首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GroEL C138W is a mutant form of Escherichia coli GroEL, which forms an arrested ternary complex composed of GroEL, the co-chaperonin GroES and the refolding protein molecule rhodanese at 25 degrees C. This state of arrest could be reversed with a simple increase in temperature. In this study, we found that GroEL C138W formed both stable trans- and cis-ternary complexes with a number of refolding proteins in addition to bovine rhodanese. These complexes could be reactivated by a temperature shift to obtain active refolded protein. The simultaneous binding of GroES and substrate to the cis ring suggested that an efficient transfer of substrate protein into the GroEL central cavity was assured by the binding of GroES prior to complete substrate release from the apical domain. Stopped-flow fluorescence spectroscopy of the mutant chaperonin revealed a temperature-dependent conformational change in GroEL C138W that acts as a trigger for complete protein release. The behavior of GroEL C138W was reflected closely in its in vivo characteristics, demonstrating the importance of this conformational change to the overall activity of GroEL.  相似文献   

2.
GroEL undergoes numerous conformational alterations in the course of facilitating the folding of various proteins, and the specific movements of the GroEL apical domain are of particular importance in the molecular mechanism. In order to monitor in detail the numerous movements of the GroEL apical domain, we have constructed a mutant chaperonin (GroEL R231W) with wild type-like function and a fluorescent probe introduced into the apical domain. By monitoring the tryptophan fluorescence changes of GroEL R231W upon ATP addition in the presence and absence of the co-chaperonin GroES, we detected a total of four distinct kinetic phases that corresponded to conformational changes of the apical domain and GroES binding. By introducing this mutation into a single ring variant of GroEL (GroEL SR-1), we determined the extent of inter-ring cooperation that was involved in apical domain movements. Surprisingly, we found that the apical domain movements of GroEL were affected only slightly by the change in quaternary structure. Our experiments provide a number of novel insights regarding the dynamic movements of this protein.  相似文献   

3.
The studies of GroEL, almost exclusively, have been concerned with the function of the chaperonin under non-stress conditions, and little is known about the role of GroEL during heat shock. Being a heat shock protein, GroEL deserves to be studied under heat shock temperature. As a model for heat shock in vitro, we have investigated the interaction of GroEL with the enzyme rhodanese undergoing thermal unfolding at 43 degrees C. GroEL interacted strongly with the unfolding enzyme forming a binary complex. Active rhodanese (82%) could be recovered by releasing the enzyme from GroEL after the addition of several components, e.g. ATP and the co-chaperonin GroES. After evaluating the stability of the GroEL-rhodanese complex, as a function of the percentage of active rhodanese that could be released from GroEL with time, we found that the complex had a half-life of only one and half-hours at 43 degrees C; while, it remained stable at 25 degrees C for more than 2 weeks. Interestingly, the GroEL-rhodanese complex remained intact and only 13% of its ATPase activity was lost during its incubation at 43 degrees C. Further, rhodanese underwent a conformational change over time while it was bound to GroEL at 43 degrees C. Overall, our results indicated that the inability to recover active enzyme at 43 degrees C from the GroEL-rhodanese complex was not due to the disruption of the complex or aggregation of rhodanese, but rather to the partial loss of its ATPase activity and/or to the inability of rhodanese to be released from GroEL due to a conformational change.  相似文献   

4.
We have identified five structural rearrangements in GroEL induced by the ordered binding of ATP and GroES. The first discernable rearrangement (designated T --> R(1)) is a rapid, cooperative transition that appears not to be functionally communicated to the apical domain. In the second (R(1) --> R(2)) step, a state is formed that binds GroES weakly in a rapid, diffusion-limited process. However, a second optical signal, carried by a protein substrate bound to GroEL, responds neither to formation of the R(2) state nor to the binding of GroES. This result strongly implies that the substrate protein remains bound to the inner walls of the initially formed GroEL.GroES cavity, and is not yet displaced from its sites of interaction with GroEL. In the next rearrangement (R(2).GroES --> R(3).GroES) the strength of interaction between GroEL and GroES is greatly enhanced, and there is a large and coincident loss of fluorescence-signal intensity in the labeled protein substrate, indicating that there is either a displacement from its binding sites on GroEL or at least a significant change of environment. These results are consistent with a mechanism in which the shift in orientation of GroEL apical domains between that seen in the apo-protein and stable GroEL.GroES complexes is highly ordered, and transient conformational intermediates permit the association of GroES before the displacement of bound polypeptide. This ensures efficient encapsulation of the polypeptide within the GroEL central cavity underneath GroES.  相似文献   

