首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An intracellular actin motor in bacteria?   总被引:3,自引:0,他引:3  
Actin performs structural as well as motor-like functions in eukaryotic cells. Orthologues of actin have also been identified in bacteria, where they perform an essential function during cell growth. Bacterial actins are implicated in the maintenance of rod-shaped cell morphology, and appear to form a cytoskeletal structure, localising as helical filaments underneath the cell membrane. Recently, a plasmid-borne actin orthologue has been shown to perform a mitotic-like function during segregation of a plasmid, and chromosomally encoded actin proteins were found to play an important role in chromosome segregation. Based on the findings that actin filaments are dynamic structures in two bacterial species, we propose that actins perform motor functions rather than a purely structural role in bacteria. We suggest that an intracellular motor exists in bacteria that could be derived from an ancestral actin motor that was present in cells early in evolution.  相似文献   

2.
3.
How is actin polymerization nucleated in vivo?   总被引:13,自引:0,他引:13  
Actin polymerization in vivo is dependent on free barbed ends that act as nuclei. Free barbed ends can arise in vivo by nucleation from the Arp2/3 complex, uncapping of barbed ends on pre-existing filaments or severing of filaments by cofilin. There is evidence that each mechanism operates in cells. However, different cell types use different combinations of these processes to generate barbed ends during stimulated cell motility. Here, I describe recent attempts to define the relative contributions of these three mechanisms to actin nucleation in vivo. The rapid increase in the number of barbed ends during stimulation is not due to any single mechanism. Cooperation between capping proteins, cofilin and the Arp2/3 complex is necessary for the development of protrusive force at the leading edge of the cell: uncapping and cofilin severing contributing barbed ends, whereas activity of the Arp2/3 complex is necessary, but not sufficient, for lamellipod extension. These results highlight the need for new methods that enable the direct observation of actin nucleation and so define precisely the relative contributions of the three processes to stimulated cell motility.  相似文献   

4.
During semi-open mitosis of Amoeba proteus the nuclear envelope is not dispersed and nucleus divides by fission. The presence of actin layer close to nuclear envelope was demonstrated in interphase and telophase nuclei of that amoeba stained with rhodamine labelled phalloidin. In telophase, an accumulation of actin arises in the space between the future daughter nuclei. It appears to be comparable with the contractile ring of dividing cells. This suggests that actin associated with the nuclear envelope of Amoeba proteus may be involved in final separation of the daughter nuclei, forming a constriction ring at the middle of dividing nucleus.  相似文献   

5.
Actin is one of the most abundant proteins in eukaryotic cells, where it plays key roles in cell shape, motility, and regulation. Actin is found in globular (G) and filamentous (F) structure in the cell. The helix of actin occurs as a result of polymerization of monomeric G-actin molecules through sequential rowing, is called F-actin. Recently, the crystal structure of an actin dimer has been reported, which details molecular interface in F-actin. In this study, the computational prediction model of actin and actin complex has been constructed base on the atomic model structure of G-actin. To this end, a docking simulation was carried out using predictive docking tools to obtain modeled structures of the actin–actin complex. Following molecular dynamics refinement, hot spots interactions at the protein interface were identified, that were predicted to contribute substantially to the free energy of binding. These provided a detailed prediction of key amino acid interactions at the protein–protein interface. The obtained model can be used for future experimental and computational studies to draw biological and functional conclusions. Also, the identified interactions will be used for designing next studies to understand the occurrence of F-actin structure.  相似文献   

6.
7.
8.
Is there a role for actin in virus budding?   总被引:11,自引:2,他引:9       下载免费PDF全文
Electrophoretic data from both sodium dodecyl sulfate-polyacrylamide gels (SDS-PAGE) and acid-urea gels reveal a protein in purified murine mammary tumor virus (MuMTV) which co-migrates with purified chick skeletal muscle actin. 125I-labeling of intact and disrupted virus preparations shows that the actin-like protein is not artifactually adsorbed to the outside of virions during isolation. Quantitative SDS- PAGE and examination of negatively stained preparations show that the actin cannot be accounted for by a contaminating population of virus- free vesicles. The ultrastructure of mammary epithelial cells and of Rous sarcoma virus-transformed chick embryo fibroblasts shows that virus extrusion is associated with filament-containing cellular processes. In particular, MuMTV is released from the ends of long microvilli which contain a bundle of 6-8-nm microfilaments and share other structural features with intestinal microvilli. We suggest that virus nucleoids require an interaction with host cell contractile proteins for their extrusion from the cell.  相似文献   

