首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Effects of winds, tides and river water runoff on the formation and disappearance of Alexandrium tamarense blooms in Hiroshima Bay, Japan were investigated using data from March to June of 1992–1998. The north wind at the initial growth phase of A. tamarense appeared to have prevented bloom formation by dispersing the organism offshore and/or through turbulent mixing. The decrease in the cell density at the end of the blooms was significantly affected by tidal mixing, indicating that the turbulent mixing induced by tidal excursions may be one of the factors terminating the bloom. Box model analyses applied to the data collected from the observations in 1996 and 1997 showed that river water runoff apparently dispersed the bloom, implying that stratification of the water column due to river water runoff is not necessary for the bloom formation. In conclusion, calm conditions with less wind and tidal mixing along with less river water runoff are considered to be important for the formation of the A. tamarense bloom in Hiroshima Bay, Japan.  相似文献   

2.
Blooms of cyanobacteria are a recurrent phenomenon in the Baltic Sea, including the Gulf of Finland. The spatial extension, duration, intensity and species composition of these blooms varies widely between years. Alg@line data collected regularly from ferries as well as weather service and marine monitoring data from 1997 to 2005 are analysed to determine the main abiotic factors influencing the intensity and species composition of cyanobacterial blooms in the Gulf of Finland. It is demonstrated that the development of the Nodularia spumigena Mertens bloom is highly dependent on weather conditions such as photosynthetically active radiation and water temperature. Nutrient conditions, especially the surplus of phosphorus (according to Redfield ratio) related to the pre-bloom upwelling events in the Gulf, affect the intensity of Aphanizomenon sp. (L.) Ralfs blooms. Differences in bloom timing and duration indicate that, if the preconditions (like nutrient ratio/concentration and weather conditions) for bloom formation are favourable, then the Aphanizomenon bloom starts earlier, the overall bloom period is longer and the Nodularia peak might appear in a wider time window. Handling editor: K. Martens  相似文献   

3.
Cyanobacterial blooms are common in the Baltic Sea. They are dominated by Aphanizomenon flos-aquae and Nodularia spumigena and take place in July–August. Investigations of bloom development using different approaches have been carried out in the Gulf of Finland during recent years. The ship-of-opportunity technique allows to observe the upper layer dynamics from meso- to basin-wide scale with high temporal and spatial frequency at low cost. Unattended measurements on board a commercial ferry along a transect between Tallinn and Helsinki have been conducted for 3 years (1997–1999). The influence of weather conditions—temperature and wind—on the cyanobacterial bloom development was investigated. The formation of cyanobacterial blooms was favoured by warm and calm weather, while in cold and windy conditions other species formed mass occurrences. Water temperature has been found to be the main factor controlling the initiation of the bloom, in general, while vertical stratification appeared to be the critical factor determining the intensity of the bloom at species level. The spatial distribution of the cyanobacterial bloom was determined rather by the wind-forced advection than by the possible vertical transport of nutrients in the areas of the observed upwelling events.  相似文献   

4.
An algal bloom caused by the dinoflagellate Akashiwo sanguinea was observed in October–November 2009 along the central Oregon coast (44.6°N), off Newport, Oregon, U.S.A. In this paper, the conditions are described which led to the development and demise of this bloom. The bloom was observed for 1 month from 5-October until 4-November with the peak of abundance on 19-October (347,615 cells L−1). The A. sanguinea bloom followed September blooms of the diatoms Pseudo-nitzschia spp, Chaetoceros debilis, and the dinoflagellate Prorocentrum gracile. The bloom occurred when nitrate and silicate concentrations were <2 μM and <8 μM, respectively, and when the water column was stratified. This A. sanguinea dinoflagellate bloom event was closely related to the anomalous upwelling conditions in 2009: upwelling ceased early, at the end of August, whereas a normal upwelling continues into early October. This relaxation extended to near the end of September as a prolonged downwelling event, but then active upwelling reappeared in October and November. The explanation for the occurrence of the A. sanguinea bloom in October may be related to a combination of a prior diatom bloom, a stratified water column with low nutrient concentration in September, and an active upwelling event in October. As for the ultimate source of the cells, the hypothesis is that the seed stock for the A sanguinea bloom off Oregon was southward transport of cells from the Washington coast where a massive bloom of A. sanguinea was first observed in September 2009.  相似文献   