5.
The mechanism of GroEL (chaperonin)-mediated protein folding is only partially understood. We have analysed structural and functional properties of the interaction between GroEL and the co-chaperonin GroES. The stoichiometry of the GroEL 14mer and the GroES 7mer in the functional holo-chaperonin is 1:1. GroES protects half of the GroEL subunits from proteolytic truncation of the approximately 50 C-terminal residues. Removal of this region results in an inhibition of the GroEL ATPase, mimicking the effect of GroES on full-length GroEL. Image analysis of electron micrographs revealed that GroES binding triggers conspicuous conformational changes both in the GroES adjacent end and at the opposite end of the GroEL cylinder. This apparently prohibits the association of a second GroES oligomer. Addition of denatured polypeptide leads to the appearance of irregularly shaped, stain-excluding masses within the GroEL double-ring, which are larger with bound alcohol oxidase (75 kDa) than with rhodanese (35 kDa). We conclude that the functional complex of GroEL and GroES is characterized by asymmetrical binding of GroES to one end of the GroEL cylinder and suggest that binding of the substrate protein occurs within the central cavity of GroEL.  相似文献   

6.
In the crystal structure of the native GroEL.GroES.substrate protein complex from Thermus thermophilus, one GroEL subunit makes contact with two GroES subunits. One contact is through the H-I helices, and the other is through a novel GXXLE region. The side chain of Leu, in the GXXLE region, forms a hydrophobic cluster with residues of the H helix (Shimamura, T., Koike-Takeshita, A., Yokoyama, K., Masui, R., Murai, N., Yoshida, M., Taguchi, H., and Iwata, S. (2004) Structure (Camb.) 12, 1471-1480). Here, we investigated the functional role of Leu in the GXXLE region, using Escherichia coli GroEL. The results are as follows: (i) cross-linking between introduced cysteines confirmed that the GXXLE region in the E. coli GroEL.GroES complex is also in contact with GroES; (ii) when Leu was replaced by Lys (GroEL(L309K)) or other charged residues, chaperone activity was largely lost; (iii) the GroEL(L309K).substrate complex failed to bind GroES to produce a stable GroEL(L309K).GroES.substrate complex, whereas free GroEL(L309K) bound GroES normally; (iv) the GroEL(L309K).GroES.substrate complex was stabilized with BeF(x), but the substrate protein in the complex was readily digested by protease, indicating that it was not properly encapsulated into the internal cavity of the complex. Thus, conformational communication between the two GroES contact sites, the H helix and the GXXLE region (through Leu(309)), appears to play a critical role in encapsulation of the substrate.  相似文献   

7.
Escherichia coli chaperonin GroEL consists of two stacked rings of seven identical subunits each. Accompanying binding of ATP and GroES to one ring of GroEL, that ring undergoes a large en bloc domain movement, in which the apical domain twists upward and outward. A mutant GroEL(AEX) (C138S,C458S,C519S,D83C,K327C) in the oxidized form is locked in a closed conformation by an interdomain disulfide cross-link and cannot hydrolyze ATP (Murai, N., Makino, Y., and Yoshida, M. (1996) J. Biol. Chem. 271, 28229-28234). By reconstitution of GroEL complex from subunits of both wild-type GroEL and oxidized GroEL(AEX), hybrid GroEL complexes containing various numbers of oxidized GroEL(AEX) subunits were prepared. ATPase activity of the hybrid GroEL containing one or two oxidized GroEL(AEX) subunits per ring was about 70% higher than that of wild-type GroEL. Based on the detailed analysis of the ATPase activity, we concluded that inter-ring negative cooperativity was lost in the hybrid GroEL, indicating that synchronized opening of the subunits in one ring is necessary for the negative cooperativity. Indeed, hybrid GroEL complex reconstituted from subunits of wild-type and GroEL mutant (D398A), which is ATPase-deficient but can undergo domain opening motion, retained the negative cooperativity of ATPase. In contrast, the ability of GroEL to assist protein folding was impaired by the presence of a single oxidized GroEL(AEX) subunit in a ring. Taken together, cooperative conformational transitions in GroEL rings ensure the functional communication between the two rings of GroEL.  相似文献   

