首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An endo-exonuclease has been purified from cultured monkey (CV-1) cells. The enzyme which was purified to near homogeneity to be a 65 kDa monomeric protein. The single-strand DNase activity is endonucleolytic and nonprocessive, whereas the double-strand DNase activity is exonucleolytic and processive. The enzyme was also found to have RNase activity using poly-rA as substrate. The pH optimum for ss-DNase is 8 and for ds-DNase it is 7.5. Both DNase activities require a divalent metal ion (Mg2+, Mn2+, Ca2+, Zn2+) for activity and exhibit the same kinetics of heat inactivation. The purified protein binds to and cleaves a synthetic Holliday junction substrate. The overall enzymatic characteristics of the mammalian protein are very similar to the putative recombination endo-exonucleases purified from Neurospora crassa, Aspergillus nidulans and Saccharomyces cerevisiae.  相似文献   

2.
Extracts of Aspergillus nidulans wild type (bi-1) and the nitrate reductase mutant niaD-17 were active in the in vitro restoration of NADPH-dependent nitrate reductase when mixed with extracts of Neurospora crassa, nit-1. Among the A. nidulans cnx nitrate reductase mutants tested, only the molybdenum repair mutant, cnxE-14 grown in the presence of 10-minus 3 M Na2 MoO4 was active in the restoration assay. Aspergillus extracts contained an inhibitor(s) which was measured by the decrease in NADPH-dependent nitrate reductase formed when extracts of Rhodospirillum rubrum and N. crassa, nit-1 were incubated at room temperature. The inhibition by extracts of A. nidulans, bi-1, cnxE-14, cnxG-4 and cnxH-3 was a linear function of time and a logarithmic function of the protein concentration in the extract. The molybdenum content of N. crassa wild type and nit-1 mycelia were found to be similar, containing approx. 10 mu g molybdenum/mg dry mycelium. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The NADPH-dependent cytochrome c reductase associated with nitrate reductase was purified from both strains. The enzyme purified from wild-type N. crassa contained more than 1 mol of molybdenum per mol of enzyme, whereas the enzyme purified from nit-1 contained negligible amounts of molybdenum.  相似文献   

3.
Strand exchange protein 1 (Sep1) from Saccharomyces cerevisiae catalyzes the formation of heteroduplex DNA molecules from single-stranded circles and homologous linear duplex DNA in vitro. Previously, Sep1 was purified as a 132,000-Da species; however, DNA sequence analysis indicates that the SEP1 gene is capable of encoding a 175,000-Da protein (Tishkoff, D.X., Johnson, A.W., and Kolodner, R.D. (1991) Mol. Cell. Biol. 11, 2593-2608). The SEP1 gene was cloned into a GAL10 expression vector and expressed in a protease-deficient yeast strain. Intact Sep1, which migrated as a Mr-160,000 polypeptide during sodium dodecyl sulfate-polyacrylamide gel electrophoresis, was purified to apparent homogeneity and shown to have activities similar to those of the originally purified Mr = 132,000 fragment. We report here that, in addition to strand exchange activity, Sep1 contains an intrinsic exonuclease that is active on single- and double-stranded DNA with a severalfold preference for single-stranded DNA. The nuclease was induced in crude extracts upon induction with galactose, it co-purified with the strand exchange activity of Sep1, and the nuclease and strand exchange activities of Sep1 showed the same kinetics of heat inactivation. Sep1 nuclease, which requires Mg2+, can be functionally separated from the strand exchange activity by the substitution of Ca2+ for Mg2+. Under these conditions, the nuclease is inactive, and strand exchange activity is dependent on prior resection of the DNA ends by an exogenous exonuclease. Thus, the nuclease is necessary for synapsis but not strand exchange. Electron microscopic analysis revealed that true strand exchange products, alpha molecules and nicked double-stranded circular molecules, were formed. In addition, strand transfer proceeded to similar extents on 5'-resected and 3'-resected DNA. This result suggests that the polarity of strand transfer by Sep1 is determined by the polarity of its intrinsic nuclease.  相似文献   