9.
Until recently it was widely accepted that the dynamic cytoskeletal matrix is exclusive to the cytoplasm of eukaryotes, evolving before the emergence of the cell nucleus to enable phagocytosis, cell motility and the sophisticated functioning of the endomembrane system within the cytosol. The discovery of the existence of a prokaryotic cytoskeleton has changed this picture significantly. As a result, the idea has taken shape that the appearance of actin occurred in the very first cell; therefore, the emergence of microfilaments precedes that of the eukaryotic cytoskeleton. The discovery of nuclear actin opened new perspective on the field, suggesting that the nuclear activities of actin reflect the functions of primordial actin-like proteins. In this paper, we review the recent literature to explore the evolutionary origin of nuclear actin. We conclude that both ancient and eukaryotic features of the actin world can be detected in the nucleus today, which supports the idea that the cytoskeleton attained significant eukaryotic innovations before the tandem evolution of the cytoskeleton and nucleus occurred.  相似文献   

10.
The binding of aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase in fetal calf brain homogenates and extracts has been investigated at both 0° and 37°C under high ionic strength conditions. The results demonstrate far greater enzyme binding at 37°C than at 0°C, which correlates with an increased sedimentation of cytoskeletal actin at the higher temperature. A dependence of enzyme sedimentation on the presence of polymerised actin was also demonstrated, and this indicates that cytoskeletal actin is a major adsorbent of glycolytic enzymes in this non-muscle tissue.  相似文献   

11.
Treatment of cultured human diploid fibroblasts with a chemical carcinogen produced a clonal neoplastic cell line (HUT-14) that expresses a mutant β actin, nearly an equal amount of normal β actin and one additional nonmuscle actin species, γ actin. These three actins are the principal structural components of the detergent-resistant cytoskeleton. A substrain of HUT-14 was derived from a tumor produced by inoculation of a nude mouse with a highly selected subclone of HUT-14 cells. Cells of this new substrain, HUT-14T, exhibit a more variant distribution of cytoskeletal actin than the parent HUT-14 strain and a further diminution in cytoskeletal fibronectin. HUT-14T is also elevated in tumorigenicity, producing larger, faster-growing fibrosarcomas in the nude mouse than the parent HUT-14 strain with fewer inoculated cells. These phenotypic cellular changes accompany a biochemical and functional change in the mutant β-actin polypeptide. The more variant mutant actin of HUT-14T differs from the original mutant polypeptide by: one additional negative net charge, a short half-life in the cell, a greatly diminished ability to incorporate into the detergent-resistant cytoskeleton, a decrease in affinity for deoxyribonuclease I and a faster rate of synthesis. It appears that the mutant actin of HUT-14 acquired a second-site mutation that was selected during a subcloning step prior to derivation of the HUT-14T substrain. The hypothesis of a second-site mutation is supported by the finding that the new β-actin species in HUT-14T cells is translated correctly from HUT-14T mRNA in vitro. The increased rate of synthesis of mutant β actin in HUT-14T cells is accompanied by an approximate doubling in the relative amount of translatable mutant β-actin mRNA, an event that occurred separately from the event that produced the altered mutant β actin. These separate variations in β-actin expression are accompanied by incremental increases of malignant potential in this cell line.  相似文献   

12.
TGFβ signalling in the development of ovarian function   总被引:1,自引:0,他引:1  
Ovarian development begins back in the embryo with the formation of primordial germ cells and their subsequent migration and colonisation of the genital ridges. Once the ovary has been defined structurally, the primordial germ cells transform into oocytes and become housed in structures called follicles (in this case, primordial follicles), a procedure that, in most mammals, occurs either shortly before or during the first few days after birth. The growth and differentiation of follicles from the primordial population is termed folliculogenesis. Primordial follicles give rise to primary follicles that transform into preantral follicles, then antral follicles (secondary follicles) and, finally (preovulatory) Graafian follicles (tertiary follicles) in a co-ordinated series of transitions regulated by hormones and local intraovarian factors. Members of the transforming growth factor-β (TGFβ) superfamily have been shown to play important roles in this developmental process starting with the specification of primordial germ cells by the bone morphogenetic proteins through to the recruitment of primordial follicles by anti-Mullerian hormone and, potentially, growth and differentiation factor-9 (GDF9) and, finally, their transformation into preantral and antral follicles in response to activin and TGF-β. Developmental and mutant mouse models have been used to show the importance of this family of growth factors in establishing the first wave of folliculogenesis.The author thanks the NHMRC of Australia for funding (Regkey 241000).  相似文献   

