首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae.  相似文献   

2.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron and must obtain this element in the human host as well as in its varied environmental niches. It has multiple systems for iron acquisition, including the TonB-dependent transport of heme, the endogenous siderophore vibriobactin and several siderophores that are produced by other microorganisms. There is also a Feo system for the transport of ferrous iron and an ABC transporter, Fbp, which transports ferric iron. There appears to be at least one additional high affinity iron transport system that has not yet been identified. In iron replete conditions, iron acquisition genes are repressed by Fur. Fur also represses the synthesis of a small, regulatory RNA, RyhB, which negatively regulates genes for iron-containing proteins involved in the tricarboxylic acid cycle and respiration as well as genes for motility and chemotaxis. The redundancy in iron transport systems has made it more difficult to determine the role of individual systems in vivo and in vitro, but it may reflect the overall importance of iron in the growth and survival of V. cholerae.  相似文献   

3.
Vibrio cholerae uses a variety of strategies for obtaining iron in its diverse environments. In this study we report the identification of a novel iron utilization protein in V. cholerae, VciB. The vciB gene and its linked gene, vciA, were isolated in a screen for V. cholerae genes that permitted growth of an Escherichia coli siderophore mutant in low-iron medium. The vciAB operon encodes a predicted TonB-dependent outer membrane receptor, VciA, and a putative inner membrane protein, VciB. VciB, but not VciA, was required for growth stimulation of E. coli and Shigella flexneri strains in low-iron medium. Consistent with these findings, TonB was not needed for VciB-mediated growth. No growth enhancement was seen when vciB was expressed in an E. coli or S. flexneri strain defective for the ferrous iron transporter Feo. Supplying the E. coli feo mutant with a plasmid encoding either E. coli or V. cholerae Feo, or the S. flexneri ferrous iron transport system Sit, restored VciB-mediated growth; however, no stimulation was seen when either of the ferric uptake systems V. cholerae Fbp and Haemophilus influenzae Hit was expressed. These data indicate that VciB functions by promoting iron uptake via a ferrous, but not ferric, iron transport system. VciB-dependent iron accumulation via Feo was demonstrated directly in iron transport assays using radiolabeled iron. A V. cholerae vciB mutant did not exhibit any growth defects in either in vitro or in vivo assays, possibly due to the presence of other systems with overlapping functions in this pathogen.  相似文献   

4.
5.
In Yersinia pestis, the Yfe and Feo systems likely function to transport ferrous iron. Both FeoA and FeoB are essential for iron acquisition activity while FeoC is not. Mutations in yfe and feo had an additive effect on microaerophilic growth under iron-chelating conditions. Y. pestis cells lacking the Ybt siderophore-dependent system, the Yfe or the Feo system grow normally in J774A.1 cells. However, a double yfeAB feoB mutant was no longer able to grow in this murine macrophage cell line. This growth defect likely resulted from iron and not manganese deprivation since a yfeAB mntH mutant grew normally in J774A.1 cells. These results suggest that the Yfe and Feo systems are somewhat redundant ferrous iron transporters capable of iron acquisition during intracellular growth of the plague bacterium.  相似文献   

6.
冯言  刘马峰  程安春 《微生物学报》2016,56(7):1061-1069
几乎所有细菌的生长都离不开铁元素。在有氧的环境中,三价铁离子几乎无法被细菌直接利用。但是在宿主胃肠道中,铁元素主要以可溶性的亚铁离子形式存在,它们可通过革兰氏阴性菌外膜直接进入胞周质,在周质通过亚铁离子转运系统,将铁离子转运至胞浆供细菌利用。绝大多数阴性菌主要是通过Feo转运系统利用亚铁离子,大肠杆菌的Feo转运系统由feoA、feoB和feoC3个基因组成。除Feo转运系统外,还发现Yfe转运系统、Efe转运系统、Sit转运系统等。本文重点介绍革兰氏阴性菌Feo转运系统的组成及作用机制,以期为进一步研究细菌亚铁离子的转运机制提供参考。  相似文献   