4.
The distinctiveness of ATP:citrate lyase from Aspergillus nidulans   总被引:1,自引:0,他引:1  
ATP:citrate lyase (ACL), an important enzyme in lipid synthesis, has been purified from Aspergillus nidulans to a specific activity of 19.6 micromol min(-1) mg(-1), almost twice that of any other purified ACL and shown to be distinct from any previously purified ACL. The enzyme is a 371+/-31 kDa hexamer of 3 alpha, 3 beta proteins, unlike the 4 alpha tetramer found in rats or yeasts. The molecular weights of the alpha and beta protein subunits were determined by SDS-PAGE to be 70 and 55 kDa.ACL in A. nidulans (unlike Aspergillus niger) appears to be regulated by the carbon source present in the media. In crude extracts, it was found at high activity (88 micromol min(-1) mg protein(-1)) in glucose-grown cells but only at low activity (10 micromol min(-1) mg protein(-1)) in acetate-grown cells.  相似文献   

5.
Aspergillus nidulans and Penicillium chrysogenum produce specific cellular siderophores in addition to the well-known siderophores of the culture medium. Since this was found previously in Neurospora crassa, it is probably generally true for filamentous ascomycetes. The cellular siderophore of A. nidulans is ferricrocin; that of P. chrysogenum is ferrichrome. A. nidulans also contains triacetylfusigen, a siderophore without apparent biological activity. Conidia of both species lose siderophores at high salt concentrations and become siderophore dependent. This has also been found in N. crassa, where lowering of the water activity has been shown to be the causal factor. We used an assay procedure based on this dependency to reexamine the extracellular siderophores of these species. During rapid mycelial growth, both A. nidulans and P. chrysogenum produced two highly active, unidentified siderophores which were later replaced by a less active or inactive product--coprogen in the case of P. chrysogenum and triacetylfusigen in the case of A. nidulans. N. crassa secreted coprogen only. Fungal siderophore metabolism is varied and complex.  相似文献   

6.
An immunochemical study of Neurospora nucleases   总被引:3,自引:0,他引:3  
Nucleases derived from Neurospora crassa mycelia with neutral single-strand (ss) endodeoxyribonuclease activity have been examined by immunochemical techniques and by sodium dodecyl sulfate - DNA gel electrophoresis. All of the intracellular nucleases, which have different divalent metal ion requirements, different strand specificities with single- and double-strand DNA, different modes of action on DNA and RNA, and other distinguishing characteristics, are immunochemically related to Neurospora endo-exonuclease. The evidence indicates that these enzymes are derived from one or more related large, inactive (precursor?) polypeptides that are first converted to 75- to 80-kdalton active polypeptide(s) which are very protease sensitive. Further limited proteolysis results in the production of the various active forms of nuclease studied here. Some proteolytic conversions may occur in a controlled manner in vivo in different cell compartments, but others are very likely artifacts resulting from uncontrolled proteolysis during extraction and isolation. The intracellular forms of Neurospora endo-exonuclease are immunologically cross-active with ss-DNA-binding nucleases isolated from Aspergillus nidulans and Saccharomyces cerevisiae. They are not immunochemically related to two extracellular Neurospora nucleases, the pancreatic DNase-I-like DNase A and a ss-specific exonuclease, and they are also not related to other fungal and plant nucleases with ss-specific endonuclease activity such as the S1 nuclease of Aspergillus oryzae, the P1 nuclease of Penicillium citrinum, and mung bean nuclease.  相似文献   

7.
Isolation and characterization of the Aspergillus niger trpC gene   总被引:3,自引:0,他引:3  
The Aspergillus niger trpC gene was isolated by complementation experiments with an Escherichia coli trpC mutant. Plasmid DNA containing the A. niger trpC gene transforms an Aspergillus nidulans mutant strain, defective in all three enzymatic activities of the trpC gene, to Trp+, indicating the presence of a complete and functional trpC gene. Southern blot analysis of DNA from these Trp+ transformants showed that plasmid DNA was present but that this DNA was not integrated at the site of the chromosomal trpC locus. The A. niger trpC gene was localized on the cloned fragment by heterologous hybridization experiments and sequence analysis. These experiments suggest that the organization of the A. niger trpC gene is identical to that of the analogous A. nidulans trpC and the Neurospora crassa trp-1 genes.  相似文献   

