首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Genes contributing to riboflavin production in Sinorhizobium meliloti were identified, and bacterial strains that overproduce this vitamin were constructed to characterize how additional riboflavin affects interactions between alfalfa (Medicago sativa) and S. meliloti. Riboflavin-synthesis genes in S. meliloti were found in three separate linkage groups and designated as ribBA, ribDribC, and ribH for their similarities to Escherichia coli genes. The ribBA and ribC loci complemented corresponding E. coli rib mutants. S. meliloti cells containing extra copies of ribBA released 10 to 20% more riboflavin than a control strain but grew at similar rates in a defined medium lacking riboflavin. Cells carrying extra copies of ribBA colonized roots to densities that were 55% higher than that of a control strain. No effect of extra rib genes was detected on alfalfa grown in the absence or presence of combined N. These results support the importance of extracellular riboflavin for alfalfa root colonization by S. meliloti and are consistent with the hypothesis that this molecule benefits bacteria indirectly through an effect on the plant.  相似文献   

2.
Riboflavin synthase was purified by a factor of about 1,500 from cell extract of Methanobacterium thermoautotrophicum. The enzyme had a specific activity of about 2,700 nmol mg(-1) h(-1) at 65 degrees C, which is relatively low compared to those of riboflavin synthases of eubacteria and yeast. Amino acid sequences obtained after proteolytic cleavage had no similarity with known riboflavin synthases. The gene coding for riboflavin synthase (designated ribC) was subsequently cloned by marker rescue with a ribC mutant of Escherichia coli. The ribC gene of M. thermoautotrophicum specifies a protein of 153 amino acid residues. The predicted amino acid sequence agrees with the information gleaned from Edman degradation of the isolated protein and shows 67% identity with the sequence predicted for the unannotated reading frame MJ1184 of Methanococcus jannaschii. The ribC gene is adjacent to a cluster of four genes with similarity to the genes cbiMNQO of Salmonella typhimurium, which form part of the cob operon (this operon contains most of the genes involved in the biosynthesis of vitamin B12). The amino acid sequence predicted by the ribC gene of M. thermoautotrophicum shows no similarity whatsoever to the sequences of riboflavin synthases of eubacteria and yeast. Most notably, the M. thermoautotrophicum protein does not show the internal sequence homology characteristic of eubacterial and yeast riboflavin synthases. The protein of M. thermoautotrophicum can be expressed efficiently in a recombinant E. coli strain. The specific activity of the purified, recombinant protein is 1,900 nmol mg(-1) h(-1) at 65 degrees C. In contrast to riboflavin synthases from eubacteria and fungi, the methanobacterial enzyme has an absolute requirement for magnesium ions. The 5' phosphate of 6,7-dimethyl-8-ribityllumazine does not act as a substrate. The findings suggest that riboflavin synthase has evolved independently in eubacteria and methanobacteria.  相似文献   

3.
Vibrio tubiashii expresses virulence factors, such as a vulnificolysin-like hemolysin or cytolysin and a zinc metalloprotease, similar to those of other pathogenic vibrios. In this study, we report the cloning of a novel hemolysin gene of V.?tubiashii in Escherichia coli . A V.?tubiashii gene library was screened for hemolytic activity on sheep blood agar. Three hemolytic clones pGem:hly1, pGem:hly2, and pGem:hly3 were sequenced, and the sequences showed a strong homology to the ribA gene coding for guanosine triphosphate cyclohydrolase II (GCH II), required for riboflavin biosynthesis and reported to be responsible for hemolytic activity in Helicobacter pylori . The plasmids pGem:hly1 and pGem:hly3 when introduced into E. coli BSV18 (ribA18::Tn5) were able to restore growth of strain BSV18 in a medium without riboflavin and also produced hemolytic activity on blood agar. PCR primers based on the cloned hly-ribA sequence were tested using 23 different Vibrio strains representing 10 different species. Amplification of ribA gene locus only occurred with V.?tubiashii strains. In summary, our results indicate that we have cloned a ribA homolog of V.?tubiashii that imparts hemolytic activity to E.?coli clones, and primers based on this gene locus might be useful as a species-specific identification tool for V.?tubiashii.  相似文献   

4.
Four genes immediately downstream of luxG in the Photobacterium phosphoreum lux operon (ribEBHA) have been sequenced and shown to be involved in riboflavin synthesis. Sequence analyses and complementation of Escherichia coli riboflavin auxotrophs showed that the gene products of ribB and ribA are 3,4-dihydroxy-2-butanone 4-phosphate (DHBP) synthetase and GTP cyclohydrolase II, respectively. By expression of P. phosphoreum ribE in E. coli using the bacteriophage T7 promoter-RNA polymerase system, ribE was shown to code for riboflavin synthetase, which catalyzes the conversion of lumazine to riboflavin. Increased thermal stability of RibE on expression with RibH indicated that ribH coded for lumazine synthetase. The organization of the rib genes in P. phosphoreum is quite distinct, with ribB and ribA being linked but separated by ribH, whereas in E. coli, they are unlinked and in Bacillus subtilis, RibB and RibA functions are coded by a single gene.  相似文献   

