首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
Cytochrome c has been chemically modified by methylene blue mediated photooxidation. It is established that the methionine residues of the protein have been specifically converted to methionine sulfoxide residues. No oxidation of any other amino acid residues or the cysteine thioether bridges of the molecule occurs during the photooxidation reaction. The absorbance spectrum of methionine sulfoxide ferricytochrome c at neutrality is similar to that of the unmodified protein except for an increase in the extinction coefficient of the Soret absorbance band and for the complete loss of the ligand sensitive 695 nm absorbance band in the spectrum of the derivative. The protein remains in the low spin configuration which implies the retention of two strong field ligands. Spin state sensitive spectral titrations and model studies of heme peptides indicate that the sixth ligand is definitely not provided by a lysine residue but may be methionine-80 sulfoxide coordinated via its sulfur atom. Circular dichroism spectra indicate that the heme crevice of methionine sulfoxide ferri- and ferrocytochrome c is weakened relative to native cytochrome c. The redox potential of methionine sulfoxide cytochrome c is 184 mV which is markedly diminished from the 260 mV redox potential of native cytochrome c. The modified protein is equivalent to native cytochrome c as a substrate for cytochrome oxidase and is not autoxidizable at neutral pH but is virtually inactive with succinate-cytochrome c reductase. These results indicate that the major role of the methionine-80 in cytochrome c is to preserve a closed hydrophobic heme crevice which is essential for the maintainance of the necessary redox potential.  相似文献   

2.
Permeability of human granulocytes to dimethyl sulfoxide   总被引:1,自引:0,他引:1  
The permeability of the membrane of human granulocytes to the permeating solute dimethyl sulfoxide (DMSO) was studied using the Onsager form of the phenomenological equations derived from the theory of irreversible thermodynamics. Changes in cellular volume were monitored with an electronic particle counter as samples of that population were introduced into hypertonic osmotica. Temperature and concentration sensitivity analyses of the permeability coefficients were carried out. It is shown that the introduction of the Onsager formalism allows further insight into the observed transport phenomena. It was found that DMSO may affect the water permeability properties of the membrane for that population of cells.  相似文献   

3.
According to the mitochondrial theory of aging, mitochondrial dysfunction increases intracellular reactive oxidative species production, leading to the oxidation of macromolecules and ultimately to cell death. In this study, we investigated the role of the mitochondrial methionine sulfoxide reductase B2 in the protection against oxidative stress. We report, for the first time, that overexpression of methionine sulfoxide reductase B2 in mitochondria of acute T-lymphoblastic leukemia MOLT-4 cell line, in which methionine sulfoxide reductase A is missing, markedly protects against hydrogen peroxide-induced oxidative stress by scavenging reactive oxygen species. The addition of hydrogen peroxide provoked a time-gradual increase of intracellular reactive oxygen species, leading to a loss in mitochondrial membrane potential and to protein carbonyl accumulation, whereas in methionine sulfoxide reductase B2-overexpressing cells, intracellular reactive oxygen species and protein oxidation remained low with the mitochondrial membrane potential highly maintained. Moreover, in these cells, delayed apoptosis was shown by a decrease in the cleavage of the apoptotic marker poly(ADP-ribose) polymerase-1 and by the lower percentage of Annexin-V-positive cells in the late and early apoptotic stages. We also provide evidence for the protective mechanism of methionine sulfoxide reductase B2 against protein oxidative damages. Our results emphasize that upon oxidative stress, the overexpression of methionine sulfoxide reductase B2 leads to the preservation of mitochondrial integrity by decreasing the intracellular reactive oxygen species build-up through its scavenging role, hence contributing to cell survival and protein maintenance.  相似文献   

4.
A system for expressing site-directed mutants of the molybdenum enzyme dimethyl sulfoxide reductase from Rhodobacter capsulatus in the natural host was constructed. This system was used to generate and express dimethyl sulfoxide reductase with a Y114F mutation. The Y114F mutant had an increased k(cat) and increased K(m) toward both dimethyl sulfoxide and trimethylamine N-oxide compared to the native enzyme, and the value of k(cat)/K(m) was lower for both substrates in the mutant enzyme. The Y114F mutant, as isolated, was able to oxidize dimethyl sulfide with phenazine ethosulfate as the electron acceptor but with a lower k(cat) than that of the native enzyme. The pH optimum of dimethyl sulfide:acceptor oxidoreductase activity in the Y114F mutant was shown to be shifted by +1 pH unit compared to the native enzyme. The Y114F mutant did not form a pink complex with dimethyl sulfide, which is characteristic of the native enzyme. The mutant enzyme showed a large increase in the K(d) for DMS. Direct electrochemistry showed that the Mo(V)/Mo(IV) couple was unaffected by the Y114F mutant, but the midpoint potential of the Mo(VI)/Mo(V) couple was raised by about 50 mV. These data confirm that the Y114 residue plays a critical role in oxidation-reduction processes at the molybdenum active site and in oxygen atom transfer associated with sulfoxide reduction.  相似文献   