5.
Cyanobacterial blooms occur regularly in summer in central parts of the Baltic Sea. They are mainly composed of Aphanizomenon sp. and Nodularia spumigena. Both species have almost similar ecological requirements and can roughly be considered a uniform functional group. In order to identify factors that might favour bloom development, water quality data from monitoring programmes were compared with bloom distribution. A salinity from 3.8 to 11.5 PSU proved important for the spatial distribution of the bloom development. The bloom's onset was triggered by temperatures approximating 16°C provided that global radiation was > 120 W/m2 (daily mean) and wind speed was < 6 m/s. Nutrient concentrations decreased immediately before the bloom. The bloom's development ceased with poor weather conditions characterized by low irradiation or high wind speed.  相似文献   

6.
Amoebophrya is a marine parasite recently found to infect and kill bloom-forming dinoflagellates in the California Current System (CCS). However, it is unknown whether parasitism by Amoebophrya can control dinoflagellate blooms in major eastern boundary upwelling systems, such as the CCS. We quantified the abundance of a common bloom-forming species Akashiwo sanguinea and prevalence of its parasite (i.e., % infected cells) in surface water samples collected weekly from August 2005 to December 2008 at the Santa Cruz Wharf (SCW), Monterey Bay, CA. Additionally, we measured physical and chemical properties at the SCW and examined regional patterns of wind forcing and sea surface temperature. Relative abundance of the net phytoplankton species was also analyzed to discern whether or not parasitism influences net phytoplankton community composition. Epidemic infection outbreaks (>20% parasite prevalence in the host species) may have contributed to the end or prevented the occurrence of A. sanguinea blooms, whereas low parasite prevalence was associated with short-term (≤2 weeks) A. sanguinea blooms. The complete absence of parasitism in 2007 was associated with an extreme A. sanguinea bloom. Anomalously strong upwelling conditions were detected in 2007, suggesting that A. sanguinea was able to outgrow Amoebophrya and ‘escape’ parasitism. We conclude that parasitism can strongly influence dinoflagellate bloom dynamics in upwelling systems. Moreover, Amoebophrya may indirectly influence net phytoplankton species composition, as species that dominated the net phytoplankton and developed algal blooms never appeared to be infected.  相似文献   

7.
Three water bloom samples were collected in August 1986 from the southern Baltic Sea. Acute toxicity of the samples was determined by mouse bioassay and the toxins were further studied by HPLC. The bloom samples contained equal amounts of cyanobacteria Nodularia spumigena and Aphanizomenon flos-aquae and were hepatotoxic. Two hepatotoxic Nodularia spumigena strains were isolated from the samples. The isolates produce a toxic peak indistinguishable from the bloom material in the HPLC analysis. The toxicity of the fractions was verified by mouse bioassay. Thus the toxicity of the bloom samples was in all likelihood caused by Nodularia spumigena.  相似文献   

8.
Algae blooms are an increasingly recurrent phenomenon of potentially socio-economic impact in coastal waters globally and in the coastal upwelling region off northern Baja California, Mexico. In coastal upwelling areas the diurnal wind pattern is directed towards the coast during the day. We regularly found positive Near Surface Temperature Stratification (NSTS), the resulting density stratification is expected to reduce the frictional coupling of the surface layer from deeper waters and allow for its more efficient wind transport. We propose that the net transport of the top layer of approximately 2.7 kilometers per day towards the coast helps maintain surface blooms of slow growing dinoflagellate such as Lingulodinium polyedrum. We measured: near surface stratification with a free-rising CTD profiler, trajectories of drifter buoys with attached thermographs, wind speed and direction, velocity profiles via an Acoustic Doppler Current Profiler, Chlorophyll and cell concentration from water samples and vertical migration using sediment traps. The ADCP and drifter data agree and show noticeable current shear within the first meters of the surface where temperature stratification and high cell densities of L. polyedrum were found during the day. Drifters with 1m depth drogue moved towards the shore, whereas drifters at 3 and 5 m depth showed trajectories parallel or away from shore. A small part of the surface population migrated down to the sea floor during night thus reducing horizontal dispersion. The persistent transport of the surface bloom population towards shore should help maintain the bloom in favorable environmental conditions with high nutrients, but also increasing the potential socioeconomic impact of the blooms. The coast wise transport is not limited to blooms but includes all dissolved and particulate constituents in surface waters.  相似文献   