7.
Vibrio cholerae produces the novel phenolate siderophore vibriobactin and several outer membrane proteins in response to iron starvation. To determine whether any of these iron-regulated outer membrane proteins serves as the receptor for vibriobactin, the classical V. cholerae strain 0395 was mutagenized by using TnphoA, and iron-regulated fusions were analyzed for vibriobactin transport. One mutant, MBG14, was unable to bind or utilize exogenous vibriobactin and did not grow in low-iron medium. However, synthesis of the siderophore and transport of other iron complexes, including ferrichrome, hemin, and ferric citrate, were unaffected in MBG14. Analysis of membrane proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated the loss from the mutant of a 74-kDa iron-regulated outer membrane protein present in the parental strain when grown in iron-limiting conditions. This protein partitioned into the detergent phase during Triton X-114 extraction, suggesting that it is a hydrophobic membrane protein. DNA sequences encoding the gene into which TnphoA had inserted, designated viuA (vibriobactin uptake), restored the wild-type phenotype to the mutant; the complemented mutant expressed the 74-kDa outer membrane protein under iron-limiting conditions and possessed normal vibriobactin binding and uptake. These data indicate that the 74-kDa outer membrane protein of V. cholerae serves as the vibriobactin receptor.  相似文献   

8.
Vibrio cholerae uses the catechol siderophore vibriobactin for iron transport under iron-limiting conditions. We have identified genes for vibriobactin transport and mapped them within the vibriobactin biosynthetic gene cluster. Within this genetic region we have identified four genes, viuP, viuD, viuG and viuC, whose protein products have homology to the periplasmic binding protein, the two integral cytoplasmic membrane proteins, and the ATPase component, respectively, of other iron transport systems. The amino-terminal region of ViuP has homology to a lipoprotein signal sequence, and ViuP could be labeled with [(3)H]palmitic acid. This suggests that ViuP is a membrane lipoprotein. The ViuPDGC system transports both vibriobactin and enterobactin in Escherichia coli. In the same assay, the E. coli enterobactin transport system, FepBDGC, allowed the utilization of enterobactin but not vibriobactin. Although the entire viuPDGC system could complement mutations in fepB, fepD, fepG, or fepC, only viuC was able to independently complement the corresponding fep mutation. This indicates that these proteins usually function as a complex. V. cholerae strains carrying a mutation in viuP or in viuG were constructed by marker exchange. These mutations reduced, but did not completely eliminate, vibriobactin utilization. This suggests that V. cholerae contains genes in addition to viuPDGC that function in the transport of catechol siderophores.  相似文献   

9.
Genes encoding polypeptides of an ATP binding cassette (ABC)-type ferric iron transporter that plays a major role in iron acquisition in Synechocystis sp. strain PCC 6803 were identified. These genes are slr1295, slr0513, slr0327, and recently reported sll1878 (Katoh et al., J. Bacteriol. 182:6523-6524, 2000) and were designated futA1, futA2, futB, and futC, respectively, for their involvement in ferric iron uptake. Inactivation of these genes individually or futA1 and futA2 together greatly reduced the activity of ferric iron uptake in cells grown in complete medium or iron-deprived medium. All the fut genes are expressed in cells grown in complete medium, and expression was enhanced by iron starvation. The futA1 and futA2 genes appear to encode periplasmic proteins that play a redundant role in iron binding. The deduced products of futB and futC genes contain nucleotide-binding motifs and belong to the ABC transporter family of inner-membrane-bound and membrane-associated proteins, respectively. These results and sequence similarities among the four genes suggest that the Fut system is related to the Sfu/Fbp family of iron transporters. Inactivation of slr1392, a homologue of feoB in Escherichia coli, greatly reduced the activity of ferrous iron transport. This system is induced by intracellular low iron concentrations that are achieved in cells exposed to iron-free medium or in the fut-less mutants grown in complete medium.  相似文献   

10.
Vibrio cholerae was found to have two sets of genes encoding TonB, ExbB and ExbD proteins. The first set ( tonB1, exbB1, exbD1 ) was obtained by complementation of a V. cholerae tonB mutant. In the mutant, a plasmid containing these genes permitted transport via the known V. cholerae high-affinity iron transport systems, including uptake of haem, vibriobactin and ferrichrome. When chromosomal mutations in exbB1 or exbD1 were introduced into a wild-type V. cholerae background, no defect in iron transport was noted, indicating the existence of additional genes that can complement the defect in the wild-type background. Another region of the V. cholerae chromosome was cloned that encoded a second functional TonB/Exb system ( tonB2, exbB2, exbD2 ). A chromosomal mutation in exbB2 also failed to exhibit a defect in iron transport, but a V. cholerae strain that had chromosomal mutations in both the exbB1 and exbB2 genes displayed a mutant phenotype similar to that of an Escherichia coli tonB mutant. The genes encoding TonB1, ExbB1, ExbD1 were part of an operon that included three haem transport genes ( hutBCD ), and all six genes appeared to be expressed from a single Fur-regulated promoter upstream of tonB1 . A plasmid containing all six genes permitted utilization of haem by an E. coli strain expressing the V. cholerae haem receptor, HutA. Analysis of the hut genes indicated that hutBCD, which are predicted to encode a periplasmic binding protein (HutB) and cytoplasmic membrane permease (HutC and HutD), were required to reconstitute the V. cholerae haem transport system in E. coli. In V. cholerae , the presence of hutBCD stimulated growth when haemin was the iron source, but these genes were not essential for haemin utilization in V. cholerae .  相似文献   