5.
It is known that reactive oxygen species can oxidize methionine residues in proteins in a non-stereospecific manner, and cells have mechanisms to reverse this damage. MsrA and MsrB are members of the methionine sulfoxide family of enzymes that specifically reduce the S and R forms, respectively, of methionine sulfoxide in proteins. However, in Escherichia coli the level of MsrB activity is very low which suggested that there may be other enzymes capable of reducing the R epimer of methionine sulfoxide in proteins. Employing a msrA/B double mutant, a new peptide methionine sulfoxide reductase activity has been found associated with membrane vesicles from E. coli. Both the R and S forms of N-acetylmethionine sulfoxide, D-ala-met(o)-enkephalin and methionine sulfoxide, are reduced by this membrane associated activity. The reaction requires NADPH and may explain, in part, how the R form of methionine sulfoxide in proteins is reduced in E. coli. In addition, a new soluble Msr activity was also detected in the soluble extracts of the double mutant that specifically reduces the S epimer of met(o) in proteins.  相似文献   

6.
We have identified the organic component of the molybdenum cofactor in Escherichia coli dimethyl sulfoxide reductase (DmsABC) to be molybdopterin (MPT) guanine dinucleotide (MGD) and have studied the effects of tungstate and a mob mutation on cofactor (Mo-MGD) insertion. Tungstate severely inhibits anaerobic growth of E. coli on a glycerol-dimethyl sulfoxide minimal medium, and this inhibition is partially overcome by overexpression of DmsABC. Isolation and characterization of an oxidized derivative of MGD (form A) from DmsABC overexpressed in cells grown in the presence of molybdate or tungstate indicate that tungstate inhibits insertion of Mo-MGD. No electron paramagnetic resonance evidence for the assembly of tungsten into DmsABC was found between Eh = -450 mV and Eh = +200 mV. The E. coli mob locus is responsible for the addition of a guanine nucleotide to molybdo-MPT (Mo-MPT) to form Mo-MGD. DmsABC does not bind Mo-MPT or Mo-MGD in a mob mutant, indicating that nucleotide addition must precede cofactor insertion. No electron paramagnetic resonance evidence for the assembly of molybdenum into DmsABC in a mob mutant was found between Eh = -450 mV and Eh = +200 mV. These data support a model for Mo-MGD biosynthesis and assembly into DmsABC in which both metal chelation and nucleotide addition to MPT precede cofactor insertion.  相似文献   

7.
Dimethyl sulfoxide reductase is a trimeric, membrane-bound, iron-sulfur molybdoenzyme induced in Escherichia coli under anaerobic growth conditions. The enzyme catalyzes the reduction of dimethyl sulfoxide, trimethylamine N-oxide, and a variety of S- and N-oxide compounds. The topology of dimethyl sulfoxide reductase subunits was probed by a combination of techniques. Immunoblot analysis of the periplasmic proteins from the osmotic shock and chloroform wash fluids indicated that the subunits were not free in the periplasm. The reductase was susceptible to proteases in everted membrane vesicles, but the enzyme in outer membrane-permeabilized cells became protease sensitive only after detergent solubilization of the E. coli plasma membrane. Lactoperoxidase catalyzed the iodination of each of the three subunits in an everted membrane vesicle preparation. Antibodies to dimethyl sulfoxide reductase and fumarate reductase specifically agglutinated the everted membrane vesicles. No TnphoA fusions could be found in the dmsA or -B genes, indicating that these subunits were not translocated to the periplasm. Immunogold electron microscopy of everted membrane vesicles and thin sections by using antibodies to the DmsABC, DmsA, DmsB subunits resulted in specific labeling of the cytoplasmic surface of the inner membrane. These results show that the DmsA (catalytic subunit) and DmsB (electron transfer subunit) are membrane-extrinsic subunits facing the cytoplasmic side of the plasma membrane.  相似文献   

8.
Methionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D-sulfoxide diastereomer of CaM-bound L-MetSO (L-Met-D-SO). After exhaustive reduction by pMSR, the ratio of L-Met-D-SO to L-Met-L-SO decreased to about 1:25 for hydrogen peroxide-oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR.  相似文献   