9.
An experiment was conducted to follow the fate of the cyanobacterial toxin, nodularin, produced by Nodularia spumigena through ingestion by Mytilus edulis and re-ingestion of faecal material (coprophagy). Mussels were fed with cultures of N. spumigena, and the faeces that were produced were fed to other mussels not previously exposed to N. spumigena. Concentrations of nodularin were measured in the food (N. spumigena), the mussels and in the faeces in order to make a toxin budget. High concentrations of nodularin were found in the mussels and their faeces after 48 h incubation with N. spumigena. When the toxic faeces were fed to new mussels, the toxin content of faeces was reduced from 95 μg nod g−1 dry weight (DW) to 1 μg nod g−1 DW through the process of coprophagy. Hence, when toxic faeces were fed to mussels, the nodularin concentration of the resulting faecal material was reduced by 99%. Pseudofaeces were produced when the mussels were grazing on N. spumigena, but not when grazing on faeces. The pseudofaeces contained high concentrations of nodularin and apparently intact N. spumigena cells. However, these cells were growth-inhibited and their potential contribution to seeding a bloom is probably limited. Our data indicate that a large fraction of ingested nodularin in M. edulis is egested with the faeces, and that the concentration of nodularin in the faeces is reduced when faeces are re-ingested.  相似文献   

10.
Morphological, toxicological, and genetic variation was examined among 19 strains of Nodularia. The strains examined could be morphologically discriminated into four groups corresponding to N. spumigena Mertens, N. sphaerocarpa Bornet et Flahault, and two strains that did not clearly correspond to currently accepted Nodularia species. Genetic variation was examined using nucleotide sequencing of the phycocyanin intergenic spacer region (cpcBA-IGS) and RAPD-PCR. The PCR-RFLP of the cpcBA-IGS differentiated four genotypes corresponding to the four morphological groups. However, nucleotide sequencing of 598 bp of the 690-bp fragment showed that one of the three strains corresponding to N. sphaerocarpa (PCC 7804) was genetically divergent from the other two, suggesting that it constitutes a distinct species. Nucleotide variation within the morphospecies groups was limited (<1%), and all 14 Australian strains of N. spumigena possessed identical cpcBA-IGS sequences. The RAPD-PCR differentiated the same groups as the cpcBA sequencing and discriminated each of the seven different Australian populations of N. spumigena. Strains from within a bloom appeared genetically identical; however, strains isolated from different blooms could be separated into either a western or a southeastern Australian cluster, with one strain from western Australia showing considerable genetic divergence. The pattern of variation suggests that individual blooms of N. spumigena are clonal but also that Australian N. spumigena populations are genetically distinct from each other. Examination of genetic distance within and between blooms and within and between morphological groups showed clear genetic dicontinuities that, in combination with the cpcBA-IGS data, suggest that Nodularia contains genetically distinct morphospecies rather than a continuous cline of genetic variation. Furthermore, these morphospecies are genetically variable, exhibiting hierarchical patterns of genetic variation on regional and global scales. Production of the hepatotoxin nodularin was not restricted to one genetic lineage but was distributed across three of the five genotypic groups. A strain of N. spumigena from a nontoxic Australian population was found to fall within the range of genetic variation for other toxic Australian strains and appears to be a unique nontoxic strain that might have arisen by loss of toxin production capacity.  相似文献   