11.
Shigella spp. have transport systems for both ferric and ferrous iron. The iron can be taken up as free iron or complexed to a variety of carriers. All Shigella species have both the Feo and Sit systems for acquisition of ferrous iron, and all have at least one siderophore-mediated system for transport of ferric iron. Several of the transport systems, including Sit, Iuc/IutA (aerobactin synthesis and transport), Fec (ferric di-citrate uptake), and Shu (heme transport) are encoded within pathogenicity islands. The presence and the genomic locations of these islands vary considerably among the Shigella species, and even between isolates of the same species. The expression of the iron transport systems is influenced by the concentration of iron and by environmental conditions including the level of oxygen. ArcA and FNR regulate iron transport gene expression as a function of oxygen tension, with the sit and iuc promoters being highly expressed in aerobic conditions, while the feo ferrous iron transporter promoter is most active under anaerobic conditions. The effects of oxygen are also seen in infection of cultured cells by Shigella flexneri; the Sit and Iuc systems support plaque formation under aerobic conditions, whereas Feo allows plaque formation anaerobically.  相似文献   

12.
Vibrio cholerae has multiple iron transport systems, one of which involves haem uptake through the outer membrane receptor HutA. A hutA mutant had only a slight defect in growth using haemin as the iron source, and we show here that V. cholerae encodes two additional TonB-dependent haem receptors, HutR and HasR. HutR has significant homology to HutA as well as to other outer membrane haem receptors. Membrane fractionation confirmed that HutR is present in the outer membrane. The hutR gene was co-transcribed with the upstream gene ptrB, and expression from the ptrB promoter was negatively regulated by iron. A hutA, hutR mutant was significantly impaired, but not completely defective, in the ability to use haemin as the sole iron source. HasR is most similar to the haemophore-utilizing haem receptors from Pseudomonas aeruginosa and Serratia marcescens. A mutant defective in all three haem receptors was unable to use haemin as an iron source. HutA and HutR functioned with either V. cholerae TonB1 or TonB2, but haemin transport through either receptor was more efficient in strains carrying the tonB1 system genes. In contrast, haemin uptake through HasR was TonB2 dependent. Efficient utilization of haemoglobin as an iron source required HutA and TonB1. The triple haem receptor mutant exhibited no defect in its ability to compete with its Vib- parental strain in an infant mouse model of infection, indicating that additional iron sources are present in vivo. V. cholerae used haem derived from marine invertebrate haemoglobins, suggesting that haem may be available to V. cholerae growing in the marine environment.  相似文献   

13.
Vibriobactin, a siderophore from Vibrio cholerae   总被引:14,自引:0,他引:14  
A novel siderophore (microbial iron transport compound) has been isolated from low iron cultures of Vibrio cholerae. Belonging to the catecholamide family of chelators, it has been shown to contain three residues of 2,3-dihydroxybenzoic acid and two residues of threonine. Both threonine moieties are present in the form of oxazoline rings. Furthermore, the polyamine backbone of the molecule was proved to be not spermidine, but the rare N-(3-aminopropyl)-1,3-diaminopropane, norspermidine. The structure of the new siderophore has been determined to be N-[3-(2,3-dihydroxybenzamido)propyl]-1, 3-bis[2,3-dihydroxyphenyl)-trans-5-methyl-2-oxazoline-4-carboxamido]prop ane. The compound has been given the trivial name vibriobactin. Mutants defective in the synthesis and utilization of vibriobactin were isolated. In an iron-limited environment V. cholerae was found to respond more strongly to vibriobactin, agrobactin, and ferrichrome than to enterobactin.  相似文献   