8.
We have purified to homogeneity an activity from mitotic cell extracts of the yeast Saccharomyces cerevisiae, which promotes the transfer of a strand from a duplex linear DNA molecule to a complementary circular single strand. This activity does not require any nucleotide cofactor and is greatly stimulated by yeast single-stranded DNA-binding protein. It consists of a single polypeptide of an apparent molecular mass of 180 kDa as determined by SDS-polyacrylamide gel electrophoresis. This activity, which we call DNA strand transfer protein beta (STP beta), has reaction properties similar to those of DNA strand transfer protein alpha (STP alpha) purified from crude extracts of yeast meiotic cells (Sugino, A., Nitiss, J., and Resnick, M. A. (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 3683-3687). However, STP beta differs from STP alpha in its molecular weight and column chromatographic behavior as well as by immunological comparison. Furthermore, the STP beta polypeptide remains in cells in which the STP alpha gene has been disrupted. Thus, we conclude the STP beta activity is encoded by a gene different from that for STP alpha. Although STP beta was isolated from mitotic cells, the amount of STP beta increases severalfold during meiosis. STP beta also appears to differ in molecular weight from similar activities described by other groups and may be an intact form of their activities.  相似文献   

9.
Centrifugation in sucrose density gradients of partially purified extracts from six species of fungi, i.e., Rhizopus stolonifer, Phycomyces nitens, Absidia glauca (Phycomycetes), Aspergillus nidulans (Ascomycetes), Coprinus lagopus, and Ustilago maydis (Basidiomycetes), indicate that the five enzymes catalyzing steps two to six in the prechorismic acid part of the polyaromatic synthetic pathway sediment together. The sedimentation coefficients for these enzymes are very similar in the six species and are comparable to those previously observed for the multienzyme complexes (arom aggregates) of Neurospora crassa and Saccharomyces cerevisiae. These results are interpreted as indicating the presence in each of these fungi of arom aggregates, presumably encoded by arom gene clusters similar to those in N. crassa and S. cerevisiae. Evidence has also been obtained for the presence in two species (A. nidulans and U. maydis) and the absence in the other four species of a second dehydroquinase isozyme which is distinguishable from the synthetic activity on the basis of both thermostability tests and S values. This second dehydroquinase, which is apparently involved in the catabolism of quinic acid via a pathway similar to that in N. crassa, is inducible in A. nidulans (as it is in N. crassa), but constitutive in U. maydis. These comparative findings are discussed in relation to the organization, evolution, and possible functional relationships of synthetic and catabolic aromatic pathways in fungi.  相似文献   

10.
Three major polypeptides are found in purified DNA polymerase alpha from rat liver: 160, 77 and 58 kDa. The electrophoretic analysis has identified polypeptide 160 kDa as the catalytically active subunit of DNA polymerase alpha. The other two polypeptides showed no DNA polymerase activity. Individual polypeptide p77 kDa purified by sodium dodecyl sulfate polyacrylamide gel electrophoresis was used to produce antibodies in rabbits. Immunoblot analysis indicated that the complex DNA polymerase alpha-3'-5'-exonuclease contained polypeptide p77 kDa. To elucidate the function of the p77 kDa protein we have prepared an immunoabsorbent column with antibodies against the p77 kDa polypeptide. The antibody column purified p77 kDa protein was homogeneous according to sodium dodecyl sulfate gel electrophoresis. The activity of alpha-polymerase was increased approximately 10-fold as a result of purification of DNA polymerase alpha from the p77 kDa protein. The in vitro experiments showed the identity of the p77 kDa polypeptide to endonuclease. It cleaved both single-stranded and double-stranded DNA. The function of endonuclease p77 kDA in complex with DNA polymerase alpha remains obscure.  相似文献   