9.
An improved method is described for the quantitation of glycosaminoglycans separatedon cellulose acetate, stained with Alcian blue, and dissolved in a dimethyl sulfoxide solution. Standard curves are shown for all eight glycosaminoglycans. It is shown that absorption at the Alcian blue orthochromatic Emax is depressed under conditions which favor formation of dye-glycosaminoglycan complexes. The interaction between Alcian blue and the eight glycosaminoglycans was studied in dimethyl sulfoxide solutions of varying composition. It was shown that the extent of complex formation depends both on the glycosaminoglycan and the composition of the dimethyl sulfoxide solution. A dimethyl sulfoxide solution which contains 0.094 m H2SO4 is described which maximizes dye-glycosaminoglycan dissociation and thus the absorbance. Also, an improved staining method is described which improves dye uptake by the glycosaminoglycans and consequently increases the sensitivity of glycosaminoglycan quantitation.  相似文献   

10.
Nelson KJ  Rajagopalan KV 《Biochemistry》2004,43(35):11226-11237
Rhodobacter sphaeroides biotin sulfoxide reductase (BSOR) contains the bis(molybdopterin guanine dinucleotide)molybdenum cofactor and catalyzes the reduction of D-biotin-D-sulfoxide to biotin. This protein is the only member of the dimethyl sulfoxide reductase family of molybdopterin enzymes that utilizes NADPH as the direct electron donor to the catalytic Mo center. Kinetic studies using stopped-flow spectrophotometry indicate that BSOR reduction by NADPH (>1000 s(-1)) is faster than steady-state turnover (440 s(-1)) and has shown that BSOR reduction occurs in concert with NADPH oxidation with no indication of a Mo(V) intermediate species. Because no crystallographic structure is currently available for BSOR, a protein structure was modeled using the structures for R. sphaeroides dimethyl sulfoxide reductase, Rhodobacter capsulatus dimethyl sulfoxide reductase, and Shewanella massilia trimethylamine N-oxide reductase as the templates. A potential NADPH-binding site was identified and tested by site-directed mutagenesis of residues within the area. Mutation of Arg137 or Asp136 reduced the ability of NADPH to serve as the electron donor to BSOR, indicating that the NADPH-binding site in BSOR is located in the active-site funnel of the putative structure where it can directly reduce the Mo center. Along with kinetic and spectroscopic data, the location of this binding site supports a direct hydride transfer mechanism for NADPH reduction of BSOR.  相似文献   

11.
The kinetics of tubulin assembly were examined in the absence and presence of dimethyl sulfoxide at 37 degrees C. Inclusion of 1.4 M (10%) dimethyl sulfoxide lowered the critical protein concentration about 8-10-fold, from 9.4 microM in the absence of the organic solvent to 1.1 microM in its presence. This decrease was due solely to an effect on k-, the off rate constant. The on rate constant k+, was essentially unaffected. Another effect of dimethyl sulfoxide was in the nucleation process. The pseudo-first-order rate constant of elongation, kapp (k+[m]), was greatly increased by inclusion of dimethyl sulfoxide. This was due to an increase in the microtubule number concentration, [m]. The microtubules formed in the presence of dimethyl sulfoxide were much shorter than those formed in its absence, accounting for the higher number concentration. The nucleation number, n, was calculated by plots of ln kapp vs. ln c0 or ln t10% vs. ln c0, and the value appeared to be about 4 to 5, although some variability was found. It was shown that a plot of kapp vs. c0 to determine n, is not appropriate because of the inability to distinguish between linear and curved plots in the range of tubulin concentration used in assembly studies.  相似文献   

12.
Schwalb C  Chapman SK  Reid GA 《Biochemistry》2003,42(31):9491-9497
The tetraheme c-type cytochrome, CymA, from Shewanella oneidensis MR-1 has previously been shown to be required for respiration with Fe(III), nitrate, and fumarate [Myers, C. R., and Myers, J. M. (1997) J. Bacteriol. 179, 1143-1152]. It is located in the cytoplasmic membrane where the bulk of the protein is exposed to the periplasm, enabling it to transfer electrons to a series of redox partners. We have expressed and purified a soluble derivative of CymA (CymA(sol)) that lacks the N-terminal membrane anchor. We show here, by direct measurements of electron transfer between the purified proteins, that CymA(sol) efficiently reduces S. oneidensis fumarate reductase. This indicates that no further proteins are required for electron transfer between the quinone pool and fumarate if we assume direct reduction of CymA by quinols. By expressing CymA(sol) in a mutant lacking CymA, we have shown that this soluble form of the protein can complement the defect in fumarate respiration. We also demonstrate that CymA is essential for growth with DMSO (dimethyl sulfoxide) and for reduction of nitrite, implicating CymA in at least five different electron transfer pathways in Shewanella.  相似文献   

