首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
De novo chromosome structural abnormalities cannot always be diagnosed by the use of standard cytogenetic techniques. We applied a previously developed chromosome-band-specific painting method to the diagnosis of such rearrangements. The diagnostic procedures consisted of microdissection of an aberrant chromosomal region of a given patient, polymerase chain reaction (PCR) amplification of the dissected chromosomal DNA, and subsequent competitive fluorescence in situ hybridization (FISH) using the PCR products as a probe pool on metaphase chromosomes from the patient and/or a karyotypically normal person. With this strategy, we studied 6 de novo rearrangements (6p+, 6q+, 9p+, 17p+, +mar, and +mar) in 6 patients. These rearrangements had been seen by conventional banding but their origin could not be identified. In all 6 patients, we successfully ascertained the origin. Using an aberrant region-specific probe pool, FISH signals appeared on both the aberrant region and a region of another specific chromosome pair. A reverse probe pool that was generated through the microdissection of normal chromosomes at a candidate region for the origin of the aberration hybridized with both the aberrant and the candidate regions. We thus diagnosed one patient with 17p+ as having trisomy for 14q32-qter, one with 9p+ as having trisomy for 12pter-p12, one with 6q+ as having a tandem duplication (trisomy) of a 6q23-q25 segment, one with 6p+ as having a tandem duplication (trisomy) of a 6p23-q21.3 segment, one with a supernumerary metacentric marker chromosome as having tetrasomy for 18pter-cen, and the last with an additional small marker chromosome as having trisomy for 18p11.1 (or p11.2)-q11.2. The present targeted chromosome-band-painting method provides the simple and rapid preparation of a probe pool for region-specific FISH, and is useful for the diagnosis of chromosome abnormalities of unknown origin.  相似文献   

2.
Danilova TV  Birchler JA 《Chromosoma》2008,117(4):345-356
To study the correlation of the sequence positions on the physical DNA finger print contig (FPC) map and cytogenetic maps of pachytene and somatic maize chromosomes, sequences located along the chromosome 9 FPC map approximately every 10 Mb were selected to place on maize chromosomes using fluorescent in situ hybridization (FISH). The probes were produced as pooled polymerase chain reaction products based on sequences of genetic markers or repeat-free portions of mapped bacterial artificial chromosome (BAC) clones. Fifteen probes were visualized on chromosome 9. The cytological positions of most sequences correspond on the pachytene, somatic, and FPC maps except some probes at the pericentromeric regions. Because of unequal condensation of mitotic metaphase chromosomes, being lower at pericentromeric regions and higher in the arms, probe positions are displaced to the distal ends of both arms. The axial resolution of FISH on somatic chromosome 9 varied from 3.3 to 8.2 Mb, which is 12-30 times lower than on pachytene chromosomes. The probe collection can be used as chromosomal landmarks or as a "banding paint" for the physical mapping of sequences including transgenes and BAC clones and for studying chromosomal rearrangements.  相似文献   

3.
A straightforward and extremely efficient reverse chromosome painting technique is described which allows the rapid and unequivocal identification of any cytogenetically unclassifiable chromosome rearrangement. This procedure is used to determine the origin of unknown marker chromosomes found at prenatal diagnosis. After microdissection of the marker chromosome and amplification of the dissected fragment by a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR), fluorescence in situ hybridization (FISH) to aberrant and normal metaphase chromosomes with the marker-derived probe pool is performed. With this strategy, marker chromosomes present in amniotic fluid samples were successfully identified in three cases. The origin of the supernumerary markers was ascertained as deriving from 3p(p12-cen), 18p(pter-cen) and 9p(p12-cen), respectively. Since a specific FISH signal on chromosomes can be obtained within 2 working days using a probe generated without any pretreatment from one chromosomal fragment only and without additional image processing devices, this technique is considered to be highly suitable for routine application in pre- and postnatal cytogenetic analysis.  相似文献   