14.
15.
Bacterial pathogens require multiple iron-specific acquisition systems for survival within the iron-limiting environment of the host. Francisella tularensis is a virulent intracellular pathogen that can replicate in multiple cell-types. To study the interrelationship of iron acquisition capability and virulence potential of this organism, we generated single and double deletion mutants within the ferrous iron (feo) and ferric-siderophore (fsl) uptake systems of the live vaccine strain (LVS). The Feo system was disrupted by a partial deletion of the feoB gene (ΔfeoB′), which led to a growth defect on iron-limited modified Muller Hinton agar plates. 55Fe uptake assays verified that the ΔfeoB′ mutant had lost the capacity for ferrous iron uptake but was still competent for 55Fe-siderophore-mediated ferric iron acquisition. Neither the ΔfeoB′ nor the siderophore-deficient ΔfslA mutant was defective for replication within J774A.1 murine macrophage-like cells, thus demonstrating the ability of LVS to survive using either ferrous or ferric sources of intracellular iron. A LVS ΔfslA ΔfeoB′ mutant defective for both ferrous iron uptake and siderophore production was isolated in the presence of exogenous F. tularensis siderophore. In contrast to the single deletion mutants, the ΔfslA ΔfeoB′ mutant was unable to replicate within J774A.1 cells and was attenuated in virulence following intraperitoneal infection of C57BL/6 mice. These studies demonstrate that the siderophore and feoB-mediated ferrous uptake systems are the only significant iron acquisition systems in LVS and that they operate independently. While one system can compensate for loss of the other, both are required for optimal growth and virulence.  相似文献   

16.
17.
18.
Vibrio cholerae secretes the catechol siderophore vibriobactin in response to iron limitation. Vibriobactin is structurally similar to enterobactin, the siderophore produced by Escherichia coli, and both organisms produce 2,3-dihydroxybenzoic acid (DHBA) as an intermediate in siderophore biosynthesis. To isolate and characterize V. cholerae genes involved in vibriobactin biosynthesis, we constructed a genomic cosmid bank of V. cholerae DNA and isolated clones that complemented mutations in E. coli enterobactin biosynthesis genes. V. cholerae homologs of entA, entB, entC, entD, and entE were identified on overlapping cosmid clones. Our data indicate that the vibriobactin genes are clustered, like the E. coli enterobactin genes, but the organization of the genes within these clusters is different. In this paper, we present the organization and sequences of genes involved in the synthesis and activation of DHBA. In addition, a V. cholerae strain with a chromosomal mutation in vibA was constructed by marker exchange. This strain was unable to produce vibriobactin or DHBA, confirming that in V. cholerae VibA catalyzes an early step in vibriobactin biosynthesis.  相似文献   

19.
A common mechanism for high affinity carbohydrate uptake in microbial species is the phosphoenolpyruvate‐dependent phosphotransferase system (PTS). This system consists of a shared component, EI, which is required for all PTS transport, and numerous carbohydrate uptake transporters. In Vibrio cholerae, there are 13 distinct PTS transporters. Due to genetic redundancy within this system, the carbohydrate specificity of each of these transporters is not currently defined. Here, using multiplex genome editing by natural transformation (MuGENT), we systematically dissect PTS transport in V. cholerae. Specifically, we generated a mutant strain that lacks all 13 PTS transporters, and from this strain, we created a panel of mutants where each expresses a single transporter. Using this panel, we have largely defined the carbohydrate specificities of each PTS transporter. In addition, this analysis uncovered a novel glucose transporter. We have further defined the mechanism of this transporter and characterized its regulation. Using our 13 PTS transporter mutant, we also provide the first clear evidence that carbohydrate transport by the PTS is not essential during infection in an infant mouse model of cholera. In summary, this study shows how multiplex genome editing can be used to rapidly dissect complex biological systems and genetic redundancy in microbial systems.  相似文献   

20.
In the gammaproteobacteria, the FeoA, FeoB, and FeoC proteins constitute the Feo system, which mediates ferrous iron [Fe(II)] import. Of these Feo proteins, FeoB is an inner membrane Fe(II) transporter that is aided by the small protein FeoA. However, the role of another small protein, FeoC, has remained unknown. Here we report that the FeoC protein is necessary for FeoB protein-mediated Fe(II) uptake in Salmonella experiencing low levels of oxygen and iron. The FeoC protein was found to directly bind to the FeoB transporter, leading to high cellular levels of FeoB. Depletion of the FtsH protease enabled high levels of FeoB in the absence of FeoC, suggesting that the FeoC protein protects the FeoB transporter from FtsH-mediated proteolysis. Our present study provides a singular example of bacteria that can control expression of iron uptake systems posttranslationally by employing a small iron transporter-binding protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号