8.
Yao YN  Zhang QS  Yan XZ  Zhu G  Wang ED 《FEBS letters》2003,547(1-3):197-200
The 19F nuclear magnetic resonance (NMR) spectra of 4-fluorotryptophan (4-F-Trp)-labeled Escherichia coli arginyl-tRNA synthetase (ArgRS) show that there are distinct conformational changes in the catalytic core and tRNA anticodon stem and loop-binding domain of the enzyme, when arginine and tRNA(Arg) are added to the unliganded enzyme. We have assigned five fluorine resonances of 4-F-Trp residues (162, 172, 228, 349 and 446) in the spectrum of the fluorinated enzyme by site-directed mutagenesis. The local conformational changes of E. coli ArgRS induced by its substrates observed herein by 19F NMR are similar to those of crystalline yeast homologous enzyme.  相似文献   

9.
The chaperonin GroEL assists protein folding in the presence of ATP and magnesium through substrate protein capsulation in combination with the cofactor GroES. Recent studies have revealed the details of folding cycles of GroEL from Escherichia coli, yet little is known about the GroEL-assisted protein folding mechanisms in other bacterial species. Using three model enzyme assays, we have found that GroEL1 from Chlamydophila pneumoniae, an obligate human pathogen, has a broader selectivity for nucleotides in the refolding reaction. To elucidate structural factors involved in such nucleotide selectivity, GroEL chimeras were constructed by exchanging apical, intermediate, and equatorial domains between E. coli GroEL and C. pneumoniae GroEL1. In vitro folding assays using chimeras revealed that the intermediate domain is the major contributor to the nucleotide selectivity of C. pneumoniae GroEL1. Additional site-directed mutation experiments led to the identification of Gln(400) and Ile(404) in the intermediate domain of C. pneumoniae GroEL1 as residues that play a key role in defining the nucleotide selectivity of the protein refolding reaction.  相似文献   

10.
The molecular chaperone GroEL is a protein complex consisting of two rings each of seven identical subunits. It is thought to act by providing a cavity in which a protein substrate can fold into a form that has no propensity to aggregate. Substrate proteins are sequestered in the cavity while they fold, and prevented from diffusion out of the cavity by the action of the GroES complex, that caps the open end of the cavity. A key step in the mechanism of action of GroEL is the transmission of a conformational change between the two rings, induced by the binding of nucleotides to the GroEL ring opposite to the one containing the polypeptide substrate. This conformational change then leads to the discharge of GroES from GroEL, enabling polypeptide release. Single ring forms of GroEL are thus predicted to be unable to chaperone the folding of GroES-dependent substrates efficiently, since they are unable to discharge the bound GroES and unable to release folded protein. We describe here a detailed functional analysis of a chimeric GroEL protein, which we show to exist in solution in equilibrium between single and double ring forms. We demonstrate that whereas the double ring form of the GroEL chimera functions effectively in refolding of a GroES-dependent substrate, the single ring form does not. The single ring form of the chimera, however, is able to chaperone the folding of a substrate that does not require GroES for its efficient folding. We further demonstrate that the double ring structure of GroEL is likely to be required for its activity in vivo.  相似文献   

11.
A kinetic analysis of the ATP-dependent dissociation of wild-type GroEL and mutants from immobilized GroES was carried out using surface plasmon resonance. Excellent fits of the data were obtained using a double-exponential equation with a linear drift. Both the fast and slow observed dissociation rate constants are found to have a sigmoidal dependence on the concentration of ATP. The values of the Hill coefficients corresponding to the fast and slow observed rate constants of dissociation of wild-type GroEL and the Arg197-->Ala mutant are in good agreement with the respective values of the Hill coefficients previously determined for these proteins from plots of initial rates of ATP hydrolysis as a function of ATP concentration, in the presence of GroES. Our results are consistent with a kinetic mechanism for dissociation of the GroEL-GroES complex according to which GroES release takes place after an ATP-induced conformational change in the trans ring that is preceded by ATP hydrolysis and a subsequent conformational change in the cis ring. It is shown that the rate of complex dissociation increases with increasing positive cooperativity in ATP binding by the GroEL ring distal to GroES in the GroEL-GroES complex.  相似文献   