11.
A previously unreported single-stranded DNA-dependent nucleoside 5'-triphosphatase with DNA unwinding activity has been purified from extracts of Escherichia coli lacking the F factor. Fractions of the purified enzyme contain a major polypeptide of Mr = 75,000 which contains the active site(s) for both ATP hydrolysis and helicase activity. This is consistent with the results of gel filtration chromatography which indicate a native molecular mass of 75 kDa. The 75-kDa helicase has a preference for ATP (dATP) as a substrate in the hydrolysis reaction and requires the presence of a single-stranded DNA cofactor. The helicase reaction catalyzed by the enzyme has been characterized using an in vitro strand displacement assay. The 75-kDa helicase displaces a 71-nucleotide DNA fragment in an enzyme concentration-dependent and time-dependent reaction. The helicase reaction depends on the presence of a hydrolyzable nucleoside 5'-triphosphate (NTP) suggesting that NTP hydrolysis is required for the unwinding activity. In addition, the enzyme can displace a 343-nucleotide DNA fragment albeit less efficiently. The direction of the unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The molecular size of this helicase and the direction of the unwinding reaction are similar to both helicase II and Rep protein. However, the 75-kDa helicase has been shown to be distinct from both helicase II and Rep protein using immunological, physical, and genetic criteria. The discovery of a new helicase brings the total number of helicases found in E. coli cell extracts (lacking F factor) to five.  相似文献   

12.
Genome mining of cyanide-degrading nitrilases from filamentous fungi   总被引:1,自引:1,他引:0  
A variety of fungal species are known to degrade cyanide through the action of cyanide hydratases, a specialized subset of nitrilases which hydrolyze cyanide to formamide. In this paper, we report on two previously unknown and uncharacterized cyanide hydratases from Neurospora crassa and Aspergillus nidulans. Recombinant forms of four cyanide hydratases from N. crassa, A. nidulans, Gibberella zeae, and Gloeocercospora sorghi were prepared after their genes were cloned with N-terminal hexahistidine purification tags, expressed in Escherichia coli, and purified using immobilized metal affinity chromatography. These enzymes were compared according to their relative specific activity, pH activity profiles, thermal stability, and ability to remediate cyanide contaminated waste water from silver and copper electroplating baths. Although all four were similar, the N. crassa cyanide hydratase (CHT) has the greatest thermal stability and widest pH range of >50% activity. N. crassa also demonstrated the highest rate of cyanide degradation in the presence of both heavy metals. The CHT of A. nidulans has the highest reaction rate of the four fungal nitrilases evaluated in this work. These data will help determine optimization procedures for the possible use of these enzymes in the bioremediation of cyanide-containing waste. Similar to known plant pathogenic fungi, both N. crassa and A. nidulans were induced to express CHT by growth in the presence of KCN.  相似文献   

13.
DNA kinase activity of rat liver nuclei was detected in situ after electrophoresis in sodium dodecyl sulfate/polyacrylamide gel containing 5'-hydroxyl nicked DNA as DNA substrate. After renaturation of polypeptides, the gel was incubated with [gamma-32P]ATP and Mg2+. An active polypeptide corresponding to Mr 61,000 was observed as a radioactive band by autoradiography. The intensity of the band was proportional to the amount of the enzyme applied. The active band common to various tissues of rat was observed with the nuclear extracts, indicating that DNA kinase for rat tissue is composed of a single polypeptide of Mr 61,000. In contrast, T4 polynucleotide kinase (Mr = 140,000) showed an active polypeptide band corresponding to the subunit of Mr 33,000.  相似文献   

