首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous studies which have tested the feeding preferences of shredders for fungal species and the food quality of fungi used detritus uniformly colonized by a fungus, which is not the case for decaying leaves in streams. It is not known whether shredders in different development stages exhibit variations in feeding preference and larval performance. This study examined the feeding preferences and the growth of the third and the fifth instars of Pycnopsyche gentilis larvae using fungal-colonized patches and whole leaves, respectively, having different fungal species compositions (Alatospora acuminata, Anguillospora filiformis, Articulospora tetracladia, Tetrachaetum elegans, and all species combined). The aquatic hyphomycetes used were co-dominant on leaves in the stream inhabited by the caddisfly. During 14 d of feeding, the larvae of both instars did not show significant differences in feeding preferences for the patches growing on oak leaves, although the third instar larvae were slightly more selective than the fifth instar larvae. When fed with maple leaves for 18 d, larval growth rates, gross growth efficiencies, and survivorship were not significantly different among the fungal treatments. However, the larval growth of both instars fed with fungal-colonized leaves was always significantly greater than the growth of larvae fed with diets of uncolonized leaves. The third instar larvae grew faster than the fifth instar larvae, but the growth efficiencies of the two instars were similar. These results suggest that P. gentilis larvae exhibit less selectivity in their feeding than other caddisfly shredders that have been examined and that the dominant fungi colonizing leaves in their habitat are similar in palatability and food quality for this shredder. Handling editor: B. Oertli  相似文献   

2.
1. Data on the distributions of pelagic and benthic Chaoborus flavicans larvae were gathered in 1994 and tested for their agreement with the predator avoidance hypotheses. The development of all Chaoborus life stages, as well as the horizontal and vertical distribution in the four larval instars, was followed from May until October. We expected the largest larvae to dwell deeper by day, thus avoiding predation by visually foraging fish.
2. In agreement with this prediction body size increased with daytime depth, and this was true both between and within instars. The migration amplitude consequently increased with larval instar.
3. There was also evidence for horizontal migration, mainly in the third but also in the fourth instar.
4. Along a horizontal transect with increasing depth, locations with many benthic larvae had fewer pelagic larvae. Oxygen concentration was a good predictor of maximum benthic larval depth for most of the season but failed to predict their distribution in autumn.  相似文献   

3.
Catabolism of excess dietary protein by Aedes aegypti was investigated during larval development, during and after metamorphosis. Activity profiles were established for xanthine dehydrogenase (XDH, uricotelic pathway) and arginase (ureotelic pathway). Both enzymes are active at all times during the life-cycle. During the aquatic larval and pupal instars, XDH and arginase activities increase with body size. Maximal activities of these two enzyme systems coincide with the time of metamorphic restructuring.Both enzymes are found in the fatbody tissue: XDH activity is found in 80% of the tissue, while arginase activity is distributed equally between abdominal fatbody and the thorax. This might indicate a role for arginase other than catabolic, such as energy metabolism.Arginase activity is high in the aquatic instars and low in sugar-fed females but increases after blood-feeding. XDH activity, also high in larvae and pupae, increases markedly after a blood meal.Larval excretion is characterized by the ureotelic pathway. The pupae as closed systems excrete neither uric acid nor urea; urate accumulates during larval and pupal periods, is conserved throughout metamorphosis, and is finally voided with the meconium by the teneral imago. This presents a form of transient storage-excretion.  相似文献   

4.
The respiration rates of all four instars of Chaoborus flavicanswere measured with a flow-through respirometer at an experimentaltemperature of 20°C. The respiration rates (µg O2larva-1 h-1) increased parallel to the larval stages accordingto R = 0.027 x W0.416 (W = µg dry weight), reaching arespiration rate eight times higher for instar IV than for instarI. The slope of the increase with body weight was as low asin two tropical Chaoborus species and was considerably lowerthan usually found for other aquatic animals. Instar IV larvaecollected in the spring showed a significantly higher respirationrate than those collected in the fall. The respiration rateof the fourth instar approximately doubled with a Q10 of 2.1when the experimental temperature was increased from 10 to 20°C.  相似文献   

5.
A population of Bittacomorpha clavipes was studied in an Ozark spring from July 1987- August 1988. Measurement of larval head capsules (N=4,544) showed B. clavipes has four distinct larval instars. Seasonal distribution of immature and adult life stages suggests that this population has an asynchronous, non-seasonal, multivoltine life history with at least three cohorts. First instar larvae and pupae were collected during all months except December through March and December through February, respectively. Adults and larval instars II-IV were collected throughout the year. Larval recruitment generally paralleled adult flight periods, and the presence of adults during all months sampled indicates a correlation with ovipositional periods. The life history documented here for B. clavipes suggests that limiting factors for growth and reproduction are not seasonally dependent for this population.  相似文献   

