epithelial cell-specific heterotetrameric adaptor complex AP-1B is required for the polarized distribution of many membrane proteins to the basolateral surface of LLC-PK1 kidney cells. AP-1B is distinguished from the ubiquitously expressed AP-1A by exchange of its single 50-kD mu subunit, mu1A, being replaced by the closely related mu1B. Here we show that this substitution is sufficient to couple basolateral plasma membrane proteins, such as a low-density lipoprotein receptor (LDLR), to the AP-1B complex and to clathrin. The interaction between LDLR and AP-1B is likely to occur in the trans-Golgi network (TGN), as was suggested by the localization of functional, epitope-tagged mu1 by immunofluorescence and immunoelectron microscopy. Tagged AP-1A and AP-1B complexes were found in the perinuclear region close to the Golgi complex and recycling endosomes, often in clathrin-coated buds and vesicles. Yet, AP-1A and AP-1B localized to different subdomains of the TGN, with only AP-1A colocalizing with furin, a membrane protein that uses AP-1 to recycle between the TGN and endosomes. We conclude that AP-1B functions by interacting with its cargo molecules and clathrin in the TGN, where it acts to sort basolateral proteins from proteins destined for the apical surface and from those selected by AP-1A for transport to endosomes and lysosomes.  相似文献   

7.
Secretory carrier membrane proteins (SCAMPs) are ubiquitous components of recycling vesicles that shuttle between the plasma membrane, endosomes, and the trans-Golgi complex. SCAMPs contain multiple N-terminal NPF repeats and four highly conserved transmembrane regions. NPF repeats often interact with EH domain proteins that function in budding of transport vesicles from the plasma membrane or the Golgi complex. We now show that the NPF repeats of SCAMP1 bind to two EH domain proteins, intersectin 1, which is involved in endocytic budding at the plasma membrane, and gamma-synergin, which may mediate the budding of vesicles in the trans-Golgi complex. Expression of SCAMP1 lacking the N-terminal NPF repeats potently inhibited transferrin uptake by endocytosis. Our data suggest that one of the functions of SCAMPs is to participate in endocytosis via a mechanism which may involve the recruitment of clathrin coats to the plasma membrane and the trans-Golgi network.  相似文献   

8.
The production of pigment by melanocytic cells of the skin involves a series of enzymatic reactions that take place in specialized organelles called melanosomes. Melan-A/MART-1 is a melanocytic transmembrane protein with no enzymatic activity that accumulates in vesicles at the trans side of the Golgi and in melanosomes. We show here that, in melanoma cells, Melan-A associates with two homologous to E6-AP C-terminus (HECT)-E3 ubiquitin ligases, NEDD4 and Itch, and is ubiquitylated. Both NEDD4 and Itch participate in the degradation of Melan-A. A mutant Melan-A lacking ubiquitin-acceptor residues displays increased half-life and, in pigmented cells, accumulates in melanosomes. These results suggest that ubiquitylation regulates the lysosomal sorting and degradation of Melan-A/MART-1 from melanosomes in melanocytic cells.  相似文献   

9.
Melanosomes are lysosome-related organelles that coexist with lysosomes within melanocytes. The pathways by which melanosomal proteins are diverted from endocytic organelles toward melanosomes are incompletely defined. In melanocytes from mouse models of Hermansky-Pudlak syndrome that lack BLOC-1, melanosomal proteins such as tyrosinase-related protein 1 (Tyrp1) accumulate in early endosomes. Whether this accumulation represents an anomalous pathway or an arrested normal intermediate in melanosome protein trafficking is not clear. Here, we show that early endosomes are requisite intermediates in the trafficking of Tyrp1 from the Golgi to late stage melanosomes in normal melanocytic cells. Kinetic analyses show that very little newly synthesized Tyrp1 traverses the cell surface and that internalized Tyrp1 is inefficiently sorted to melanosomes. Nevertheless, nearly all Tyrp1 traverse early endosomes since it becomes trapped within enlarged, modified endosomes upon overexpression of Hrs. Although Tyrp1 localization is not affected by Hrs depletion, depletion of the ESCRT-I component, Tsg101, or inhibition of ESCRT function by dominant-negative approaches results in a dramatic redistribution of Tyrp1 to aberrant endosomal membranes that are largely distinct from those harboring traditional ESCRT-dependent, ubiquitylated cargoes such as MART-1. The lysosomal protein content of some of these membranes and the lack of Tyrp1 recycling to the plasma membrane in Tsg101-depleted cells suggests that ESCRT-I functions downstream of BLOC-1. Our data delineate a novel pathway for Tyrp1 trafficking and illustrate a requirement for ESCRT-I function in controlling protein sorting from vacuolar endosomes to the limiting membrane of a lysosome-related organelle.  相似文献   

