首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Physicochemical and functional characteristics of plant protein proteinase inhibitors as antistress biopolymers were studied to determine the mechanisms for plant resistance to phytopathogens and to obtain disease-resistant cereal and leguminous cultures. The activity of trypsin, chymotrypsin, and subtilisin inhibitors varied in monocotyledonous and dicotyledonous cultures. Study varieties of leguminous and cereal cultures were shown to contain endogenous inhibitors specific to proteinases of phytopathogenic fungi Fusarium, Colletotrichum, Helminthosporium, and Botrytis. These inhibitors were characterized by species specificity and variety specificity. Protease inhibitors from buckwheat seeds inhibited proteases of fungal pathogens and suppressed germination of spores and growth of the fungal mycelium. Our results suggest that proteinaceous inhibitors of proteinases are involved in the protective reaction of plants under stress conditions.  相似文献   

2.
The fungal plant pathogen Rhizoctonia solani Kuhn. grown in a medium containing thermostable potato tuber proteins produced proteinases active at moderately alkaline pH values. Electrophoretic analysis in polyacrylamide gel with SDS and copolymerized gelatin showed that the extracellular proteinase complex contained four components that differed in molecular weight. Studies on the action of the exoenzymes on various synthetic substrates indicated that the culture liquid of R. solani contained mainly trypsin-like proteinases. The exoproteinase activity was virtually completely suppressed by trypsin inhibitor proteins isolated from potato tubers and seeds of various legume species. The results suggest that the extracellular proteinases produced by R. solani play a significant role in attacking plant tissue, and natural inhibitors contribute to the protection of Solanaceae and Leguminosae from this fungal pathogen.  相似文献   

3.
Proteinases produced by Candida albicans are one kind of virulence factor expressed that contribute to adherence and invasion of host tissue. Proteinase inhibitor of human immunodeficiency virus in experimental candidiasis suggested reduction in fungal infection, and medicinal plants could be a source of alternative agent to prevent diseases. In this study, we investigated the production of proteinases by C. albicans from clinical isolates and the action of plant extracts against strains of C. albicans and its synthesized proteinases, comparing with antifungal fluconazole and amphotericin B and proteinase inhibitors pepstatin A, amprenavir, and ritonavir. The results reported here showed that these extracts have a certain kind of action and that the search for new antifungal agents could be found at the plants.  相似文献   

4.
Sporothrix schenckii produces two extracellular proteinases, namely proteinase I and II. Proteinase I is a serine proteinase, inhibited by chymostatin, while proteinase II is an aspartic proteinase, inhibited by pepstatin. Studies on substrate specificity and the effect of proteinase inhibitors on cell growth suggest an important role for these proteinases in terms of fungal invasion and growth. There has, however, been no evidence presented demonstrating thatS. schenckii produces 2 extracellular proteinases in vivo. In order to substantiate the in vivo production of proteinases and to attempt a preliminary serodiagnosis of sporotrichosis, serum antibodies against 2 proteinases were assayed usingS. schenckii inoculated hairless mice. Subsequent to an intracutaneous injection ofS. schenckii to the mouse skin, nodules spontaneously formed and disappeared for a period of 4 weeks. Histopathological examination results were in accordance with the microscopic observations. Micro-organisms disappeared during the fourth week. Serum antibody titers against purified proteinases I and II were measured weekly, using enzyme-linked immunosorbent assay (EIA). As a result, the time course of the antibody titers to both proteinases I and II were parallel to that of macroscopic and microscopic observations in an experimental mouse sporotrichosis model. These results suggest thatS. schenckii produces both proteinases I and II in vivo. Moreover, the detection of antibodies against these proteinases can contribute to a serodiagnosis of sporotrichosis.  相似文献   