13.
Many organisms have been shown to possess a methionine sulfoxide reductase (MsrA), exhibiting high specificity for reduction the S form of free and protein-bound methionine sulfoxide to methionine. Recently, a different form of the reductase (referred to as MsrB) has been detected in several organisms. We show here that MsrB is a selenoprotein that exhibits high specificity for reduction of the R forms of free and protein-bound methionine sulfoxide. The enzyme was partially purified from mouse liver and a derivative of the mouse MsrB gene, in which the codon specifying selenocystein incorporation was replaced by the cystein codon, was prepared, cloned, and overexpressed in Escherichia coli. The properties of the modified MsrB protein were compared directly with those of MsrA. Also, we have shown that in Staphylococcus aureus there are two MsrA and one nonselenoprotein MsrB, which demonstrates the same substrate stereospecificity as the mouse MsrB.  相似文献   

14.
In this work, the effects of two non-ionic, non-hydroxyl organic solvents, dimethyl sulfoxide (DMSO) and dimethyl formamide (DMF) on the morphology and function of isolated rat hepatic mitochondria were investigated and compared. Mitochondrial ultrastructures impaired by DMSO and DMF were clearly observed by transmission electron microscopy. Spectroscopic and polarographic results demonstrated that organic solvents induced mitochondrial swelling, enhanced the permeation to H+/K+, collapsed the potential inner mitochondrial membrane (IMM), and increased the IMM fluidity. Moreover, with organic solvents addition, the outer mitochondrial membrane (OMM) was broken, accompanied with the release of Cytochrome c, which could activate cell apoptosis signaling pathway. The role of DMSO and DMF in enhancing permeation or transient water pore formation in the mitochondrial phospholipid bilayer might be the main reason for the mitochondrial morphology and function impaired. Mitochondrial dysfunctions induced by the two organic solvents were dose-dependent, but the extents varied. Ethanol (EtOH) showed the highest potential damage on the mitochondrial morphology and functions, followed by DMF and DMSO.  相似文献   

15.
Peptide methionine sulfoxide reductases (MsrA) from many different organisms share a consensus amino acid sequence (GCFWG) that could play an important role in their active site. Site-directed single substitution of each of these amino acids except glycines in the yeast MsrA resulted in total loss of enzyme activity. Nevertheless, all the recombinant MsrA mutants and native proteins had a very similar circular dichroism spectrum. The demonstration that either treatment with iodoacetamide or replacement of the motif cysteine with serine leads to inactivation of the enzyme underscores the singular importance of cysteine residues in the activity of MsrA. The recombinant yeast MsrA was used for general characterization of the enzyme. Its K(m) value was similar to the bovine MsrA and appreciably lower than the K(m) of the bacterial enzyme. Also, it was shown that the enzymatic activity increased dramatically with increasing ionic strength. The recombinant yeast MsrA activity and the reduction activity of free methionine sulfoxide(s) were stereoselective toward the L-methionine S-sulfoxide and S-methyl p-tolyl sulfoxide. It was established that a methionine auxotroph yeast strain could grow on either form of L-methionine sulfoxide.  相似文献   

16.
Crude extracts of Crithidia fasciculata catalyse the formation of 4-mercapto-L-histidine, an intermediate in the biosynthesis of ovothiol A (N1-methyl-4-mercaptohistidine), in the presence of histidine, cysteine, Fe2+ and pyridoxal phosphate. This activity was present in a 35-55% ammonium sulfate fraction that was shown to produce a transsulfuration intermediate in the absence of pyridoxal phosphate. The transsulfuration intermediate was isolated and identified as S-(4'-L-histidyl)-L-cysteine sulfoxide. The synthase activity, partially purified by anion-exchange chromatography, was shown to require oxygen and could be used to synthesize a number of isotopically labeled S-(4'-L-histidyl)-L-cysteine sulfoxides. Sulfoxide lyase activity was partially resolved from the synthase by anion-exchange chromatography. The phenylhydrazone of the product derived from the cysteine moiety of the sulfoxide coeluted with the phenylhydrazone of pyruvate on HPLC, but this assignment could not be confirmed by mass spectral analysis. S-(4'-[14C]L-histidyl)-[U-13C3,15N]L-cysteine sulfoxide was synthesized and converted to products of the lyase reaction in the presence of lactate dehydrogenase and NADH. The 13C-labeled product was identified by 13C-NMR spectroscopy as lactate and the primary product of the lyase reaction is therefore pyruvate. With S-(4'[3H]L-histidyl)-[14C]L-cysteine sulfoxide as the substrate [14C]lactate, [14C]cysteine and [3H]4-mercaptohistidine could be detected as products of the lyase reaction, but the sum of the two thiol species exceeded the amount of sulfoxide substrate used. Evidence is presented that this anomaly was due to the utilization of sulfur from dithiothreitol for the formation of cysteine.  相似文献   