10.
Phosphatidylserine (PS) plays a central role in cell signaling and in the biosynthesis of other lipids. To date, however, the subcellular distribution and transmembrane topology of this crucial phospholipid remain ill-defined. We transfected cells with a GFP-tagged C2 domain of lactadherin to detect by light and electron microscopy PS exposed on the cytosolic leaflet of the plasmalemma and organellar membranes. Cytoplasmically exposed PS was found to be clustered on the plasma membrane, and to be associated with caveolae, the trans-Golgi network, and endocytic organelles including intraluminal vesicles of multivesicular endosomes. This labeling pattern was compared with the total cellular distribution of PS as visualized using a novel on-section technique. These complementary methods revealed PS in the interior of the ER, Golgi complex, and mitochondria. These results indicate that PS in the lumenal monolayer of the ER and Golgi complex becomes exposed cytosolically at the trans-Golgi network. Transmembrane flipping of PS may contribute to the exit of cargo from the Golgi complex.  相似文献   

11.
The AP-1B clathrin adaptor complex is responsible for the polarized transport of many basolateral membrane proteins in epithelial cells. Localization of AP-1B to recycling endosomes (REs) along with other components (exocyst subunits and Rab8) involved in AP-1B-dependent transport suggested that RE might be an intermediate between the Golgi and the plasma membrane. Although the involvement of endosomes in the secretory pathway has long been suspected, we now present direct evidence using four independent methods that REs play a role in basolateral transport in MDCK cells. Newly synthesized AP-1B-dependent cargo, vesicular stomatitis virus glycoprotein G (VSV-G), was found by video microscopy, immunoelectron microscopy, and cell fractionation to enter transferrin-positive REs within a few minutes after exit from the trans-Golgi network. Although transient, RE entry appears essential because enzymatic inactivation of REs blocked VSV-G delivery to the cell surface. Because an apically targeted VSV-G mutant behaved similarly, these results suggest that REs not only serve as an intermediate but also as a common site for polarized sorting on the endocytic and secretory pathways.  相似文献   

12.
In many cells endosomal vacuoles show clathrin coats of which the function is unknown. Herein, we show that this coat is predominantly present on early endosomes and has a characteristic bilayered appearance in the electron microscope. By immunoelectron microscopy we show that the coat contains clathrin heavy as well as light chain, but lacks the adaptor complexes AP1, AP2, and AP3, by which it differs from clathrin coats on endocytic vesicles and recycling endosomes. The coat is insensitive to short incubations with brefeldin A, but disappears in the presence of the phosphatidylinositol 3-kinase inhibitor wortmannin. No association of endosomal coated areas with tracks of tubulin or actin was found. By quantitative immunoelectron microscopy, we found that the lysosomal-targeted receptors for growth hormone (GHR) and epidermal growth factor are concentrated in the coated membrane areas, whereas the recycling transferrin receptor is not. In addition, we found that the proteasomal inhibitor MG 132 induces a redistribution of a truncated GHR (GHR-369) toward recycling vesicles, which coincided with a redistribution of endosomal vacuole-associated GHR-369 to the noncoated areas of the limiting membrane. Together, these data suggest a role for the bilayered clathrin coat on vacuolar endosomes in targeting of proteins to lysosomes.  相似文献   

13.
14.
Tethering complexes contribute to the specificity of membrane fusion by recognizing organelle features on both donor and acceptor membranes. The Golgi-associated retrograde protein (GARP) complex is required for retrograde traffic from both early and late endosomes to the trans-Golgi network (TGN), presenting a paradox as to how a single complex can interact specifically with vesicles from multiple upstream compartments. We have found that a subunit of the GARP complex, Vps54, can be separated into N- and C-terminal regions that have different functions. Whereas the N-terminus of Vps54 is important for GARP complex assembly and stability, a conserved C-terminal domain mediates localization to an early endocytic compartment. Mutation of this C-terminal domain has no effect on retrograde transport from late endosomes. However, a specific defect in retrieval of Snc1 from early endosomes is observed when recycling from late endosomes to the Golgi is blocked. These data suggest that separate domains recruit tethering complexes to different upstream compartments to regulate individual trafficking pathways.  相似文献   