5.
Diverse endophytic fungi exist within plant aerial tissues, with a global estimate of up to a million undescribed species. These endophytes constitute a rich bio-resource for exploration to discover new natural products. Here we investigate fungal endophytes associated with a medicinal plant, Nerium oleander L. (Apocynaceae). A total of 42 endophytic fungal strains were isolated from the host plant. Total antioxidant capacity, xanthine oxidase inhibitory activity, antimicrobial activity, and total phenolic content (TPC) were evaluated for 16 representative fungal cultures grown in improved Czapek’s broth and for the host plant. The total antioxidant capacities and phenolic contents of the fungal cultures ranged from 9.59 to 150.79 μmol trolox/100 mL culture, and from 0.52 to 13.95 mg gallic acid/100 mL culture, respectively. The fungal culture of an endophytic strain Chaetomium sp. showed the strongest antioxidant capacity, contained the highest level of phenolics, and to some extent inhibited xanthine oxidase activity with an IC50 value of 109.8 μg/mL. A significant positive correlation was found between antioxidant capacity and TPC in the tested samples. Most of the endophytic fungal cultures tested have a wide range of antimicrobial activities, which were not very strong, but much better than those of the host plant. The major bioactive constituents of the fungal cultures were investigated using LC-ESI-MS and GC-MS, and preliminary identification detected phenolics (e.g. phenolic acids and their derivatives, flavonoids) and volatile and aliphatic compounds. This study shows that the endophytic fungi isolated from N. oleander can be a potential antioxidant resource.  相似文献   

6.
Gut extracts from cereal aphids (Sitobion avenae) showed significant levels of proteolytic activity, which was inhibited by reagents specific for cysteine proteases and chymotrypsin-like proteases. Gut tissue contained cDNAs encoding cathepsin B-like cysteine proteinases, similar to those identified in the closely related pea aphid (Acyrthosiphon pisum). Analysis of honeydew (liquid excreta) from cereal aphids fed on diet containing ovalbumin showed that digestion of ingested proteins occurred in vivo. Protein could partially substitute for free amino acids in diet, although it could not support complete development. Recombinant wheat proteinase inhibitors (PIs) fed in diet were antimetabolic to cereal aphids, even when normal levels of free amino acids were present. PIs inhibited proteolysis by aphid gut extracts in vitro, and digestion of protein fed to aphids in vivo. Wheat subtilisin/chymotrypsin inhibitor, which was found to inhibit serine and cysteine proteinases, was more effective in both inhibitory and antimetabolic activity than wheat cystatin, which inhibited cysteine proteases only. Digestion of ingested protein is unlikely to contribute significantly to nutritional requirements when aphids are feeding on phloem, and the antimetabolic activity of dietary proteinase inhibitors is suggested to result from effects on proteinases involved in degradation of endogenous proteins.  相似文献   

7.
As in other eukaryotes, protein kinases (PKs) are generally evolutionarily conserved and play major regulatory roles in plant pathogenic fungi. Many PKs have been proven to be important for pathogenesis in model fungal plant pathogens, but little is currently known about their roles in the pathogenesis of cereal rust fungi, devastating pathogens in agriculture worldwide. Here, we report on an in planta highly induced PK gene PsSRPKL from the wheat stripe rust fungus Puccinia striiformis f. sp. tritici (Pst), one of the most important cereal rust fungi. PsSRPKL belongs to a group of PKs that are evolutionarily specific to cereal rust fungi. It shows a high level of intraspecies polymorphism in the kinase domains and directed green fluorescent protein chimers to plant nuclei. Overexpression of PsSRPKL in fission yeast induces aberrant cell morphology and a decreased resistance to environmental stresses. Most importantly, PsSRPKL is proven to be an important pathogenicity factor responsible for fungal growth and responses to environmental stresses, therefore contributing significantly to Pst virulence in wheat. We hypothesize that cereal rust fungi have developed specific PKs as pathogenicity factors for adaptation to their host species during evolution. Thus, our findings provide significant insights into pathogenicity and virulence evolution in cereal rust fungi.  相似文献   

8.
Properties of the main families of mammalian, plant, and fungal DNA methyltransferases are considered. Structural-functional specificity of eukaryotic genome sequences methylated by DNA methyltransferases is characterized. The total methylation of cytosine in DNA sequences is described, as well as its relation with RNA interference. Mechanisms of regulation of expression and modulation of DNA methyltransferase activity in the eukaryotic cell are discussed.__________Translated from Biokhimiya, Vol. 70, No. 7, 2005, pp. 885–899.Original Russian Text Copyright © 2005 by Buryanov, Shevchuk.This article was not published in the journal special issue devoted to the 70th anniversary of B. F. Vanyushin (Biochemistry (Moscow) (2005) 70, No. 5) because of limiting volume of the journal.  相似文献   