6.
Nancy E. Stamp 《Oecologia》1981,49(2):201-206
Summary The effect of group size of early instars on parasitism of Euphydryas phaeton (Nymphalidae) was examined. Different numbers of larvae were stocked per web to determine the effect of group size on parasitism. Larval aggregations of moderate size (the size occurring naturally) had the least parasitism. Larger larval groups had a disproportionately high rate of parasitism. The major larval parasitoids located vulnerable larvae within webs, instead of attacking larvae available on the outside of webs. Parasitism rates were similar for larvae of damaged and undamaged webs, a consequence of the behavior and location of larvae in the webs. Lower limit to group size was a function of facilitation of larval numbers in reaching the first feeding site, the top of the host plant. Feeding facilitation by larval aggregations was not a factor in larval survival or growth.  相似文献   

7.
Summary Dry matter, energy and nitrogen budgets of the form: ingestion=growth+feces+respiration, were determined for larvae of 34 species of Hymenoptera and Lepidoptera collected from and fed leaves of black cherry (Prunus serotina). The mean growth efficiencies based on energy were: gross (100 growth/ingestion)= 17±4, and net (100 growth/(ingestion-feces))=44±8. The mean nitrogen conversion efficiency was 42±10%. Correlation analysis of the relationships among larval factors (larval nitrogen content, energy equivalents, and size), leaf factors (leaf nitrogen, energy, and water content) and larval growth rates or growth efficiencies suggest that the species are temporally adapted, compensating for the limiting effects of decreasing nitrogen and leaf water as leaves mature.  相似文献   

8.
From December, 1981 to February, 1982, a population study of the spotted tortoise beetle, Aspidomorpha miliaris, feeding on a shrub-like morning glory, Ipomea carnea, was conducted in Padang, Sumatra with the construction of a life table.
  1. Dissection of oothecae collected from the field after hatching clarified that the average egg mass size was 43.4 and hatching rate was 25.0%. Causes for egg mortality included: parasitism by a wasp, Tetrastichus sp. A(Europhidae) (49.8% of eggs laid), predation (12.8%), disappearance of egg masses (5.3%) and hatching failure (7.1%). An ant, Dolichoderus bituberculatus, visiting the extrafloral nectaries of the host plnts was responsible for predation and disappearance of the egg masses. The ants again attacked the larvae and pupae.
  2. Larvae showed a gregarious habit for almost the entire larval period. Survival rates between two successive instars were low and constant, ranging from 70 to 90%, but only 1.3% of final (5th) instars become pupae (six individuals). Since the growth of host plants was extremely rapid, shortage of food was rare in larval stages. The sudden drop in numbers after 5th instar may be due to predation and/or dispersal of matured larvae from the host plants for pupation.
  3. Pupae were attacked by three species of parasitic wasps:Tetrastichus sp. C, Pediobius elasmi (Eulophidae) and Cassidocida aspidomorphae (Tetracampidae). Among the six pupae, two were parasitized, one died of disease and two disappeared. Out of 4078 eggs laid, only one emerged to adult.
  相似文献   

9.
The influence of generation (under field conditions) and photoperiod (under laboratory conditions) on Lobesia botrana larvae development was studied. Some larvae were collected during three annual generations in two grape-growing areas of northeastern Italy, and others were individually reared in the laboratory from egg to pupa on an artificial diet under two different photoperiod conditions (respectively, daylight 16 h/d [long day {LD}] and 14 h/d [short day {SD}]). The mandible lengths of collected larvae were measured and the data analyzed morphometrically to determine the number of larval instars. In the laboratory study, the number of larval moultings, the mandible length of each instar, the development time from hatching larva to pupa, and the pupal weight were considered. The measurement of mandible lengths of larvae collected in the field indicated the existence of five larval instars in all three annual generations, but the size of the two oldest larval instars was significantly higher for third-generation larvae than for the previous generations. Under laboratory conditions, the larvae usually exhibited five instars, but the mandible lengths of larvae and the pupa size were greater for individuals reared under SD. These also took a greater number of days to develop from hatching larvae to pupae. Because a larger size of the final larval instar occurs in individuals that produce diapausing pupae under SD in both the laboratory and the field, a positive association between larval size and the probability of surviving the winter can be inferred.  相似文献   