15.
The galactosylsphingosine psychosine (Psy) is one of the sphingolipids and induce the formation of multinuclear cells in several cell lines by inhibiting cytokinesis. In the present report, we show that intracellular organelles, including wheat germ agglutinin (WGA)-positive vesicles and early endosomes, are selectively dispersed by Psy. WGA is a conventional Golgi marker and WGA-positive vesicles appeared to co-localize with the Golgi apparatus in untreated cells. Psy treatment induced the dispersal of WGA-positive vesicles without affecting the structure of the Golgi apparatus, resulting in discrimination of WGA-positive vesicles from the Golgi apparatus. In sharp contrast to this effect of Psy, WGA-positive vesicles were not affected by brefeldin A treatment, which induced the disappearance of the Golgi apparatus. Immunostaining with anti-TGN46 antibodies revealed that a large portion of the WGA-positive vesicles were derived from the trans-Golgi network. Notably, the dispersed WGA-positive vesicles did not stain with anti-syntaxin 6, another marker of the trans-Golgi network. During cytokinesis, WGA-positive vesicles in the cytoplasm decreased, and WGA staining accumulated at the cleavage furrow, which was apparently inhibited by the presence of Psy. These data suggest that the transport of WGA-positive vesicles to the cleavage furrow is associated with the progression of cytokinesis.  相似文献   

16.
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the trans-Golgi via a transport process that requires the Rab9 GTPase and the cargo adaptor TIP47. We have generated green fluorescent protein variants of Rab9 and determined their localization in cultured cells. Rab9 is localized primarily in late endosomes and is readily distinguished from the trans-Golgi marker galactosyltransferase. Coexpression of fluorescent Rab9 and Rab7 revealed that these two late endosome Rabs occupy distinct domains within late endosome membranes. Cation-independent mannose 6-phosphate receptors are enriched in the Rab9 domain relative to the Rab7 domain. TIP47 is likely to be present in this domain because it colocalizes with the receptors in fixed cells, and a TIP47 mutant disrupted endosome morphology and sequestered MPRs intracellularly. Rab9 is present on endosomes that display bidirectional microtubule-dependent motility. Rab9-positive transport vesicles fuse with the trans-Golgi network as followed by video microscopy of live cells. These data provide the first indication that Rab9-mediated endosome to trans-Golgi transport can use a vesicle (rather than a tubular) intermediate. Our data suggest that Rab9 remains vesicle associated until docking with the Golgi complex and is rapidly removed concomitant with or just after membrane fusion.  相似文献   

17.
In HeLa cells, Shiga toxin B-subunit is transported from the plasma membrane to the endoplasmic reticulum, via early endosomes and the Golgi apparatus, circumventing the late endocytic pathway. We describe here that in cells derived from human monocytes, i.e., macrophages and dendritic cells, the B-subunit was internalized in a receptor-dependent manner, but retrograde transport to the biosynthetic/secretory pathway did not occur and part of the internalized protein was degraded in lysosomes. These differences correlated with the observation that the B-subunit associated with Triton X-100-resistant membranes in HeLa cells, but not in monocyte-derived cells, suggesting that retrograde targeting to the biosynthetic/secretory pathway required association with specialized microdomains of biological membranes. In agreement with this hypothesis we found that in HeLa cells, the B-subunit resisted extraction by Triton X-100 until its arrival in the target compartments of the retrograde pathway, i.e., the Golgi apparatus and the endoplasmic reticulum. Furthermore, destabilization of Triton X-100-resistant membranes by cholesterol extraction potently inhibited B-subunit transport from early endosomes to the trans-Golgi network, whereas under the same conditions, recycling of transferrin was not affected. Our data thus provide first evidence for a role of lipid asymmetry in membrane sorting at the interface between early endosomes and the trans-Golgi network.  相似文献   