9.
10.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

11.
V. V. Mosolov  M. N. Shul'gin 《Planta》1986,167(4):595-600
Specific protein inhibitors of microbial serine proteinases were isolated from wheat (Triticum aestivum L.), rye (Secale cereale L.) and triticale using affinity chromatography on subtilisin-Sepharose 4B. The wheat inhibitor had an isoelectric point (pI) at pH 7.2, while the rye inhibitor consisted of two forms with pI values of 6.8 and 7.1. In triticale, two components were present with pIs 7.2 and 6.8. All the inhibitors had M r values of approx. 20 000. The isolated proteins were effective inhibitors of subtilisins Carlsberg and BPN, and of fungal proteinases (EC 3.4.21.14) from the genus Aspergillus, but they were completely inactive against trypsin (EC 3.4.21.4) chymotrypsin (EC 3.4.21.1) and pancreatic elastase (EC 3.4.21.36). The inhibitors formed complexes with subtilisin in a molar ratio of 1:1. The results of chemical modifications seem to indicate that the isolated inhibitors have methionine residues in their reactive sites.Abbreviation pI isoelectric point  相似文献   

12.
Plant can be infected by different arbuscular mycorrhizal fungi, but little is known about the interaction between them within root tissues mainly because different species cannot be distinguished on the basis of fungal structure. Accurate species identification of Arbuscular mycorrhizal fungi (AMF) colonized in plant roots is the comerstone of mycorrhizal study, yet this fundamental step is impossible through its morphological character alone. For accurate, rapid and inexpensive detection of partial mycorrhizal fungal community in plant roots, a nested multiplex polymerase chain reaction (PCR) was developed in this study. Five discriminating primers designed based on the variable region of the 5′ end of the large ribosomal subunit were used in the experiment for testing their specificity and the sensitivity in nested PCR by using spores from Glomus mosseae (BEG12), Glomus intraradices (BEG141), Scutellospora castaneae (BEG1) and two unidentified Glomus sp. HAUO3 and HAUO4. The feasibility assay of nested multiplex PCR was conducted by use of spore mixture, Astragalus sinicum roots co-inoculated with 4 species of arbuscular mycorrhizal fungi from pot cultures and 15 different field-growing plant roots respectively after analyses of the compatibility of primers. The result indicated that the sensitivity was in the same range as that of the corresponding single PCR reaction. Overall accuracy was 95%. The efficiency and sensitivity of this multiplex PCR procedure provided a rapid and easy way to simultaneously detect several of arbuscular mycorrhizal fungal species in a same plant root system.  相似文献   

13.
A gene encoding a novel component of the cellulolytic complex (cellulosome) of the anaerobic fungus Piromyces sp. strain E2 was identified. The encoded 538 amino acid protein, named celpin, consists of a signal peptide, a positively charged domain of unknown function followed by two fungal dockerins, typical for components of the extracellular fungal cellulosome. The C-terminal end consists of a 380 amino acid serine proteinase inhibitor (or serpin) domain homologue, sharing 30 % identity and 50 % similarity to vertebrate and bacterial serpins. Detailed protein sequence analysis of the serpin domain revealed that it contained all features of a functional serpin. It possesses the conserved amino acids present in more than 70 % of known serpins, and it contained the consensus of inhibiting serpins. Because of the confined space of the fungal cellulosome inside plant tissue and the auto-proteolysis of plant material in the rumen, the fungal serpin is presumably involved in protection of the cellulosome against plant proteinases. The celpin protein of Piromyces sp. strain E2 is the first non-structural, non-hydrolytic fungal cellulosome component. Furthermore, the celpin protein of Piromyces sp. strain E2 is the first representative of a serine proteinase inhibitor of the fungal kingdom.  相似文献   