14.
W C Shen  J Wieser  T H Adams  D J Ebbole 《Genetics》1998,148(3):1031-1041
The Aspergillus nidulans flbD gene encodes a protein with a Myb-like DNA-binding domain that is proposed to act in concert with other developmental regulators to control initiation of conidiophore development. We have identified a Neurospora crassa gene called rca-1 (regulator of conidiation in Aspergillus) based on its sequence similarity to flbD. We found that N. crassa rca-1 can complement the conidiation defect of an A. nidulans flbD mutant and that induced expression of rca-1 caused conidiation in submerged A. nidulans cultures just as was previously observed for overexpression of flbD. Thus, the N. crassa gene appears to be a functional homologue of A. nidulans flbD and this is the first demonstration of functional complementation of an A. nidulans sporulation defect using a gene from an evolutionarily distant fungus. However, deletion of the rca-1 gene in N. crassa had no major effect on growth rate, macroconidiation, microconidiation, or ascospore formation. The only phenotype displayed by the rca-1 mutant was straight or counterclockwise hyphal growth rather than the clockwise spiral growth observed for wild type. Thus, if rca-1 is involved in N. crassa development, its role is subtle or redundant.  相似文献   

15.
The yeast protein encoded by PUB1 binds T-rich single stranded DNA.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have characterized binding activities in yeast which recognise the T-rich strand of the yeast ARS consensus element and have purified two of these to homogeneity. One (ACBP-60) is detectable in both nuclear and whole cell extracts, while the other (ACBP-67) is apparent only after fractionation of extracts by heparin-sepharose chromatography. The major binding activity detected in nuclear extracts was purified on a sequence-specific DNA affinity column as a single polypeptide with apparent mobility of 60kDa (ACBP-60). This protein co-fractionates with nuclei, is present at several thousand copies per cell and has a Kd for the T-rich single strand of the ARS consensus between 10(-9) and 10(-10) M. Competition studies with simple nucleic acid polymers show that ACBP-60 has marginally higher affinity for poly dT30 than for a 30 nt oligomer containing the T-rich strand of ARS 307, and approximately 10 fold higher affinity for poly rU. Internal sequence information of purified p60 reveals identity with the open reading frames of genes PUB1 and RNP1 which encode polyuridylate binding protein(s). The second binding activity, ACBP-67, also binds specifically to the T-rich single strand of the ARS consensus, but with considerably lower affinity than ACBP-60. Peptide sequence reveals that the 67kDa protein is identical to the major polyA binding protein in yeast, PAB1.  相似文献   

16.
DNA polymerase alpha and DNA polymerase alpha--primase complex of Physarum polycephalum were purified by rapid methods, and antibodies were raised against the complex. In crude extracts, immune-reactive polypeptides of 220 kDa, 180 kDa, 150 kDa, 140 kDa, 110 kDa, 86 kDa, 57 kDa and 52 kDa were identified. The structural relationships between the 220 kDa, 110 kDa and 140 kDa (the most abundant form) was investigated by peptide mapping. The 140 kDa form was active DNA polymerase alpha. The 57 kDa and the 52 kDa polypeptides were identified as primase subunits by auto-catalytic labelling. In amoebae, the immune-reactive 140 kDa polypeptide was replaced by a 135 kDa active DNA polymerase alpha.  相似文献   

17.
X Li  C K Tan  A G So  K M Downey 《Biochemistry》1992,31(13):3507-3513
A DNA helicase (delta helicase) which partially copurifies with DNA polymerase delta has been highly purified from fetal calf thymus. delta helicase differs in physical and enzymatic properties from other eukaryotic DNA helicases described thus far. The enzyme has an apparent mass of 57 kDa by gel filtration and is associated with polypeptides of 56 and 52 kDa by SDS-polyacrylamide gel electrophoresis. Photo-cross-linking of the purified enzyme with [alpha-32P]ATP resulted in labeling of a polypeptide of approximately 58 kDa, suggesting that the active site is present on the larger polypeptide. Unwinding of a partial duplex requires a nucleoside triphosphate which can be either ATP or dATP but not a nonhydrolyzable analogue of ATP. Other ribo- and deoxyribonucleoside triphosphates have little or no activity as cofactors. delta helicase also has DNA-dependent ATPase activity which has a relatively low Km for ATP (40 microM). delta helicase binds to single-stranded DNA but has little or no affinity for double-stranded DNA or single-stranded RNA. Similar to replicative DNA helicases from prokaryotes and the herpes simplex virus type 1 helicase-primase, delta helicase translocates in the 5'-3' direction along the strand to which it is bound and preferentially unwinds DNA substrates with a forklike structure.  相似文献   