4.
High-resolution cytogenetic analysis of a large number of women with premature ovarian failure (POF) identified six patients carrying different Xq chromosome rearrangements. The patients (one familial and five sporadic cases) were negative for Turner's stigmata and experienced a variable onset of menopause. Microsatellite analysis and fluorescent in situ hybridization (FISH) were used to define the origin and precise extension of the Xq anomalies. All of the patients had a Xq chromosome deletion as the common chromosomal abnormality, which was the only event in three cases and was associated with partial Xp or 9p trisomies in the remaining three. Two of the Xq chromosome deletions were terminal with breakpoints at Xq26.2 and Xq21.2, and one interstitial with breakpoints at Xq23 and Xq28. In all three cases, the del(X)s retained Xp and Xq specific telomeric sequences. One patient carries a psu dic(X) with the deletion at Xq22.2 or Xq22.3; the other two [carrying (X;X) and (X;9) unbalanced translocations, respectively] showed terminal deletions with the breakpoint at Xq22 within the DIAPH2 gene. Furthermore, the rearranged X chromosomes were almost totally inactivated, and the extent of the Xq deletions did not correlate with the timing of POF. In agreement with previous results, these findings suggest that the deletion of a restricted Xq region may be responsible for the POF phenotype. Our analysis indicates that this region extends from approximately Xq26.2 (between markers DXS8074 and HIGMI) to Xq28 (between markers DXS 1113 and ALD) and covers approximately 22 Mb of DNA. These data may provide a starting point for the identification of the gene(s) responsible for ovarian development and folliculogenesis.  相似文献   

5.
Detection of an unbalanced t(4;15) by FISH in a child with multiple congenital anomalies: In this report, we present the clinical history and findings in a 6-month-old male with multiple congenital anomalies, developmental delay, and an initial male karyotype with 4q+. The origin of the additional segment on 4q was unequivocally established by fluorescence in situ hybridization (FISH). Whole chromosome probe for chromosome 4 and chromosome 15-specific a-satellite probe were used. The karyotype was demonstrated to be 46,XY,der(4), t(4;15)(q35;?),inv(9)(p13q13). To the best of our knowledge the above cytogenetic abnormalities with these clinical findings have not been described previously. This case further demonstrates the advantage of FISH in the identification of anomalous chromosome regions and breakpoints.  相似文献   

6.
Neocentromeres are fully functional centromeres found on rearranged or marker chromosomes that have separated from endogenous centromeres. Neocentromeres often result in partial tri- or tetrasomy because their formation confers mitotic stability to acentric chromosome fragments that would normally be lost. We describe the prenatal identification and characterization of a de novo supernumerary marker chromosome (SMC) containing a neocentromere in a 20-wk fetus by the combined use of comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH). GTG-banding of fetal metaphases revealed a 47,XY,+mar karyotype in 100% of cultured amniocytes; parental karyotypes were both normal. Although sequential tricolor FISH using chromosome-specific painting probes identified a chromosome 10 origin of the marker, a complete panel of chromosome-specific centromeric satellite DNA probes failed to hybridize to any portion of the marker. The presence of a neocentromere on the marker chromosome was confirmed by the absence of hybridization of an all-human-centromere alpha-satellite DNA probe, which hybridizes to all normal centromeres, and the presence of centromere protein (CENP)-C, which is associated specifically with active kinetochores. Based on CGH analysis and FISH with a chromosome 10p subtelomeric probe, the marker was found to be an inversion duplication of the distal portion of chromosome 10p. Thus, the proband's karyotype was 47,XY,+inv dup(10)(pter-->p14 approximately 15::p14 approximately 15-->neo-->pter), which is the first report of partial tetrasomy 10p resulting from an analphoid marker chromosome with a neocentromere. This study illustrates the use of several molecular strategies in distinguishing centric alphoid markers from neocentric analphoid markers.  相似文献   