5.
We have developed a system for rapid and reliable assessment of gene essentiality in Haemophilus influenzae Rd strain KW20. We constructed two "suicide" complementation vectors (pASK5 and pASK6) containing 5' and 3' regions of the nonessential ompP1 gene flanking a multiple cloning site and a selectable marker (a chloramphenicol resistance gene or a tetracycline resistance cassette). Transformation of H. influenzae with the complementation constructs directs chromosomal integration of a gene of interest into the ompP1 locus, where the strong, constitutive ompP1 promoter drives its expression. This single-copy, chromosome-based complementation system is useful for confirming the essentiality of disrupted genes of interest. It allows genetic analysis in a background free of interference from any upstream or downstream genetic elements and enables conclusive assignment of essentiality. We validated this system by using the riboflavin synthase gene (ribC), a component of the riboflavin biosynthetic pathway. Our results confirmed the essentiality of ribC for survival of H. influenzae Rd strain KW20 and demonstrated that a complementing copy of ribC placed under control of the ompP1 promoter reverses the lethal phenotype of a strain with ribC deleted.  相似文献   

6.
A conjugation analysis of riboflavin-dependent mutants of Escherichia coli K-12 has been made by means of various F'-factors. It is shown that the GTP cyclohydrolase II gene is localized in the chromosome map site between 27 and 30 min; the riboflavin synthase gene--in the site between 56 and 59 min; and the gene in which mutation causes accumulation of 2,6-dioxy-5-amino-4-ribitylamino-pyrimidine--in the site limited by 61-65 min. So it may be concluded that riboflavin biosynthesis genes in the E. coli chromosome are not clustered.  相似文献   

7.
8.
[目的]研究核黄素操纵子(rib)组成型高表达,以及ribC基因低水平表达对枯草芽孢杆菌过量合成核黄素的影响.[方法]在染色体原位修饰启动子,用mRNA稳定子替换mRNA前导区,使rib操纵子组成型高表达;修饰ribC基因的启动子,降低ribC基因的表达水平.采用qRT-PCR方法,表征基因的相对表达水平;通过摇瓶发酵,测定重组菌的生物量和核黄素产量,表征相关基因修饰所表现的遗传效应.[结果]用gsiB mRNA稳定子替换核黄素操纵子的mRNA前导区,使其相对表达水平提高了约1 500倍.ribC基因启动子-35区的首个碱基由“T”突变为“C”,使ribC基因的表达水平下降了97%以上.得到的重组菌株LX34在补加蔗糖20 g/L的LB培养基上摇瓶发酵36 h,可积累核黄素2.1 g/L,同时生物量没有明显下降.[结论]使用gsiB mRNA稳定子,能够有效地提高目标基因或操纵子的表达水平;启动子-35区首个碱基的点突变,能够有效降低ribC基因的表达水平;rib操纵子过量表达和ribC基因低水平表达,使细胞能够过量合成并积累核黄素.  相似文献   

9.
Both farnesyl diphosphate synthase (FPS) and geranylgeranyl diphosphate synthase (GGPS) are key enzymes in the synthesis of various isoprenoid-containing compounds and proteins. Here, we describe two novel Schizosaccharomyces pombe genes, fps1(+) and spo9(+), whose products are similar to FPS in primary structure, but whose functions differ from one another. Fps1 is essential for vegetative growth, whereas, a spo9 null mutant exhibits temperature-sensitive growth. Expression of fps1(+), but not spo9(+), suppresses the lethality of a Saccharomyces cerevisiae FPS-deficient mutant and also restores ubiquinone synthesis in an Escherichia coli ispA mutant, which lacks FPS activity, indicating that S. pombe Fps1 in fact functions as an FPS. In contrast to a typical FPS gene, no apparent GGPS homologues have been found in the S. pombe genome. Interestingly, although neither fps1(+) nor spo9(+) expression alone in E. coli confers clear GGPS activity, coexpression of both genes induces such activity. Moreover, the GGPS activity is significantly reduced in the spo9 mutant. In addition, the spo9 mutation perturbs the membrane association of a geranylgeranylated protein, but not that of a farnesylated protein. Yeast two-hybrid and coimmunoprecipitation analyses indicate that Fps1 and Spo9 physically interact. Thus, neither Fps1 nor Spo9 alone functions as a GGPS, but the two proteins together form a complex with GGPS activity. Because spo9 was originally identified as a sporulation-deficient mutant, we show here that expansion of the forespore membrane is severely inhibited in spo9Delta cells. Electron microscopy revealed significant accumulation membrane vesicles in spo9Delta cells. We suggest that lack of GGPS activity in a spo9 mutant results in impaired protein prenylation in certain proteins responsible for secretory function, thereby inhibiting forespore membrane formation.  相似文献   