12.
The accessibility of fluorescein-5-maleimide to sulfhydryl groups in the molecular chaperone GroEL was used to follow structural rearrangements in the protein triggered by binding Mg2+ and/or adenine nucleotides. Three peptides, each containing one of the cysteines of GroEL (C138, C458 and C519) were identified. GroEL labeled in 50mM TrisHCl, pH 7.8, incorporated ~0.3 labels each on C138 and C458. With 10mM MgCl2, the labeling increased to ~0.8 labels each on C138 and C458. The increase was partially due to a conformational change which occurred upon Mg2+ binding as well as to an increase in ionic strength. When ADP, ATP, or AMP-PNP were added to a solution of GroEL and Mg2+, C138 incorporated ~0.8 labels, while C458 incorporated ~0.1 labels. These results suggest that the binding of adenine nucleotides changed the conformation of GroEL and made a previously highly exposed sulfhydryl group inaccessible. GroEL slowly dissociated into monomers when it was extensively labeled at C458. GroEL labeled with fluorescein-5-maleimide, under any of the conditions examined, was able to bind but not release active rhodanese. The observed variations in sulfhydryl accessibility are consistent with mechanisms that suggest binding of GroES to GroEL differs from the binding of substrate protein to GroEL, and that the binding of Mg2+ or Mg-adenine nucleotides results in conformational changes in GroEL.  相似文献   

13.
The accessibility of fluorescein-5-maleimide to sulfhydryl groups in the molecular chaperone GroEL was used to follow structural rearrangements in the protein triggered by binding Mg2+ and/or adenine nucleotides. Three peptides, each containing one of the cysteines of GroEL (C138, C458 and C519) were identified. GroEL labeled in 50mM TrisHCl, pH 7.8, incorporated ~0.3 labels each on C138 and C458. With 10mM MgCl2, the labeling increased to ~0.8 labels each on C138 and C458. The increase was partially due to a conformational change which occurred upon Mg2+ binding as well as to an increase in ionic strength. When ADP, ATP, or AMP-PNP were added to a solution of GroEL and Mg2+, C138 incorporated ~0.8 labels, while C458 incorporated ~0.1 labels. These results suggest that the binding of adenine nucleotides changed the conformation of GroEL and made a previously highly exposed sulfhydryl group inaccessible. GroEL slowly dissociated into monomers when it was extensively labeled at C458. GroEL labeled with fluorescein-5-maleimide, under any of the conditions examined, was able to bind but not release active rhodanese. The observed variations in sulfhydryl accessibility are consistent with mechanisms that suggest binding of GroES to GroEL differs from the binding of substrate protein to GroEL, and that the binding of Mg2+ or Mg-adenine nucleotides results in conformational changes in GroEL.  相似文献   

14.
Synthetic peptides (32 residues in length) were synthesized with amino acid sequences identical to, or related to, the long (alanine + proline)-rich region of polypeptide chain that links the innermost lipoyl domain to the dihydrolipoamide dehydrogenase-binding domain in the dihydrolipoyl acetyltransferase component of the pyruvate dehydrogenase multienzyme complex of Escherichia coli. The 400-MHz 1H NMR spectra of the peptide (Mr approximately 2800) closely resembled the sharp resonances in the spectrum of the intact complex (Mr approximately 5 x 10(6], and the apparent pKa (6.4) of the side chain of a histidine residue in one of the peptides was found to be identical to that previously observed for a histidine residue inserted by site-directed mutagenesis into the corresponding position in the same (alanine + proline)-rich region of a genetically reconstructed enzyme complex. These results strongly support the view that the three long (alanine + proline)-rich regions of the dihydrolipoyl acetyltransferase chains are exposed to solvent and enjoy substantial conformational flexibility in the enzyme complex. More detailed analysis of the peptides by circular dichroism and by 1H and 13C NMR spectroscopy revealed that they were disordered in structure but were not random coils. In particular, all the Ala-Pro peptide bonds were greater than 95% in the trans configuration, consistent with a stiffening of the peptide structure. Differences in the sequences of the three long (alanine + proline)-rich segments may reflect structural tuning of these segments to optimize lipoyl domain movement in enzyme catalysis.  相似文献   