7.
We report the use of comparative genomic hybridization (CGH) to define the origin of a small extra segment (unidentifiable by classical cytogenetics) present in a de novo add(13)q34 chromosome that we found in the karyotype of a newly born boy with congenital heart defects, brain anomalies and dysmorphic signs. Initial investigation with fluorescence in situ hybridization (FISH) and a chromosome-13-specific library revealed that the excess material was not derived from chromosome 13. To uncover the origin of the unknown chromosome material, CGH was carried out on DNA isolated from blood lymphocytes of the patient. By using a conventional fluorescence microscope with no digital imaging devices, a single distinct region with gain of fluorescent intensity was observed on distal chromosome 6q. Confirmation of this finding by FISH with a chromosome-6-specific paint and a subtelomeric yeast artificial chromosome clone from 6q26-q27, in combination with the band morphology of the small extra chromosomal segment, allowed us to diagnose the additional material as being derived from chromosome 6q23-qter. FISH with a telomere 13q probe detected a terminal deletion of 13q34-qter on the derivative chromosome 13, indicating that the der(13) was a result of a translocation event. Genotyping of the hypervariable apolipoprotein (a) gene, which lies within 6q26-q27, showed that the additional chromosome 6 material was inherited from the mother. The karyotype of the proposita is therefore: 46,XY,-13,+der(13)t(6;13)(q23;q34) de novo (mat). Our results confirm the usefulness of CGH as an attractive alternative method for the characterization of constitutional small genetic imbalances and contribute to the delineation of the trisomy 6q23-qter phenotype. Received: 26 November 1996 / Revised: 2 January 1997  相似文献   

8.
A yeast artificial chromosome (YAC) library has been constructed from a somatic cell hybrid containing a t(1p;19q) chromosome and chromosome 17. After amplification, part of this library was analyzed by high-density colony filter screening with a repetitive human DNA probe (Alu). The human YACs distinguished by the screening were further analyzed by Alu fingerprinting and Alu PCR. Fluorescent in situ hybridization (FISH) was performed to localize the YACs to subchromosomal regions of chromosome 1p, 17, or 19q. We have obtained a panel of 123 individual YACs with a mean size of 160 kb, and 77 of these were regionally localized by FISH: 33 to 1p, 10 to 17p, 25 to 17q, and 9 to 19q. The YACs cover a total of 19.7 Mb or 9% of the 220 Mb of human DNA contained in the hybrid. No overlapping YACs have yet been detected. These YACs are available upon request and should be helpful in mapping studies of disease loci, e.g., Charcot-Marie-Tooth disease, Miller-Dieker syndrome, hereditary breast tumor, myotonic dystrophy, and malignant hyperthermia.  相似文献   

9.
A yeast artificial chromosome (YAC) library has been constructed from a somatic cell hybrid containing a t(1p;19q) chromosome and chromosome 17. After amplification, part of this library was analyzed by high-density colony filter screening with a repetitive human DNA probe (Alu). The human YACs distinguished by the screening were further analyzed by Alu fingerprinting and Alu PCR. Fluorescent in situ hybridization (FISH) was performed to localize the YACs to subchromosomal regions of chromosome 1p, 17, or 19q. We have obtained a panel of 123 individual YACs with a mean size of 160 kb, and 77 of these were regionally localized by FISH: 33 to 1p, 10 to 17p, 25 to 17q, and 9 to 19q. The YACs cover a total of 19.7 Mb or 9% of the 220 Mb of human DNA contained in the hybrid. No overlapping YACs have yet been detected. These YACs are available upon request and should be helpful in mapping studies of disease loci, e.g., Charcot-Marie-Tooth disease, Miller-Dieker syndrome, hereditary breast tumor, myotonic dystrophy, and malignant hyperthermia.  相似文献   

10.
A dysmorphic newborn with 45,x,der(1)inv(1)(p13;qter)t(y;1)(pter-->q11;p13),-Y de novo karyotype: Y/autosome translocations are very rare chromosomal rearrangements. In most cases, the long arm of the Y chromosome is translocated onto an autosome and most patients are referred because of male infertility. Y/1 translocations are very rare, and have been reported in seven patients so far. Pericentric inversions may be seen in all chromosomes and are not associated with phenotypic abnormalities. Here we report a 6-day old male baby with prenatal growth retardation, frontal bossing, hypertelorism, micrognathia, cleft soft palate, absent uvula, hypospadias, simian line in both hands and hammer toes. Cytogenetic analysis was performed with GTG-banding, C-banding and FISH analysis containing X centromeric probe, Yq12-qter locus specific probe and whole chromosome Y probe. An unbalanced Y/1 translocation was diagnosed: 45,X,der(1)inv(1)(p13;qter)t(Y;1)(pter-->q11;p13),-Y.  相似文献   