18.
Development of a high-frequency transforming vector for Aspergillus nidulans   总被引:18,自引:0,他引:18  
D J Ballance  G Turner 《Gene》1985,36(3):321-331
The pyr4 gene of Neurospora crassa, which codes for orotidine-5'-phosphate decarboxylase, is capable of transforming an Aspergillus nidulans pyrG mutant by chromosomal integration, despite low homology between the transforming DNA and the recipient genome. Integration of pFB6, a plasmid carrying pyr4 and capable of replication in Escherichia coli, was not observed at the pyrG locus. The efficiency of transformation was considerably enhanced (50-100 fold) by inclusion in the transforming vector of a 3.5-kb A.nidulans chromosomal sequence, ans1. Although this sequence was isolated on the basis of replicating activity in Saccharomyces cerevisiae, there was no evidence for such activity in A.nidulans. Part of the ans1 fragment appears to be reiterated in the A.nidulans genome, though it is not yet clear whether this is directly responsible for the high transformation frequency. The efficiency of transformation of A.nidulans by plasmids bearing ans1, using an improved protocol, was approx. 5 X 10(3) stable transformants per microgram of plasmid DNA.  相似文献   

19.
The isopenicillin N acyltransferases (IATs) of Aspergillus nidulans and Penicillium chrysogenum differed in their ability to maintain the 40-kDa proacyltransferase alphabeta heterodimer in an undissociated form. The native A. nidulans IAT exhibited a molecular mass of 40 kDa by gel filtration. The P. chrysogenum IAT showed a molecular mass of 29 kDa by gel filtration (corresponding to the beta subunit of the enzyme) but the undissociated 40-kDa heterodimer was never observed even in crude extracts. Heterologous expression experiments showed that the chromatographic behaviour of IAT was determined by the source of the penDE gene used in the expression experiments and not by the host itself. When the penDE gene of A. nidulans was expressed in P. chrysogenum npe6 and npe8 or in Acremonium chrysogenum, the IAT formed had a molecular mass of 40 kDa. On the other hand, when the penDE gene originating from P. chrysogenum was expressed in A. chrysogenum, the active IAT had a molecular mass of 29 kDa. The intronless form of the penDE gene cloned from an A. nidulans cDNA library and overexpressed in Escherichia coli formed the enzymatically active 40-kDa proIAT, which was not self-processed as shown by immunoblotting with antibodies to IAT. This 40-kDa protein remained unprocessed even when treated with A. nidulans crude extract. In contrast, the P. chrysogenum penDE intronless gene cloned from a cDNA library was expressed in E. coli, and the IAT was self-processed efficiently into its alpha (29 kDa) and beta (11 kDa) subunits. It is concluded that P. chrysogenum and A. nidulans differ in their ability to self-process their respective proIAT protein and to maintain the alpha and beta subunits as an undissociated heterodimer, probably because of the amino-acid sequence differences in the proIAT which affect the autocatalytic activity.  相似文献   

20.
The DNA polymerase (DNApol) of Autographa californica nuclear polyhedrosis virus was purified to homogeneity from recombinant baculovirus-infected cells. DNApol was active in polymerase assays on singly primed M13 template, and full-length replicative form II product was synthesized at equimolar ratios of enzyme to template. The purified recombinant DNApol was shown to be processive by template challenge assay. Furthermore, DNApol was able to incorporate hundreds of nucleotides on an oligo(dT)-primed poly(dA) template with limiting amounts of polymerase. DNApol has moderate strand displacement activity, as it was active on nicked and gapped templates, and displaced a primer in a replication-dependent manner. Addition of saturating amounts of LEF-3, the viral single-stranded DNA-binding protein (SSB), increased the innate strand displacement ability of DNApol. However, when LEF-3 was added prior to the polymerase, it failed to stimulate DNApol replication on a singly primed M13 template because the helix-destabilizing activity of LEF-3 caused the primer to dissociate from the template. Escherichia coli SSB efficiently substituted for LEF-3 in the replication of a nicked template, suggesting that specific protein-protein interactions were not required for strand displacement in this assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号