15.
Despite a vast amount information on the interplay of GroEL, GroES, and ATP in chaperone-assisted folding, the molecular details on the conformational dynamics of folding polypeptide during its GroEL/GroES-assisted folding cycle is quite limited. Practically no such studies have been reported to date on large proteins, which often have difficulty folding in vitro. The effect of the GroEL/GroES chaperonin system on the folding pathway of an 82-kDa slow folding protein, malate synthase G (MSG), was investigated. GroEL bound to the burst phase intermediate of MSG and accelerated the slowest kinetic phase associated with the formation of native topology in the spontaneous folding pathway. GroEL slowly induced conformational changes on the bound burst phase intermediate, which was then transformed into a more folding-compatible form. Subsequent addition of ATP or GroES/ATP to the GroEL-MSG complex led to the formation of the native state via a compact intermediate with the rate several times faster than that of spontaneous refolding. The presence of GroES doubled the ATP-dependent reactivation rate of bound MSG by preventing multiple cycles of its GroEL binding and release. Because GroES bound to the trans side of GroEL-MSG complex, it may be anticipated that confinement of the substrate underneath the co-chaperone is not required for accelerating the rate in the assisted folding pathway. The potential role of GroEL/GroES in assisted folding is most likely to modulate the conformation of MSG intermediates that can fold faster and thereby eliminate the possibility of partial aggregation caused by the slow folding intermediates during its spontaneous refolding pathway.  相似文献   

16.
In order to fold non-native proteins, chaperonin GroEL undergoes numerous conformational changes and GroES binding in the ATP-dependent reaction cycle. We constructed the real-time three-dimensional-observation system at high resolution using a newly developed fast-scanning atomic force microscope. Using this system, we visualized the GroES binding to and dissociation from individual GroEL with a lifetime of 6 s (k=0.17 s(-1)). We also caught ATP/ADP-induced open-closed conformational changes of individual GroEL in the absence of qGroES and substrate proteins. Namely, the ATP/ADP-bound GroEL can change its conformation 'from closed to open' without additional ATP hydrolysis. Furthermore, the lifetime of open conformation in the presence of ADP ( approximately 1.0 s) was apparently lower than those of ATP and ATP-analogs (2-3 s), meaning that ADP-bound open-form is structurally less stable than ATP-bound open-form. These results indicate that GroEL has at least two distinct open-conformations in the presence of nucleotide; ATP-bound prehydrolysis open-form and ADP-bound open-form, and the ATP hydrolysis in open-form destabilizes its open-conformation and induces the 'from open to closed' conformational change of GroEL.  相似文献   

17.
Chaperonins are molecules that assist proteins during folding and protect them from irreversible aggregation. We studied the chaperonin GroEL and its interaction with the enzyme human carbonic anhydrase II (HCA II), which induces unfolding of the enzyme. We focused on conformational changes that occur in GroEL during formation of the GroEL-HCA II complex. We measured the rate of GroEL cysteine reactivity toward iodo[2-(14)C]acetic acid and found that the cysteines become more accessible during binding of a cysteine free mutant of HCA II. Spin labeling of GroEL with N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide revealed that this additional binding occurred because buried cysteine residues become accessible during HCA II binding. In addition, a GroEL variant labeled with 6-iodoacetamidofluorescein exhibited decreased fluorescence anisotropy upon HCA II binding, which resembles the effect of GroES/ATP binding. Furthermore, by producing cysteine-modified GroEL with the spin label N-(1-oxyl-2,2,5, 5-tetramethyl-3-pyrrolidinyl)iodoacetamide and the fluorescent label 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid, we detected increases in spin-label mobility and fluorescence intensity in GroEL upon HCA II binding. Together, these results show that conformational changes occur in the chaperonin as a consequence of protein substrate binding. Together with previous results on the unfoldase activity of GroEL, we suggest that the chaperonin opens up as the substrate protein binds. This opening mechanism may induce stretching of the protein, which would account for reported unfoldase activity of GroEL and might explain how GroEL can actively chaperone proteins larger than HCA II.  相似文献   