13.
The lamellipodium is an important structure for cell migration containing branched actin nucleated via the Arp2/3 complex. The formation of branched actin is relatively well studied, but less is known about its disassembly and how this influences migration. GMF is implicated in both Arp2/3 debranching and inhibition of Arp2/3 activation. Modulation of GMFβ, a ubiquitous GMF isoform, by depletion or overexpression resulted in changes in lamellipodial dynamics, branched actin content, and migration. Acute pharmacological inhibition of Arp2/3 by CK-666, coupled to quantitative live-cell imaging of the complex, showed that depletion of GMFβ decreased the rate of branched actin disassembly. These data, along with mutagenesis studies, suggest that debranching (not inhibition of Arp2/3 activation) is a primary activity of GMFβ in vivo. Furthermore, depletion or overexpression of GMFβ disrupted the ability of cells to directionally migrate to a gradient of fibronectin (haptotaxis). These data suggest that debranching by GMFβ plays an important role in branched actin regulation, lamellipodial dynamics, and directional migration.  相似文献   

14.
The most biologically significant property of actin is its ability to self-associate and form two-stranded polymeric microfilaments. In living cells, these micro filaments form the actin cytoskeleton, essential for maintenance of the shape, passive mechanical properties and active motility of eukaryotic cells. Recently discovered actin-related proteins (ARPs) appear to share a common ancestor with conventional actin. At present, six classes of ARPs have been discovered, three of which have representatives in diverse species across eukaryotic phyla and may share functional characteristics with conventional actin. The three most ubiquitous ARPs are predicted to share a common core structure with actin and contain all the residues required for ATP binding. Surface residues involved in protein protein interactions, however, have diverged. Models of these proteins based on the atomic structure of actin provide some clues about how ARPs interact with each other, with conventional actin and with conventional actin-binding proteins.  相似文献   

15.
Massive actin bundle couples macrocilia to muscles in the ctenophore Bero?   总被引:1,自引:0,他引:1  
Macrocilia are thick compound ciliary organelles arising individually from elongated epithelial cells on the lips of beroid ctenophores. A giant wedge-shaped bundle of microfilaments extends 25-30 microns from the base of each macrocilium to the lower end of the cell, terminating at a junction with an underlying smooth muscle cell. The broad end of the microfilament bundle is anchored to the macrocilium by striated rootlet fibers that extend from the basal bodies into the bundle and are linked to the microfilaments by periodic bridges. Fluorescence microscopy of rhodamine-phalloidin stained intact tissue, dissociated macrociliary cells, and Triton/glycerol-isolated bundles shows that the microfilaments contain actin. The microfilaments run generally parallel to the long axis of the bundle but are not highly ordered. Filaments decorated with myosin S1 show a uniform polarity with arrowheads pointing away from the tapered membrane-associated end of the bundle. No variations in bundle length (nor changes in rootlet periodicity) were observed in tissue fixed under conditions of calcium activation. Isolated bundles did not contract in Mg-ATP, even though detached macrocilia underwent reactivated beating and sliding disintegration. Macrocilia are used to bite through food organisms or transport prey into the stomach. The actin filament bundles probably play a supporting role as a structural linker between macrocilia and subepithelial muscle fibers and may serve as intracellular tendons to mechanically coordinate the motor activities of macrocilia and muscles during prey ingestion.  相似文献   

16.
Dangsheng Li 《Cell research》2006,16(7):609-609
Ovarian cancer is one of the most lethal malignancies in women. Identification of new therapeutic targets would provide opportunities for developing potentially more effective treatment regimes. In the July issue of Cell Research, Cao et al. reports that glycogen synthase kinase-3β (GSK-3β) plays an important role in positively regulating the proliferation of human ovarian cancer cells, and thus it may represent such a target [ 1 ]. GSK-3β is a serine/threonine kinase that is known to be involved in regulation of β-catenin signaling, where it participates in the formation of a multi-component destruction complex that promotes the phosphorylation and subsequent degradation of β-catenin. Given that overactive β-catenin signaling is involved in many forms of human cancer, this classic mode of GSK-3β action should qualify it as a "tumor suppressor". Intriguingly, however, two recent studies have implicated that GSK-3β may actually play a pro-tumor role in pancreatic and colorectal cancers [2, 3]. Since ovarian tumors often exhibit increased expression of GSK-3β, these recent findings prompted Cao et al. to examine the potential role of GSK-3β in ovarian cancer cells.  相似文献   