10.
The uptake and partitioning of nutritional carbon (C) and nitrogen (N) were studied during the complete larval development of a brachyuran crab,Hyas araneus, reared under constant conditions in the laboratory. Biochemical and physiological data were published in a foregoing paper, and complete budgets of C and N were now constructed from these data. Regression equations describing rates of feeding (F), growth (G), respiration (R), and ammonia excretion (U) as functions of time during individual larval moult cycles were inserted in a simulation model, in order to analyse time-dependent (i.e. developmental) patterns of variation in these parameters as well as in bioenergetic efficiencies. Absolute daily feeding rates (F; per individual) as well as carbon and nitrogen-specific rates (F/C, F/N) are in general maximum in early, and minimum in late stages of individual larval moult cycles (postmoult and premoult, respectively). Early crab zoeae may ingest equivalents of up to ca 40% body C and 30% body N per day, respectively, whereas megalopa larvae usually eat less than 10%. Also growth rates (G; G/C, G/N) reveal decreasing tendencies both during individual moult cycles and, on the average, in subsequent instars. Conversion of C and N data to lipid and protein, respectively, suggests that in all larval instars there is initially an increase in the lipid: protein ratio. Protein, however, remains clearly the predominant biochemical constituent in larval biomass. The absolute and specific values of respiration (R; R/C) and excretion (U; U/N) vary only little during the course of individual moult cycles. Thus, their significance in relation toG increases within the C and N budgets, and net growth efficiency (K 2) decreases concurrently. Also gross growth and assimilation efficiency (K 2; A/F) are, in general, maximum in early stages of the moult cycle (postmoult). Biochemical data suggest that lipid utilization efficiency is particularly high in early moult cycle stages, whereas protein utilization efficiency is higher in later stages. Only the zoea II appears to accumulate lipid from food constantly with a higher conversion efficiency than protein. The cumulative C and N budgets show in subsequent larval instars conspicuously increasing figures in all of their parameters.F andG increase to a particularly high extent from the first to the second zoeal instar, whereasR, U, exuvia production (G E), and total assimilation (A) reveal a greater increase from the zoea II to the megalopa. Respiratory, excretory, and exuvial losses increase in subsequent larval instars at higher rates than tissue growth and, hence,K 2 decreases in the same order. In the C budget,K 2 values of 0.63 (zoea I). 0.56 (zoea II), and 0.29 (megalopa) were calculated (or: 0.56, 0.46, and 0.16 after subtraction of exuviae). In the N budget, corresponding values of 0.76, 0.66, and 0.45 (or: 0.72, 0.62, 0.38 without exuviae) were obtained. AlsoK 1 decreases slightly in subsequent instars, whereasA/F reveals rather an increasing tendency, at least from the zoeal instars to the megalopa. Changes in the uptake and partitioning of matter in crab larvae are discussed in relation to developmental events and changes in life style before metamorphosis.  相似文献   

11.
Directly developing larvae of the butterfly Lycaena hippothoe sumadiensis exhibited two growth strategies with one cohort passing four larval instars at high growth rates, and the other five instars at lower growth rates. The 4‐instar‐cohort displayed decreased development times, in combination with slightly reduced pupal and adult weights. In addition to adjustment of growth rate, omitting a larval instar may comprise a further mechanism to decrease development time when needed. Using the 4‐instar‐cohort, sex‐related differences in reaction norms were investigated over a temperature gradient. At high temperatures, protandrous males showed early emergence at a reduced size, whereas weight of females remained similar throughout. These differences suggest that large size is more important for female than for male fitness. The pattern is similar to that previously reported for alpine L. tityrus, indicating that sex‐specific reaction norms might be widespread in species living under severe time constraints.  相似文献   

12.
Most studies linking dietary variation with insect fitness focus on a single dietary component and late larval growth. We examined the effects of variation in multiple dietary factors over most life stages of the sphingid moth, Manduca sexta. Larvae received artificial diets in which protein, sucrose, and water content were varied. The relationship between larval size, growth and consumption rates differed significantly across diets. Larvae on control and low-sucrose diets grew most rapidly and attained the largest pupal and adult sizes. Conversely, larvae on low-water and low-protein diets initially grew slowly, but accelerated in the fifth instar and became pupae and adults comparable to control animals in size. There were no fundamental differences in protein:carbohydrate consumption patterns or strategies among experimental diets and larval instars. However, inadequate dietary water appeared to be more important for early than late instar larvae. Larvae on all artificial diets showed increasing fat content throughout all stages, including wandering and metamorphosis. Compensatory feeding among low-water and low-protein larvae was correlated with significantly higher fat content in larvae, pupae and adults, whereas low-sucrose animals were substantially leaner than those on the control diet. These differences may have strong effects on adult physiology, reproduction, and foraging patterns.  相似文献   