10.
GTP cyclohydrolase II catalyzes the first committed step in the biosynthesis of riboflavin. The gene coding for this enzyme in Escherichia coli has been cloned by marker rescue. Sequencing indicated an open reading frame of 588 bp coding for a 21.8-kDa peptide of 196 amino acids. The gene was mapped to a position at 28.2 min on the E. coli chromosome and is identical with ribA. GTP cyclohydrolase II was overexpressed in a recombinant strain carrying a plasmid with the cloned gene. The enzyme was purified to homogeneity from the recombinant strain. The N-terminal sequence determined by Edman degradation was identical to the predicted sequence. The sequence is homologous to the 3' part of the central open reading frame in the riboflavin operon of Bacillus subtilis.  相似文献   

11.
A cDNA segment from Arabidopsis thaliana with similarity to the ribA gene of Bacillus subtilis was sequenced. A similar gene was cloned from tomato. The open reading frame of A. thaliana was fused to the malE gene of Escherichia coli and was expressed in a recombinant E. coli strain. The recombinant fusion protein was purified and shown to have GTP cyclohydrolase II activity as well as 3,4-dihydroxy-2-butanone 4-phosphate synthase activity. The cognate gene was amplified by polymerase chain reaction from chromosomal Arabidopsis DNA and was shown to contain six introns. Intron 4 is located in the region connecting the GTP cyclohydrolase II and 3,4-dihydroxy-2-butanone 4-phosphate synthase domain of the putative domains catalyzing the two reaction steps. By comparison with the bacterial ribA gene, the Arabidopsis gene contains an additional 5' element specifying about 120 amino acid residues. This segment contains numerous serine and threonine residues and does not show similarity with other known sequences. The N-terminal segment is not required for catalytic activity and is likely to serve as signal sequence for import into chloroplasts.  相似文献   

12.
This work shows that the ribC wild-type gene product has both flavokinase and flavin adenine dinucleotide synthetase (FAD-synthetase) activities. RibC plays an essential role in the flavin metabolism of Bacillus subtilis, as growth of a ribC deletion mutant strain was dependent on exogenous supply of FMN and the presence of a heterologous FAD-synthetase gene in its chromosome. Upon cultivation with growth-limiting amounts of FMN, this ribC deletion mutant strain overproduced riboflavin, while with elevated amounts of FMN in the culture medium, no riboflavin overproduction was observed. In a B. subtilis ribC820 mutant strain, the corresponding ribC820 gene product has reduced flavokinase/FAD-synthetase activity. In this strain, riboflavin overproduction was also repressed by exogenous FMN but not by riboflavin. Thus, flavin nucleotides, but not riboflavin, have an effector function for regulation of riboflavin biosynthesis in B. subtilis, and RibC seemingly is not directly involved in the riboflavin regulatory system. The mutation ribC820 leads to deregulation of riboflavin biosynthesis in B. subtilis, most likely by preventing the accumulation of the effector molecule FMN or FAD.  相似文献   

13.
14.
15.
Investigation of the hemolytic phenotype under anaerobic growth conditions of an avian Pasteurella multocida strain, PBA100, resulted in the identification and characterisation of a gene encoding an esterase enzyme, mesA, that conferred a hemolytic phenotype in Escherichia coli under anaerobic conditions. MesA appeared to be expressed and functional under anaerobic and aerobic conditions in both E. coli and P. multocida. A P. multocida mesA mutant was generated which resulted in the loss of acetyl esterase activity under anaerobic conditions. However, this mutation did not cause any attenuation of virulence for mice nor a detectable change to the anaerobic hemolytic phenotype of P. multocida. In E. coli MesA appeared to cause hemolysis indirectly by the induction of the latent E. coli K-12 cytolysin, sheA.  相似文献   