14.
Plant defensins are small, highly stable, cysteine-rich antimicrobial peptides produced by the plants for inhibiting a broad-spectrum of microbial pathogens. Some of the well-characterized plant defensins exhibit potent antifungal activity on certain pathogenic fungal species only. We characterized a defensin, TvD1 from a weedy leguminous herb, Tephrosia villosa. The open reading frame of the cDNA was 228 bp, which codes for a peptide with 75 amino acids. Expression analyses indicated that this defensin is expressed constitutively in T. villosa with leaf, stem, root, and seed showing almost similar levels of high expression. The recombinant peptide (rTvD1), expressed in the Escherichia coli expression system, exhibited potent in vitro antifungal activity against several filamentous soil-borne fungal pathogens. The purified peptide also showed significant inhibition of root elongation in Arabidopsis seedlings, subsequently affecting the extension of growing root hairs indicating that it has the potential to disturb the plant growth and development.  相似文献   

15.
Inhibitors of the thiol proteinase, papain (EC 3.4.22.2), were shown to be present in 11 species of 10 genera of plants. The inhibitor activity was nondialyzable, and precipitated by ammonium sulfate. Tissue cultures from a number of plant genera consisting of rapidly dividing cells contained latent papain inhibitor that could be activated upon heating. Four isoinhibitors of plant thiol proteinases from seeds of the legume Vigna unguiculata subsp. cyclindrica were purified to apparent homogeneity by acrylamide gel electrophoresis with or without sodium dodecyl sulfate. The inhibitors were present in very small amounts compared to the trypsin inhibitors and the degree of purification of the homogeneous isoinhibitors on the assumption that all were present initially in equal amounts was 15,000- to 60,000-fold. The isoinhibitors did not inhibit pepsin, bromelain, and the serine proteinases, trypsin, chymotrypsin, and subtilisin. They were specific for papain, chymopapain, and ficin but their inhibition of the proteinase, esterase, and amidase activities of the three enzymes differed.  相似文献   

16.
Sporothrix schenckii produces two extracellular proteinases, namely proteinase I and II. Proteinase I is a serine proteinase, inhibited by chymostatin. On the other hand, proteinase II is an aspartic proteinase, inhibited by pepstatin. The addition of either pepstatin or chymostatin to the culture medium did not inhibit cell growth, however the addition of both inhibitors strongly inhibited fungal growth. Accordingly, this suggested that extracellular proteinases play an important role in cell growth and that such cell growth may be suppressed if these proteinases are inhibited. In order to substantiate this speculation in sporotrichosis, the effects of proteinase inhibitors on the cutaneous lesions of mice were studied. Ointments containing 0.1% chymostatin, 0.1% pepstatin and 0.1% chymostatin-0.1% pepstatin were applied twice daily on the inoculation sites of hairless mouse skin, and the time courses of the lesions examined. The inhibitory effect in vivo onS. schenckii was similar to that demonstrated in our previous in vitro study. Compared to the control, the time course curve of the number of nodules present after the application of either pepstatin or chymostatin was slightly suppressed. The application of both pepstatin and chymostatin, however, strongly suppressed nodule formation. This study not only confirmed the role of 2 proteinases ofS, schenckii for fungal growth in vivo, but also may lead to their use as new topical therapeutic agents.  相似文献   

17.
Protease inhibitors play an important role in host plant defence against herbivores. However, insects have the ability to elevate the production of proteinases or resort to production of a diverse array of proteinases to offset the effect of proteinase inhibitors. Therefore, we studied the inhibition of pro‐proteinase(s) activation in the midgut of the polyphagous pest Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) in response to protease inhibitors to develop appropriate strategies for the control of this pest. Gelatin coating present on X‐ray film was used as a substrate to detect electrophoretically separated pro‐proteinases and proteinases of H. armigera gut extract on native‐ and sodium dodecyl sulphate‐polyacrylamide gel electrophoresis. Six activated pro‐proteinase bands were detected in H. armigera gut lumen, which were partially purified and characterized using substrate assays. Activated H. armigera midgut pro‐proteinase(s) showed activity maxima at pH 8 and 10, and exhibited optimal activity at 40 °C. The activation of H. armigera gut pro‐proteinase isoforms was observed in the fraction eluted on benzamidine‐sepharose 4B column. Purification and substrate assay studies revealed that 23–70 kDa polypeptides were likely the trypsin/chymotrypsin‐like pro‐proteinases. Larvae of H. armigera fed on a cocktail of synthetic inhibitors (antipain, aprotinin, leupeptin, and pefabloc) showed maximum activation of pro‐proteinases compared with the larvae fed on individual inhibitors. The implications of these results for developing plants expressing proteinase inhibitors for conferring resistance to H. armigera are discussed.  相似文献   