11.
Mouse A9 cells containing human chromosome 7 tagged with pSV2neowere irradiated with X-rays and fused to A9 cells to isolateG418-resistant clones. From these clones, we selected radiationhybrids that contained 10–40 Mb of human DNA apparentlyat a single site of their genome by FISH analysis using humanrepetitive sequences as a probe. Then we made a panel of hybridsthat contained various fragments of the 7q31-q32 region andcover its entire region altogether by PCR with STS markers ofhuman chromosome 7. This panel is useful in chromosome transferexperiments since the dominant selective marker neo gene isattached to human DNA.  相似文献   

12.
Physical mapping and in situ hybridization experiments have shown that a duplicated locus with a structural organization similar to that of the 4q35 locus implicated in facioscapulohumeral muscular dystrophy is present in the subtelomeric portion of 10q. We performed sequence analysis of the p13E-11 probe and of the adjacent KpnI tandem-repeat unit derived from a 10qter cosmid clone and compared our results with those published, by other laboratories, for the 4q35 region. We found that the sequence homology range is 98%-100% and confirmed that the only difference that can be exploited for differentiation of the 10qter from the 4q35 alleles is the presence of an additional BlnI site within the 10qter KpnI repeat unit. In addition, we observed that the high degree of sequence homology does facilitate interchromosomal exchanges resulting in displacement of the whole set of BlnI-resistant or BlnI-sensitive KpnI repeats from one chromosome to the other. However, partial translocations escape detection if the latter simply relies on the hybridization pattern from double digestion with EcoRI/BlnI and with p13E-11 as a probe. We discovered that the restriction enzyme Tru9I cuts at both ends of the array of KpnI repeats of different chromosomal origins and allows the use of cloned KpnI sequences as a probe by eliminating other spurious fragments. This approach coupled with BlnI digestion permitted us to investigate the structural organization of BlnI-resistant and BlnI-sensitive units within translocated chromosomes of 4q35 and 10q26 origin. A priori, the possibility that partial translocations could play a role in the molecular mechanism of the disease cannot be excluded.  相似文献   

13.
Ambiguous genitalia or disorder of the sexual development is a birth defect where the external genitals do not have the typical appearance of either a male or female. Here we report a boy with ambiguous genitalia and short stature. The cytogenetic analysis by G-banding revealed a small Y chromosome and an additional material on the 15p arm. Further, molecular cytogenetic analysis by Fluorescence in situ hybridization (FISH) using whole chromosome paint probes showed the presence of Y sequences on the 15p arm, confirming that it is a Y;15 translocation. Subsequent, FISH with centromere probe Y showed two signals depicting the presence of two centromeres and differing with a balanced translocation. The dicentric nature of the derivative 15 chromosome was confirmed by FISH with both 15 and Y centromeric probes. Further, the delineation of the Y chromosomal DNA was also done by quantitative real time PCR. Additional Y-short tandem repeat typing was performed to find out the extent of deletion on small Y chromosome. Fine mapping was carried out with 8 Y specific BAC clones which helped in defining the breakpoint regions. MLPA was performed to check the presence or absence of subtelomeric regions and SHOX regions on Y. Finally array CGH helped us in confirming the breakpoint regions. In our study we identified and characterized a novel complex Y chromosomal rearrangement with a complete deletion of the Yq region and duplication of the Yp region with one copy being translocated onto the15p arm. This is the first report of novel and unique Y complex rearrangement showing a deletion, duplication and a translocation in the same patient. The possible mechanism of the rearrangement and the phenotype–genotype correlation are discussed.  相似文献   