11.
Physical disturbance and feeding by macrofauna in the sediment can potentially affect bloom initiation of phytoplankton species that have benthic stages in their life cycle. In this experimental study, we investigated how different species of macrozoobenthos can affect the recruitment of Nodularia spumigena from the sediment to the water column. N. spumigena is a toxic, nitrogen-fixing filamentous cyanobacterium, which forms large summer blooms in the Baltic Sea. Benthic recruitment from resting stages (akinetes) and vegetative cells deposited on the seafloor have long been suspected to initiate the blooms. We found that, depending on species-specific traits, deposit-feeding macrofauna (an amphipod, Monoporeia affinis, a bivalve, Macoma balthica and an invasive polychaete, Marenzelleria cf. arctia) has the potential to either reduce or facilitate recruitment of this cyanobacterium. Shorter filament length in treatments with fauna than in the treatment without indicates feeding on or mechanical destruction of N. spumigena by the animals. Our results show the importance of an often overlooked aspect of phytoplankton bloom initiation, the role of macrozoobenthos.  相似文献   

12.
Nodularia spumigena is a toxic cyanobacteria that blooms in the Baltic Sea every year. In the brackish water of the Baltic Sea, its toxin, nodularin, mainly affects the biota in the surface water due to the natural buoyancy of this species. However, the fate of the toxin is unknown, once the cyanobacteria bloom enters the more saline waters of the Kattegat. In order to investigate this knowledge gap, a bloom of N. spumigena was followed during its passage, carried by surface currents, from the Baltic Sea into the Kattegat area, through the Öresund strait. N. spumigena cells showed an increased cell concentration through the water column during the passage of the bloom (up to 130 103 cells ml−1), and cells (4.2 103 cells ml−1) could be found down to 20 m depth, below a pycnocline. Sedimentation trap samples from below the pycnocline (10–12 m depth) also showed an increased sedimentation of N. spumigena filaments during the passage of the bloom. The toxin nodularin was detected both in water samples (0.3–6.0 μg l−1), samples of sedimenting material (a toxin accumulation rate of 20 μg m-2 day−1), zooplankton (up to 0.1 ng ind.−1 in copepods), blue mussels (70–230 μg kg−1 DW), pelagic and benthic fish (herring (1.0–3.4 μg kg−1 DW in herring muscle or liver) and flounder (1.3-6.2 μg kg−1 DW in muscle, and 11.7-26.3 μg kg−1 DW in liver). A laboratory experiment showed that N. spumigena filaments developed a decreased buoyancy at increased salinities and that they were even sinking with a rate of up to 1,7 m day−1 at the highest salinity (32 PSU). This has implications for the fate of brackish water cyanobacterial blooms, when these reach more saline waters. It can be speculated that a significant part of the blooms content of nodularin will reach benthic organisms in this situation, compared to blooms decaying in brackish water, where most of the bloom is considered to be decomposed in the surface waters.  相似文献   

13.
Alchichica is a saline crater-lake located in Mexico. Tufa grows on its periphery and a wind-driven Nodularia cf. spumigena bloom occurs annually. Fixation rates were assayed by the acetylene reduction method. Here, we describe the patterns of nitrogen fixation on two tufa forms before, during and after the bloom, as well as those from the planktonic cyanobacteria. We also analyzed the effect of ultraviolet radiation (under 390 nm) on the nitrogen fixation rates. Tufa showed light-stimulated nitrogen fixation, while N. cf. spumigena peaks in early morning and midnight. Both tufa forms diminished their nitrogen fixation rates after the planktonic bloom. UV radiation affected negatively nitrogen fixation rates in all forms.  相似文献   