18.
The double ring-shaped chaperonin GroEL binds a wide range of non-native polypeptides within its central cavity and, together with its cofactor GroES, assists their folding in an ATP-dependent manner. The conformational cycle of GroEL/ES has been studied extensively but little is known about how the environment in the central cavity affects substrate conformation. Here, we use the von Hippel-Lindau tumor suppressor protein VHL as a model substrate for studying the action of the GroEL/ES system on a bound polypeptide. Fluorescent labeling of pairs of sites on VHL for fluorescence (Förster) resonant energy transfer (FRET) allows VHL to be used to explore how GroEL binding and GroEL/ES/nucleotide binding affect the substrate conformation. On average, upon binding to GroEL, all pairs of labeling sites experience compaction relative to the unfolded protein while single-molecule FRET distributions show significant heterogeneity. Upon addition of GroES and ATP to close the GroEL cavity, on average further FRET increases occur between the two hydrophobic regions of VHL, accompanied by FRET decreases between the N- and C-termini. This suggests that ATP- and GroES-induced confinement within the GroEL cavity remodels bound polypeptides by causing expansion (or racking) of some regions and compaction of others, most notably, the hydrophobic core. However, single-molecule observations of the specific FRET changes for individual proteins at the moment of ATP/GroES addition reveal that a large fraction of the population shows the opposite behavior; that is, FRET decreases between the hydrophobic regions and FRET increases for the N- and C-termini. Our time-resolved single-molecule analysis reveals the underlying heterogeneity of the action of GroES/EL on a bound polypeptide substrate, which might arise from the random nature of the specific binding to the various identical subunits of GroEL, and might help explain why multiple rounds of binding and hydrolysis are required for some chaperonin substrates.  相似文献   

19.
Advances in understanding how GroEL binds to non-native proteins are reported. Conformational flexibility in the GroEL apical domain, which could account for the variety of substrates that GroEL binds, is illustrated by comparison of several independent crystallographic structures of apical domain constructs that show conformational plasticity in helices H and I. Additionally, ESI-MS indicates that apical domain constructs have co-populated conformations at neutral pH. To assess the ability of different apical domain conformers to bind co-chaperone and substrate, model peptides corresponding to the mobile loop of GroES and to helix D from rhodanese were studied. Analysis of apical domain-peptide complexes by ESI-MS indicates that only the folded or partially folded apical domain conformations form complexes that survive gas phase conditions. Fluorescence binding studies show that the apical domain can fully bind both peptides independently. No competition for binding was observed, suggesting the peptides have distinct apical domain-binding sites. Blocking the GroES-apical domain-binding site in GroEL rendered the chaperonin inactive in binding GroES and in assisting the folding of denatured rhodanese, but still capable of binding non-native proteins, supporting the conclusion that GroES and substrate proteins have, at least partially, distinct binding sites even in the intact GroEL tetradecamer.  相似文献   

20.
The effect of nucleotide binding on the structure of the F(1)-ATPase beta subunit from thermophilic bacillus PS-3 (TF(1)beta) was investigated by monitoring the NMR signals of the 12 tyrosine residues. The 3,5-proton resonances of 12 tyrosine residues could be observed for the specifically deuterated beta subunit. The assignment of 3,5-proton resonances of all of the tyrosine residues was accomplished using 14 mutant proteins, in each of which one or two tyrosine residues were replaced by phenylalanine. Binding of Mg. ATP induced an upfield shift of Tyr(341) resonance, suggesting that their aromatic rings are stacked to each other. Besides Tyr(341), the signal shift observed on Mg.ATP binding was restricted to the resonances of Tyr(148), Tyr(199), Tyr(238), and Tyr(307), suggesting that Mg.ATP induces a conformational change in the hinge region. This can be correlated to the change from the open to closed conformations as implicated in the crystal structure. Mg.ADP induced a similar but distinctly different conformational change. Therefore, the intrinsic conformational change in the beta subunit induced by the nucleotide binding is proposed to be one of the essential driving forces for the F(1) rotation. Reconstitution experiments showed that Tyr(277), one of the four conserved tyrosines, is essential to the formation of the alpha(3)beta(3)gamma complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号