14.
The presence of double minute chromosomes (dmin) in cancer cells is known to be correlated with gene amplifications. In human high grade astrocytomas or glioblastomas, about 50% of cytogenetically characterized cases display dmin. G5 is a cell line which has been established from a human glioblastoma containing multiple dmin. In order to identify the DNA content of these dmin, three techniques were successively used: conventional cytogenetic analysis, comparative genomic hybridization (CGH), and fluorescent in situ hybridization (FISH). The karyotype of G5 cells showed numerical chromosome changes (hypertriploidy), several marker chromosomes, and multiple dmin. CGH experiments detected two strong DNA amplification areas located in 9p21-22 and 9p24, as well as an underrepresentation of chromosomes 6, 10, 11, 13, 14, and 18q. By using FISH with a chromosome 9-specific painting probe to metaphase chromosomes of the G5 cell line, dmin were shown to contain DNA sequences originating from chromosome 9. This study demonstrates the usefulness of a combination of classical karyotyping, CGH, and FISH to identify the chromosomal origin of amplified DNA sequences in dmin. Received: 30 October 1994 / Revised: 25 February 1996  相似文献   

15.
A new procedure for determining the chromosomal origin of marker chromosomes has been carried out. The origin of marker chromosomes that were unidentifiable by standard banding techniques could be verified by reverse chromosome painting. This technique includes microdissection, followed by in vitro DNA amplification and fluorescence in situ hybridization (FISH). A number of marker chromosomes prepared from unbanded and from GTG-banded lymphocyte chromosomes were collected with microneedles and transferred to a collection drop. The chromosomal material was amplified by a degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). The resulting PCR products were labelled by nick-translation with biotin-11-dUTP and used as probes for FISH. They were hybridized onto normal metaphase spreads in order to determine the precise regional chromosomal origin of the markers. Following this approach, we tested 2–14 marker chromosomes in order to determine how many are necessary for reverse chromosome painting. As few as two marker chromosomes provided sufficient material to paint the appropriate chromosome of origin, regardless of whether the marker contained heterochromatic or mainly euchromatic material. With this method, it was possible to identify two marker chromosomes of a healthy proband [karyotype: 48,XY, +mar1,+mar2] and an aberrant Y chromosome of a mentally retarded boy [karyotype: 46,X, der(Y)].  相似文献   

16.
Summary The authors discuss the clinical and cytogenetic problems raised in two new cases of X-chromosome translocations.The first case involves a child who presented marked growth retardation, behavioral anomalies, and discrete facial malformations at age 3 months. Chromosome analysis revealed the presence of a translocation between a 22 and X chromosome resulting in partial X monosomy and partial trisomy 22: 46,X,der(X),t(X;22)(q112;q13)mat. The balanced translocation form was detected in the mother. Dynamic study after 5-Brdu treatment revealed inactivation of the translocated X chromosome in the proband, while in the mother the normal X chromosome was inactivated.In addition to magnesium dependent hypocalcemia resulting from a specific absorption anomaly, Case 2 presented discrete malformations and psychomotor retardation. Chromosome analysis revealed an apparently balanced translocation between a 9 and X chromosome: 46,X,r(9;X)(q12; p22). Treatment with 5-Brdu demonstrated that the translocated X chromosome was inactivated but that inactivation did not extend to the translocated part of chromosome 9. Finally, a pericentric inversion of a 9 chromosome was detected in the father, grandfather, and brother of the proband.  相似文献   

17.
The joggle mouse is a recessive ataxic mutant carrying an unknown mutation in a C3H/He (C3H)-derived chromosomal segment. Taking advantage of the mouse genome database, we selected 127 DNA microsatellite markers showing heterozygosity between C3H and C57BL/6J (B6) and a first round of screening for the joggle mutation was performed on B6-jog/+ partial congenic mice (N4). We identified 4 chromosomal regions in which 13 microsatellite markers show heterozygosity between C3H and B6. Then, we analyzed the genotype of these 4 chromosomal regions in mice that showed the joggle phenotype and mapped the jog locus between markers D6Mit104 (111.4 Mb) and D6Mit336 (125.1 Mb) (an interval of 13.7 Mb) on chromosome 6. By using a partial congenic strain together with the mouse genome database, we successfully mapped the chromosomal localization of the jog locus much more efficiently than by conventional linkage analysis.  相似文献   