17.
In this Letter, we demonstrate the formation of m5dC from dC or in DNA by dimethylsulfoxide (DMSO) and methionine sulfoxide (MetO), under physiological conditions in the presence of the Fenton reagent in vitro. DMSO reportedly affects the cellular epigenetic profile, and enhances the metastatic potential of cultured epithelial cells. The methionine sulfoxide reductase (Msr) gene was suggested to be a metastatis suppressor gene, and the accumulation of MetO in proteins may induce metastatic cancer. Our findings are compatible with these biological data and support the hypothesis that chemical cytosine methylation via methyl radicals is one of the mechanisms of DNA hypermethylation during carcinogenesis. In addition to m5dC, the formation of 8-methyldeoxyguanosine (m8dG) was also detected in DNA under the same reaction conditions. The m8dG level in human DNA may be a useful indicator of DNA methylation by radical mechanisms.  相似文献   

18.
The effect has been studied of various media, hormones and of amino acids on the membrane potential of rat hepatoma cells in culture measured by microelectrode impalement. Cells in Eagle's minimal essential medium plus 5% serum had a value which varied daily from about 5–8 mV, inside negative. The membrane potential of rat hepatocytes was measured to be 8.7 ± 0.2mV, inside negative. The membrane potential of the hepatoma cells was decreased by insulin and increased by glucagon. Membrane potential was unaffected by change of medium to Hanks' or Earle's balanced salt solutions or deprivation of serum. It was, however, reduced in cells in phosphate-buffered saline and by reduction of pH. The former effect was shown to be due to the higher [Na+] of phosphat-buffered saline as opposed to the other media. Addition of alanine, glycine, serine, proline and methylaminoisobutyrate all reduced membrane potential by 2–3 mV. Smaller decreases were seen with methionine, leucine and phenylalanine, but none with glutamine, threonine, BCH (2-aminonorborane-2-carboxylic acid) and D-alanine. The results are compared with the effects of similar conditions on aminoisobutyrate uptake. Whilst there was a correlation under some conditions there was not under others. It is concluded that for the hepatoma cells factors additional to the membrane potential must exert some influence on the capacity for amino acid transport.  相似文献   

19.
A model describing slow oscillations of membrane potential in molluscan neurons is suggested. It is based on the view that the depolarization phase is due to the slow calcium current, whereas the hyperpolarization phase is due to the potassium current activated by intracellular Ca ions. It is shown that depending on values of the parameters of the model there are three possible types of electrical activity of the neurons: stable membrane hyperpolarization up to the resting potential which is between ?49 and ?53 mV; slow oscillations of membrane potential from ?30 to ?60 mV, with a period of 12–17 sec, and stable membrane depolarization to between ?40 and ?30 mV, which may lead to the onset of stable rhythmic activity of these neurons. Dependence of the amplitude of the oscillations of potential on the extracellular concentration of Ca, K, and Na ions was calculated and agrees qualitatively with the experimental data of Barker and Gainer [4].  相似文献   

20.
The carbocyanine dye, diS-C3-(5) was used to quantitate the plasma membrane potential of the bullfrog corneal endothelium. It was shown that valinomycin hyperpolarized the endothelial cell and that in the presence of the ionophore the membrane potential largely reflected the K+ equilibrium potential. Using calibration curves constructed by changing medium K+ concentration in the presence of valinomycin, and nigericin and ouabain to abolish ion gradients and electrogenic pump activity, the cell membrane potential was calculated to be 28.6 ± 4.2 mV. The major source of this potential was a K+ diffusion potential, and the membrane Na+ conductance reduced the cell potential to less than the apparent K+ equilibrium potential of 51.5 ± 5.1 mV. About 20% of the cell potential could be ascribed to the rheogenic (Na++K+)-ATPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号