13.
Many species of marine animals have larval stages whose rates of growth in the plankton are regulated by complex combinations of biological and environmental factors. In this study, we focus on the physiological bases that underlie endogenous variation in growth potential of larvae. Our approach was based on experimental crosses of gravid adults from pedigreed families of the Pacific oyster, Crassostrea gigas. This produced large numbers of larvae with different growth rates when reared under similar environmental conditions of food and temperature. A total of 35 larval families were reared to test hypotheses regarding the physiological bases of growth variation. Growth rate of these larval families varied over a five-fold range, from 3.4 (± 0.5, S.E.) to 17.6 (± 0.6) μm day− 1. The suite of integrated measurements applied to study growth variation included size, biochemical compositions, rates of particulate and dissolved nutrient acquisition, absorption efficiencies, respiration rates and enzyme activities. We show that a complex set of physiological processes regulated differences in genetically determined growth rates of larvae. One-half of the energy required for faster growth came from an enhanced, size-specific feeding ability. Differences in absorption rates were not significant for slow- and fast-growing larvae, nor were differences in size-specific respiration rates. Metabolic processes accounted for the additional 50% of the energy “savings” required to explain enhanced growth rates. We propose that different protein depositional efficiencies could account for this energy saving. Quantitative analyses of the endogenous physiological factors that cause variation in growth rate will allow for a more sophisticated understanding of growth, survival and recruitment potential of larvae.  相似文献   

14.
Rotifers as food in aquaculture   总被引:17,自引:0,他引:17  
Lubzens  E.  Tandler  A.  Minkoff  G. 《Hydrobiologia》1989,186(1):387-400
The rotifer Brachionus plicatilis (O.F. Muller) can be mass cultivated in large quantities and is an important live feed in aquaculture. This rotifer is commonly offered to larvae during the first 7–30 days of exogenous feeding. Variation in prey density affects larval fish feeding rates, rations, activity, evacuation time, growth rates and growth efficiencies. B. plicatilis can be supplied at the food concentrations required for meeting larval metabolic demands and yielding high survival rates. Live food may enhance the digestive processes of larval predators. A large range of genetically distinct B. plicatilis strains with a wide range of body size permit larval rearing of many fish species. Larvae are first fed on a small strain of rotifers, and as larvae increase in size, a larger strain of rotifers is introduced. Rotifers are regarded as living food capsules for transferring nutrients to fish larvae. These nutrients include highly unsaturated fatty acids (mainly 20: 5 n–3 and 22: 6 n–3) essential for survival of marine fish larvae. In addition, rotifers treated with antibiotics may promote higher survival rates. The possibility of preserving live rotifers at low temperatures or through their resting eggs has been investigated.  相似文献   

15.
Survival was generally high, 94–100%, for newly hatched larvae of the nase Chondrostoma nasus held at 10, 13, 16, 19, 22, 25 and 28° C up to day 66 post-fertilization. The developmental rate decreased with age and increased with temperature. Specific growth rates increased with temperature; within one temperature range growth rate decreased with ontogenetic development. Food consumption and respiration increased with temperature and body size. A temperature increase from 25 to 28° C resulted in slightly reduced survival, minor acceleration of developmental growth and respiration rates, and impeded skeleton formation. Growth efficiency of consumed energy decreased throughout the larval period from 55 to 67% at the first larval stage (L1) to 36–48% at the first juvenile stage (J1). A similar trend for assimilation efficiency and its utilization for growth was observed. The constant temperatures required by larval nase ranged from a minimum 8–10° C to a maximum 25–28° C. A shift of optimum temperatures, 8–12, 13–16, 15–18, 19 and 22° C for nase spawning, embryonic development, yolk feeding larvae, early externally feeding larvae and, late larvae and juveniles, respectively, paralleled the spring rise in the river water temperature. Larval and juvenile nase show high survival, growth and energy conversion efficiencies compared with other fish species. On the other hand, low survival rates and growth can be attributed to external perturbations; thus, young nase may be considered a good indicator of the environmental and ecological integrity of river systems.  相似文献   

16.
The present study investigated the development and dispersal of bagworm larvae, Thyridopteryx ephemeraeformis (Haworth) (Lepidoptera: Psychidae), on three hosts: arborvitae, Thuja occidentalis, blue spruce, Picea pungens, and juniper, Juniperus virginiana. The biomass of larvae was recorded at repeated intervals at 21 field sites. The relative quality of plants varied during larval development: early in the season, larvae were heavier on juniper and arborvitae than on blue spruce; late in the season, in contrast, larvae and pupae were lighter on juniper than on the two other plants. Larvae on blue spruce pupated later than those on arborvitae. In the laboratory, feeding rate and larval growth were not influenced by the density of larvae on the foliage of arborvitae up to a range which greatly exceeded that observed at any of our experimental sites. The incidence of dispersal among neonates emerging on arborvitae was high, as indicated by the high number of larvae captured on sticky traps, and the relatively low number of early instars on arborvitae foliage in relation to the reproductive output of females in the parental generation. The high rate of dispersal among early instars may be due to potential resource depletion over successive generations of bagworms.  相似文献   