18.
We report a young girl with microphthalmia, conductive deafness, aortic isthmus stenosis, laryngomalacia, and laryngeal stenosis carrying a de novo supernumerary neocentromeric derivative chromosome 13. For the precise identification and characterization of the eu- and heterochromatic content of the marker chromosome, straightforward molecular cytogenetic analyses were performed, such as chromosome microdissection, FISH with different probes (e.g. wcp, alphoid centromeric probes, BAC), centromere-specific multicolor FISH (cenM-FISH), and multicolor banding (MCB). The analyses demonstrated that the marker consisted of an inverted duplication (partial tetrasomy) of the distal portion of chromosome 13 that was separated from the endogenous chromosome 13 centromere. Using an all-centromere probe and multicolor cenM-FISH, no alpha-satellite DNA hybridization signal was detectable on any portion of the derivative chromosome. The presence of a functional and active neocentromere on the derivative chromosome 13 was confirmed by positive immunofluorescence signals with CENP-C antibodies. BAC-FISH confirmed the cytogenetic localization of the neocentromere in band 13q31.3. Thus the patient had a mosaic conventional karyotype mos 47,XX,+inv dup(13)(qter-->q21.3::q21.3-->q31.3-->neo-->q31.3-->qter)[6]/46,XX [49].  相似文献   

19.
Howell EC  Kearsey MJ  Jones GH  King GJ  Armstrong SJ 《Genetics》2008,180(4):1849-1857
The two genomes (A and C) of the allopolyploid Brassica napus have been clearly distinguished using genomic in situ hybridization (GISH) despite the fact that the two extant diploids, B. rapa (A, n = 10) and B. oleracea (C, n = 9), representing the progenitor genomes, are closely related. Using DNA from B. oleracea as the probe, with B. rapa DNA and the intergenic spacer of the B. oleracea 45S rDNA as the block, hybridization occurred on 9 of the 19 chromosome pairs along the majority of their length. The pattern of hybridization confirms that the two genomes have remained distinct in B. napus line DH12075, with no significant genome homogenization and no large-scale translocations between the genomes. Fluorescence in situ hybridization (FISH)-with 45S rDNA and a BAC that hybridizes to the pericentromeric heterochromatin of several chromosomes-followed by GISH allowed identification of six chromosomes and also three chromosome groups. Our procedure was used on the B. napus cultivar Westar, which has an interstitial reciprocal translocation. Two translocated segments were detected in pollen mother cells at the pachytene stage of meiosis. Using B. oleracea chromosome-specific BACs as FISH probes followed by GISH, the chromosomes involved were confirmed to be A7 and C6.  相似文献   

20.
We have characterized 17 rob(13q14q) Robertsonian translocations, using six molecular probes that hybridize to the repetitive sequences of the centromeric and shortarm regions of the five acrocentric chromosomes by FISH. The rearrangements include six de novo rearrangements and the chromosomally normal parents, five maternally and three paternally inherited translocations, and three translocations of unknown origin. The D21Z1/D13Z1 and D14Z1/D22Z1 centromeric alpha-satellite DNA probes showed all rob(13q14q) chromosomes to be dicentric. The rDNA probes did not show hybridization on any of the 17 cases studied. The pTRS-47 satellite III DNA probe specific for chromosomes 14 and 22 was retained around the breakpoints in all cases. However, the pTRS-63 satellite III DNA probe specific for chromosome 14 did not show any signals on the translocation chromosomes examined. In 16 of 17 translocations studied, strong hybridization signals on the translocations were detected with the pTRI-6 satellite I DNA probe specific for chromosome 13. All parents of the six de novo rob(13q14q), including one whose pTRI-6 sequence was lost, showed strong positive hybridization signals on each pair of chromosomes 14 and 13, with pTRS-47, pTRS-63, and pTRI-6. Therefore, the translocation breakpoints in the majority of rob(13q14q) are between the pTRS-47 and pTRS-63 sequences in the p11 region of chromosome 14 and between the pTRI-6 and rDNA sequences within the p11 region of chromosome 13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号