16.
M Shirai  R Fujinaga  J K Akada  T Nakazawa 《Gene》1999,239(2):351-359
We constructed and analyzed hybrid Escherichia coli-Helicobacter pylori rpoD genes in an E. coli rpoD mutant. It turned out that a hybrid consisting of E. coli rpoD with subdomain 4.2 of H. pylori rpoD (for -35 recognition) was functional. On the other hand, hybrids consisting of E. coli rpoD with domain 2 and the adjacent sequence of H. pylori rpoD (for core enzyme binding and -10 recognition) were non-functional. Intriguingly, a hybrid rpoD containing H. pylori subdomain 4.2 conferred higher activity for the H. pylori PureA as determined by xylE expression of PureA-xylE fusions, although the activity of the hybrid rpoD for the tac promoter was comparable to that of E. coli rpoD. The tsp of ureA in E. coli with the hybrid rpoD and E. coli rpoD were 15 and 17bp upstream from that in H. pylori, respectively. The comparison of PureA sequences in both E. coli and H. pylori indicated the existence of a -10 consensus sequence but little conservation of -35 sequences. Instead, the PureA in both H. pylori and E. coli contained an identical heptamer, GTTAATA, in the extended -35 region.  相似文献   

17.
The structure of the amino-terminal domain of Escherichia coli riboflavin synthase (RiSy) has been determined by NMR spectroscopy with riboflavin as a bound ligand. RiSy is functional as a 75 kDa homotrimer, each subunit of which consists of two domains which share very similar sequences and structures. The N-terminal domain (RiSy-N; 97 residues) forms a 20 kDa homodimer in solution which binds riboflavin with high affinity. The structure features a six-stranded antiparallel beta-barrel with a Greek-key fold, both ends of which are closed by an alpha-helix. One riboflavin molecule is bound per monomer in a site at one end of the barrel which is comprised of elements of both monomers. The structure and ligand binding are similar to that of the FAD binding domains of ferrodoxin reductase family proteins. The structure provides insights into the structure of the whole enzyme, the organisation of the functional trimer and the mechanism of riboflavin synthesis. C48 from the N-terminal domain is identified as the free cysteine implicated in a nucleophilic role in the synthesis mechanism, while H102 from the C-terminal domains is also likely to play a key role. Both are invariant in all known riboflavin synthase sequences.  相似文献   

18.
Inactivation of Helicobacter pylori cadA, encoding a putative transition metal ATPase, was only possible in one of four natural competent H. pylori strains, designated 69A. All tested cadA mutants showed increased growth sensitivity to Cd(II) and Zn(II). In addition, some of them showed both reduced 63Ni accumulation during growth and no or impaired urease activity, which was not due to lack of urease enzyme subunits. Gene complementation experiments with plasmid (pY178)-derived H. pylori cadA failed to correct the deficiencies, whereas resistance to Cd(II) and Zn(II) was restored. Moreover, pY178 conferred increased Co(II) resistance to both the cadA mutants and the wild-type strain 69A. Heterologous expression of H. pylori cadA in an Escherichia coli zntA mutant resulted in an elevated resistance to Cd(II) and Zn(II). Expression of cadA in E. coli SE5000 harbouring H. pylori nixA, which encodes a divalent cation importer along with the H. pylori urease gene cluster, led to about a threefold increase in urease activity compared with E. coli control cells lacking the H. pylori cadA gene. These results suggest that H. pylori CadA is an essential resistance pump with ion specificity towards Cd(II), Zn(II) and Co(II). They also point to a possible role of H. pylori CadA in high-level activity of H. pylori urease, an enzyme sensitive to a variety of metal ions.  相似文献   

19.
20.
Helicobacter pylori urease, a nickel-requiring metalloenzyme, hydrolyzes urea to NH3 and CO2. We sought to identify H. pylori genes that modulate urease activity by constructing pHP8080, a plasmid which encodes both H. pylori urease and the NixA nickel transporter. Escherichia coli SE5000 and DH5alpha transformed with pHP8080 resulted in a high-level urease producer and a low-level urease producer, respectively. An H. pylori DNA library was cotransformed into SE5000 (pHP8080) and DH5alpha (pHP8080) and was screened for cotransformants expressing either lowered or heightened urease activity, respectively. Among the clones carrying urease-enhancing factors, 21 of 23 contained hp0548, a gene that potentially encodes a DNA helicase found within the cag pathogenicity island, and hp0511, a gene that potentially encodes a lipoprotein. Each of these genes, when subcloned, conferred a urease-enhancing activity in E. coli (pHP8080) compared with the vector control. Among clones carrying urease-decreasing factors, 11 of 13 clones contained the flbA (also known as flhA) flagellar biosynthesis/regulatory gene (hp1041), an lcrD homolog. The LcrD protein family is involved in type III secretion and flagellar secretion in pathogenic bacteria. Almost no urease activity was detected in E. coli (pHP8080) containing the subcloned flbA gene. Furthermore, there was significantly reduced synthesis of the urease structural subunits in E. coli (pHP8080) containing the flbA gene, as determined by Western blot analysis with UreA and UreB antiserum. Thus, flagellar biosynthesis and urease activity may be linked in H. pylori. These results suggest that H. pylori genes may modulate urease activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号