18.
Syntaxin 6 functions in trans-Golgi network vesicle trafficking.   总被引:20,自引:13,他引:7       下载免费PDF全文
The specific transfer of vesicles between organelles is critical in generating and maintaining the organization of membrane compartments within cells. Syntaxin 6 is a recently discovered member of the syntaxin family, whose constituents are required components of several vesicle trafficking pathways. To better understand the function of syntaxin 6, we generated a panel of monoclonal antibodies that specifically recognize different epitopes of the protein. Immunoelectron microscopy shows syntaxin 6 primarily on the trans-Golgi network (TGN), where is partially colocalizes with the TGN adapter protein AP-1 on clathrin-coated membranes. Additional label is present on small vesicles in the vicinity of endosome-like structures. Immunoprecipitation of syntaxin 6 revealed that it is present in a complex or complexes with alpha-soluble NSF attachment protein, vesicle-associated membrane protein 2, or cellubrevin and a mammalian homologue of VPS45, which is a member of the sec1 family implicated in Golgi to prevacuolar compartment trafficking in yeast. We show that mammalian VPS45 is found in multiple tissues, is partially membrane associated, and is enriched in the Golgi region. Converging lines of evidence suggest that syntaxin 6 mediates a TGN trafficking event, perhaps targeting to endosomes in mammalian cells.  相似文献   

19.
Vasopressin acts on renal collecting duct cells to stimulate translocation of aquaporin-2 (AQP2)-containing membrane vesicles from throughout the cytoplasm to the apical region. The vesicles fuse with the plasma membrane to increase water permeability. To identify the intracellular membrane compartments that contain AQP2, we carried out LC-MS/MS-based proteomic analysis of immunoisolated AQP2-containing intracellular vesicles from rat inner medullary collecting duct. Immunogold electron microscopy and immunoblotting confirmed heavy AQP2 labeling of immunoisolated vesicles. Vesicle proteins were separated by SDS-PAGE followed by in-gel trypsin digestion in consecutive gel slices and identification by LC-MS/MS. Identification of Rab GTPases 4, 5, 18, and 21 (associated with early endosomes); Rab7 (late endosomes); and Rab11 and Rab25 (recycling endosomes) indicate that a substantial fraction of intracellular AQP2 is present in endosomal compartments. In addition, several endosome-associated SNARE proteins were identified including syntaxin-7, syntaxin-12, syntaxin-13, Vti1a, vesicle-associated membrane protein 2, and vesicle-associated membrane protein 3. Rab3 was not found, however, either by mass spectrometry or immunoblotting, suggesting a relative lack of AQP2 in secretory vesicles. Additionally, we identified markers of the trans-Golgi network, components of the exocyst complex, and several motor proteins including myosin 1C, non-muscle myosins IIA and IIB, myosin VI, and myosin IXB. Beyond this, identification of multiple endoplasmic reticulum-resident proteins and ribosomal proteins indicated that a substantial fraction of intracellular AQP2 is present in rough endoplasmic reticulum. These results show that AQP2-containing vesicles are heterogeneous and that intracellular AQP2 resides chiefly in endosomes, trans-Golgi network, and rough endoplasmic reticulum.  相似文献   

20.
Das S  Pellett PE 《Journal of virology》2011,85(12):5864-5879
Human cytomegalovirus (HCMV) induces extensive remodeling of the secretory apparatus to form the cytoplasmic virion assembly compartment (cVAC), where virion tegumentation and envelopment take place. We studied the structure of the cVAC by confocal microscopy to assess the three-dimensional distribution of proteins specifically associated with individual secretory organelles. In infected cells, early endosome antigen 1 (EEA1)-positive vesicles are concentrated at the center of the cVAC and, as previously seen, are distinct from structures visualized by markers for the endoplasmic reticulum, Golgi apparatus, and trans-Golgi network (TGN). EEA1-positive vesicles can be strongly associated with markers for recycling endosomes, to a lesser extent with markers associated with components of the endosomal sorting complex required for transport III (ESCRT III) machinery, and then with markers of late endosomes. In comparisons of uninfected and infected cells, we found significant changes in the structural associations and colocalization of organelle markers, as well as in net organelle volumes. These results provide new evidence that the HCMV-induced remodeling of the membrane transport apparatus involves much more than simple relocation and expansion of preexisting structures and are consistent with the hypothesis that the shift in identity of secretory organelles in HCMV-infected cells results in new functional profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号