14.
For the first time, several models have been used to aid in the understanding of the bloom dynamics of Pyrodinium bahamense var. compressum, the major causal organism of toxic algal blooms in Manila Bay and several areas in the tropical world. The complex life cycle of Pyrodinium includes the formation of cysts that settle at the sediments, which can serve as the inoculum for the next bloom.The seasonal variation of temperature and salinity reflects the combined effects of convection and water column stability, which can control vertical movement of plankton and other parameters essential to its growth. The significance of wind forcing appears to be related to the potential to resuspend cysts. In the absence of wind, tidal currents in the inner part of the bay may be too weak to induce resuspension. The addition of wind results in a significant increase in bottom current velocity. Off Cavite at the southeast, bottom velocity is enhanced by orbital motion due to waves, one of the reasons why sediments off this area are dominated by sandy material. The strong vertical mixing of the water column at depths of less than 10 m may influence nutrient and consequently, plankton populations.The wave field during the southwest monsoon indicates that its contribution to the bottom velocity dominates in this area of the bay.Bloom simulations using combined bio-physical parameters show that direction of advection is almost always along wind direction. The dispersal distances increases if the Pyrodinium cells are found higher in the water column. For cells originating from southeastern (Cavite) sources, the direction of transport is slightly towards the north. In either case, the formation of cysts after a bloom is adjacent to the northern area (Pampanga) for blooms originating from the western side (Bataan) and along the eastern side (Parañaque–Manila) for blooms originating from the southeastern side (Cavite). Comparison with a few records of bloom occurrences in Manila Bay shows some consistent features. Reports of these blooms also showed that they occurred almost always during spring tides. There appears to be two main systems for bloom formation: one fed by cyst beds in the west (Bataan) which is advected along the west–northwest coast (Bataan–Bulacan) while the other one is fed by the southeast (Cavite) cyst beds that dominates in the east-southeast (Parañaque–Cavite) area.  相似文献   

15.
Harmful algal blooms (HABs) of Karenia brevis are a recurrent problem in the Gulf of Mexico, with nearly annual occurrences on the Florida southwest coast, and fewer occurrences on the northwest Florida and Texas coasts. Beginning in 1999, the National Oceanic and Atmospheric Administration has issued the Gulf of Mexico HAB Bulletins to support state monitoring and management efforts. These bulletins involve analysis of satellite imagery with field and meteorological station data. The effort involves several components or models: (a) monitoring the movement of an algal bloom that has previously been identified as a HAB (type 1 forecast); (b) detecting new blooms as HAB or non-HAB (type 2); (c) predicting the movement of an identified HAB (type 3); (d) predicting conditions favorable for a HAB to occur where blooms have not yet been observed (type 4). The types 1 and 2 involve methods of bloom detection requiring routine remote sensing, especially satellite ocean color imagery and in situ data. Prediction (types 3 and 4) builds on the monitoring capability by using interpretative and numerical modeling. Successful forecasts cover more than 1000 km of coast and require routine input of remotely sensed and in situ data.The data sources used in this effort include ocean color imagery from the Sea-Viewing Wide Field-of-View Sensor/OrbView-2 satellite and processed using coastal-specific algorithms, wind data from coastal and offshore buoys, field observations of bloom location and intensity provided by state agencies, and forecasts from the National Weather Service. The HAB Bulletins began in coordination with the state of Florida in autumn of 1999 and included K. brevis bloom monitoring (type 1), with limited advisories on transport (type 3) and the detection of blooms in new areas (type 2). In autumn 2000, we improved both the transport forecasts and detection capabilities and began prediction of conditions favorable for bloom development (type 4). The HAB Bulletins have had several successes. The state of Florida was advised of the potential for a bloom to occur at the end of September 2000 (type 4), and the state was alerted to the position of blooms in January 2000 and October 2001 in areas that had not been previously sampled (type 3). These successful communications of HAB activity allowed Florida agencies responsible for shellfish management and public health to respond to a rapidly developing event in a timely, efficient manner.  相似文献   

16.
Huber  A. L.  Hamel  K. S. 《Hydrobiologia》1985,123(2):145-152
Alkaline phosphatase activities were examined in blooms of Nodularia spumigena Mertens in the Peel-Harvey estuarine system, Western Australia. Variations in phosphatase activity occurred geographically and diurnally, as well as over the duration of a bloom. These variations were well correlated with differences in the phosphorus nutritional status of the Nodularia. In the laboratory, Nodularia phosphatase production was inversely proportional to cellular phosphorus, but not to external soluble reactive phosphorus.  相似文献   