18.
On seedlings of winter wheat (Triticum aestivum L.) and cucumber (Cucumis sativus L.), the dynamics of cysteine and serine trypsin-like proteinases and also trypsin inhibitors at cold hardening (5°C for wheat and 10°C for cucumber) was studied. Activation of proteinases and inhibitors coincided in time or preceded an increased tolerance in wheat and cucumber seedlings in the early period of their hardening. After attaining the highest wheat tolerance, activity amidases reduced, whereas the increased activity levels of cysteine proteinases and trypsin inhibitors was maintained during the entire period of hardening. In cucumber, in these period activities of amidases and trypsin inhibitors reduced, whereas the activity of cysteine proteinases was maintained at the level close to the initial one. It is suggested that cysteine proteinases, amidases, and trypsin inhibitors are involved in plant adaptation to cold.  相似文献   

19.
Peptide segments derived from consensus sequences of the inhibitory site of cystatins, the natural inhibitors of cysteine proteinases, were used to develop new substrates and inhibitors of papain and rat liver cathepsins B, H, and L. Papain hydrolyzedAbz-QVVAGA-EDDnp andAbz-LVGGA-EDDnp at about the same rate, with specificity constants in the 107M–1 sec–1 range; cathepsin L also hydrolyzes both substrates with specificity constants in the 105 M–1 sec–1 range due to lowerk cat values, with theK m 's being identical to those with papain. OnlyAbz-LVGGA-EDDnp was rapidly hydrolyzed by cathepsin B, and to a lesser extent by cathepsin H. Peptide substrates that alternate these two building blocks (LVGGQVVAGAPWK and QVVAGALVGGAPWK) discriminate the activities of cathepsins B and L and papain. Cathepsin L was highly selective for cleavage at the G-G bond of the LVGG fragment in both peptides. Papain and cathepsin B cleaved either the LVGG fragment or the QVVAG fragment, depending on their position within the peptide. While papain was more specific for the segment located C-terminally, cathepsin B was specific for that in N-terminal position. Peptidyl diazomethylketone inhibitors based on these two sequences also reacted differently with papain and cathepsins. GlcA-QVVA-CHN2 was a potent inhibitor of papain and reacted with papain 60 times more rapidly (k +0= 1,100,000 M–1 sec–1) than with cathepsin L, and 220 times more rapidly than with cathepsin B. Cathepsins B and L were preferentially inhibited by Z-RLVG-CHN2. Thus cystatin-derived peptides provide a valuable framework for designing sensitive, selective substrates and inhibitors of cysteine proteinases.  相似文献   

20.
Serine proteinases from three phytopathogenic microorganisms that belong to different fungal families and cause diseases in potatoes were studied and characterized. The oomycete Phytophthora infestans (Mont.) de Bary and the fungi Rhizoctonia solani and Fusarium culmorum were shown to secrete serine proteinases. An analysis of the substrate specificity of these enzymes and their sensitivity to synthetic and protein inhibitors allowed us to refer them to trypsin- and subtilisin-like proteinases. The correlation between the trypsin- and subtilisin-like proteinases depended on the composition of the culture medium, particularly on the form of the nitrogen source. A phylogenetic analysis was carried out. In contrast to basidiomycetes R. solani, ascomycetes F. culmorum and oomycetes P. infestans produced a similar set of exoproteinases, although they had more distant phylogenetic positions. This indicated that the secretion of serine proteinases by various phytopathogenic microorganisms also depended on their phylogenetic position. These results allowed us to suggest that exoproteinases from phytopathogenic fungi play a different role in pathogenesis. They may promote the adaptation of fungi if the range of hosts is enlarged. On the other hand, they may play an important role in the survival of microorganisms in hostile environements outside their hosts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号