17.
Caterpillars living in aggregations may derive several benefits that outweigh the costs, including better survivorship and improved growth rates. I tested whether larval group size had an effect on these two vital rates in Euselasia chrysippe. These caterpillars feed gregariously during all instars and move in processionary form over the host plant and even pupate together. There was a positive relationship between group size and larval survivorship in the field, although genetic variability was not taken into account in this experiment. Under laboratory conditions, there was also a positive relationship between group size, and larval growth rate and adult weight. This supports the hypothesis that aggregations facilitate feeding and larval growth. Single sixth instar larvae in the laboratory also had a lower survivorship than larvae in groups. These results provide further evidence of the benefits of group living for gregarious caterpillars.  相似文献   

18.
We have examined the effects of dietary selenium (Se) supplementation on larval growth and immunocompetence of the lepidopteran pest, the cabbage looper, Trichoplusia ni. Supplementation of the diet of T. ni larvae with 10–20 ppm Se resulted in a 1 day delay in pupation. The effects of the addition and/or removal of dietary Se on total Se bioaccumulation and sequestration were determined by neutron activation analysis of pupae. Early penultimate instar larvae moved from selenium containing diet to basal diet lost total pupal Se content down to the level of those fed basal diet. Conversely, larvae moved from basal diet to diet containing additional Se rapidly attained pupal Se levels comparable to larvae fed Se throughout larval development. Therefore, dietary Se is rapidly accumulated or lost during larval development, but significant amounts are sequestered from diet into pupae. Larvae were reared on diet supplemented with 5 or 10 ppm Se until the onset of the penultimate instar then infected per os with increasing concentrations of the fatal baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV). Larvae fed Se in the penultimate and ultimate instars were more resistant to viral infection than larvae not fed Se in the final instars. This study indicates that dietary Se levels rapidly impact Se assimilation and sequestration and that tissue Se levels are an important factor in resistance to AcMNPV infection in larval T. ni.  相似文献   

19.
The genetically based rover/sitter behavioral difference in Drosophila melanogasterlarval foraging is expressed throughout most of the larval instars when larvae forage on food patches of differing food quality. The amount of locomotor behavior decreases when third-instar larvae of both rover and sitter strains are starved just prior to the behavioral test. Such strain differences in locomotor behavior are maintained despite the starvation-induced decrease in locomotion found in both strains. Measurements of larval body length and width, taken at 24, 48, 72, and 96 h posthatching, reveal that rover and sitter larval growth rates do not differ. The finding that rover/sitter differences are expressed in a variety of environments and throughout the majority of the larval instars should aid in attempts to uncover selection pressures which may differentially affect the two morphs in environmentally heterogeneous natural populations.  相似文献   

20.
幼虫密度对二点委夜蛾生长发育及繁殖的影响   总被引:1,自引:0,他引:1  
【目的】在不同幼虫密度饲养条件下,研究二点委夜蛾Athetis lepigone生长发育及繁殖的情况,明确幼虫密度对该害虫的室内种群增长的影响。【方法】本实验设置5个幼虫饲养密度即1,5,10,20和30头/瓶(750 mL),分别观察5个饲养密度下该虫的各个龄期及整个幼虫发育历期及存活率、蛹重、蛹期以及成虫生殖情况。【结果】幼虫密度对该虫幼虫各龄期及整个幼虫发育历期及存活率、蛹重、蛹期以及成虫生殖情况均有显著性影响。整个幼虫发育历期随着密度的增加而缩短,10头/瓶达到最短(18.27 d),之后随着幼虫密度的增加而显著延长;幼虫至蛹的存活率随着密度增高而显著下降,30头/瓶最低(39.37%)。蛹期随着密度的增加而延长(10头/瓶除外)。蛹重和每雌产卵量均以1头/瓶最高,随着幼虫密度的增加而显著下降。雌雄蛾寿命均以10头/瓶最长,与1和5头/瓶没有显著性差异。生命表分析显示:二点委夜蛾的种群增长指数以5头/瓶最高,幼虫密度过低或者过高均不利于种群增长。【结论】幼虫密度是影响二点委夜蛾种群增长的重要因子之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号