17.
Summary Using a panel of monoclonal anitbodies to several different cytoskeletal elements in primary cultures derived from newborn rat hearts we report that fibroblasts similar to cardiac-muscle cells expressed theα-actin isoform of smooth muscle cells. However, striated muscleα-actin or desmin antibodies did not stain cardiac fibroblasts but did stain cardiac-muscle cells. Theα-smooth muscle actin distributed as a stress fiber and in a cross-striated pattern in cardiac muscle while fibroblasts showed exclusive stress fiber staining. These results suggest that connective tissue cells during development of the heart contain muscle-specific elements which may relate to the organ-specific contractile function with which they are associated.  相似文献   

18.
Somatostatin-14 influences pituitary–ovarian axis in peripubertal rats   总被引:1,自引:1,他引:0  
The effects of multiple somatostatin (SRIH-14) administration on the pituitary-ovarian axis were examined in peripubertal rats. Female Wistar rats received subcutaneously, two daily doses of 20 mug SRIH-14 per 100 g body weight (b.w.) for five consecutive days (from the 33rd to the 37th day of life). Follicle-stimulating (FSH), luteinizing (LH) and somatotropic (GH) cells were examined by the peroxidase-anti-peroxidase immunocytochemical method. Changes in cell volumes, volume densities and number per unit area (mm(2)) of FSH-, LH- and GH-immunoreactive cells were evaluated by stereology and morphometry. Serum FSH and LH levels were determined by RIA. Ovaries were analyzed by simple point counting of follicles. The volumes and volume densities of FSH-, LH- and GH-immunoreactive cells were significantly decreased while their numbers per mm(2) remained unchanged. SRIH-14 induced a significant decrease in serum FSH and LH levels. In the ovary, SRIH-14 induced an increase in the number of primordial follicles, followed by a reduction in the number of small healthy growing follicles and absence of preovulatory follicles. The number of atretic follicles was unchanged. We concluded that treatment with SRIH-14 during the peripubertal period markedly inhibited pituitary FSH, LH and GH cells. In the ovary, SRIH-14 acted by inhibiting folliculogenesis without affecting atretic processes.  相似文献   

19.
Plant actins are encoded by complex and highly divergent multigene families. Despite the general lack of intron conservation in animal, fungal and protist actin genes, evidence is presented which indicates that higher plant actin genes have an untranslated leader exon with structural similarity to that found in vertebrate actin genes. All functional higher plant actin genes sequenced to date contain a potential intron acceptor site in the 5 untranslated region 10 to 13 nucleotides upstream of the initiator ATG. A leader specific cDNA probe hybridized to sequences over 1.0 kbp upstream from the coding region confirming the presence of an upstream exon. Primer extension of mRNA with gene-specific oligonucleotides was used to analyze the 5 untranslated exon and leader intron from four divergent soybean actin genes, SAc3, 4, 6 and 7. The 5 ends of all four mRNAs are heterogeneous. The consensus promoter elements of the SAc7 actin promoter were identified. Gene specific primer extension sequencing of actin mRNAs indicated that splicing of the 5 leader intron occured at the predicted acceptor site in SAc6 and SAc7. The SAc6 and SAc7 5 untranslated exons are small (88–111 nt) and the leader introns are relatively large (844–1496 nt). The presence of an intron within the 5 RNA leader and an intron which splits a glycine codon at position 152 in all plant actin genes and all vertebrate muscle actin genes suggests that these structures may have been conserved due to a functional role in actin expression. The 5 regions of these two soybean actin genes contain many unusual features including (CT) repeats and long stretches of pyrimidine-rich DNA. The possible roles of the upstream exon/intron and the C + T-rich regions are discussed.  相似文献   

20.
Tumor-targeted fluorescence imaging for cancer diagnosis and treatment is an evolving field of research that is on the verge of clinical implementation. As each tumor has its unique biologic profile, selection of the most promising targets is essential. In this review, we focus on target finding in ovarian cancer, a disease in which fluorescence imaging may be of value in both adequate staging and in improving cytoreductive efforts, and as such may have a beneficial effect on prognosis. Thus far, tumor-targeted imaging for ovarian cancer has been applied only in animal models. For clinical implementation, the five most prominent targets were identified: folate receptor α, vascular endothelial growth factor, epidermal growth factor receptor, chemokine receptor 4, and matrix metalloproteinase. These targets were selected based on expression rates in ovarian cancer, availability of an antibody or substrate aimed at the target approved by the Food and Drug Administration, and the likelihood of translation to human use. The purpose of this review is to present requirements for intraoperative imaging and to discuss possible tumor-specific targets for ovarian cancer, prioritizing for targets with substrates ready for introduction into the clinic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号