17.
This study was carried out to investigate the genesis of N. spumigena blooms by specifically studying the effects of environmental variables (salinity, nitrogen, phosphorus and light) on the germination of N. spumigena akinetes. Optimal conditions for maximum germination and germling growth were determined by exposing akinetes to a range of salinities and nutrient (nitrogen and phosphorus) concentrations under two different irradiances. At pre-determined time periods, treatments were sampled and the percent germination and length of germlings assessed. The results indicated that akinete germination and germling growth were optimal at salinities from 5 to 25 and significantly reduced outside this range. A positive correlation in germination was observed with increasing nutrient (phosphorus and nitrate) concentration. Similarly, germling growth increased with increasing concentrations of both nutrients. Irradiance significantly influenced both germination and growth during salinity experiments, whereas in nutrient addition experiments, irradiance had no effect on germination; however, growth was significantly influenced during phosphorus addition experiments. Consequently, salinity and light appeared to be most critical in the germination process for N. spumigena akinetes, with phosphorus most important for germling growth. The study showed that N. spumigena may be able to germinate under environmental conditions outside its optimal range, but the growth of the germling is significantly reduced, which in turn suggests that its ability to form a bloom outside its optimal environmental conditions would also be greatly reduced.  相似文献   

18.
Toxic cyanobacteria can have harmful or fatal impacts on aquatic organisms. In the archipelagos of the northern Baltic Sea, the open sea blooms often drift into littoral areas, where they decompose and release toxins and other chemical compounds in the water. However, the effects of cyanobacteria on the littoral organisms have not previously been investigated. We studied the effects of three cyanobacteria species (toxic Nodularia spumigena, non-toxic N. sphaerocarpa and non-toxic Aphanizomenon flos-aquae) and purified dissolved nodularin (produced by N. spumigena) on a common littoral amphipod Gammarus zaddachi. Nodularin was transferred to eggs, juveniles and adults of G. zaddachi, but no significant negative effects of dissolved nodularin were detected on adults, eggs or juveniles. However, survival of adults decreased by the exposure to toxic N. spumigena cells. The egg hatching rate and juvenile survival were not affected when exposed to the three cyanobacteria species. In contrast, a weak decrease in the egg production and an increased abortion of embryos from the brood pouch of females was observed, the later indicating a failure in parental care. Further, a decrease in grazing rate on the filamentous green alga Enteromorpha intestinalis was observed. The results suggest that toxic cyanobacteria blooms are not extremely fatal, but may have, in high concentrations, negative effects on the adult survival, fecundity, and feeding behaviour of gammarids inhabiting the littoral zone.  相似文献   

19.
In the Peel-Harvey estuary system, Western Australia, some 90%of riverflow and nutrient loading occurs in three winter months.Diatom blooms follow riverflow, but are replaced by blooms ofthe blue-green Nodularia spumigena Mert., especially in HarveyEstuary. By analysis of time series data from 1977–1983,it is shown that the magnitude of the Nodularia bloom in summeris related to the minimum salinity of the estuary (and hencetotal river flow), maximum phosphate concentration and totalriverine phosphorus loading, in the previous winter. The relationshipshave a predictive capacity. It is argued that diatom bloomstrap phosphorus, which is sedimented largely as faecal pellets;the phosphorus is recycled and supports Nodularia growth underwarmer conditions, and the amount available determines Nodulariabiomass. Nodularia blooms collapse when summer salinities reach30  相似文献   

20.
Satellite pictures and in situ observations indicate strong phytoplankton blooms including harmful algae blooms (HABs) during southwest (SW) summer monsoon in the Vietnamese upwelling area. In this period, nutrients are provided by coastal upwelling and by the very high river runoff from the Mekong River. During SW monsoon, in general two circulation patterns exist which allow the prediction of advection and diffusion of HAB patches. A Lagrangian HAB model that is driven by a circulation model and applied to HABs in Vietnamese waters is presented. Advection which is the most complicated part in modelling transport of passive substances is validated with a Lagrangian sediment trap experiment. The model produces realistic results compared to in situ observations and satellite images and might be used for real time forecast in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号