首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. Spatial relationships between hyporheic invertebrates and subsurface water flow patterns, sediment characteristics, water physicochemical parameters and several possible food sources were compared over three seasons at one site beneath a riffle. Measures of food sources included particulate organic matter (POM), bacterial activity (aerobic respiration, nitrate respiration and mineralisation of organic nitrogen) and microbial abundance. 2. Patterns of water flow changed significantly over the 9‐month study period, from predominantly upwelling beneath the entire riffle in spring, to distinct differentiation between downwelling and upwelling zones in summer and autumn. Water physicochemical parameters changed accordingly, showing gradually weaker correlations with depth and stronger correlations with zone between spring and autumn. 3. Despite these changes, depth remained the strongest predictor of invertebrate richness, density and taxon composition throughout the study period. However, invertebrate distributions were secondarily correlated with water physicochemical parameters, and a minor gradient in invertebrate distributions between downwelling and upwelling zones became stronger from spring to summer. 4. The correlations between invertebrates and physicochemical parameters changed in both magnitude and direction with season. In spring, invertebrates showed a negative correlation with surface water infiltration, whereas in summer and autumn, the correlation was positive. Correlations were strongest in summer, when interstitial dissolved oxygen concentrations were lowest. 5. No relationships were found between hyporheic invertebrates and POM, microbial abundance or activity. This suggests that at this site, proximity to the streambed surface and physicochemical variables are more important than the abundance of food in controlling invertebrate distributions.  相似文献   

2.
Nitrogen processing in the hyporheic zone of a pastoral stream   总被引:5,自引:1,他引:4  
The distribution of nitrogen-transforming processes, and factors controlling their rates, were determined within the hyporheic zone of a lowland stream draining agricultural land. In the field, physicochemical parameters were measured along a 10m-long hyporheic flow line between downwelling and upwelling zones. Sediment cores were retrieved from the stream bed surface, and from 20, 40 and 60cm deep in each zone, and in the laboratory, water from the corresponding depth was percolated through each core at the natural flow rate. Concentrations of nitrogen species and oxygen were measured before and after flow through each core. Denitrification was measured using a 15N-nitrate tracer. Shallow and downwelling zone samples were clearly distinct from deeper and upwelling zone samples in terms of physicochemical conditions, microbial processes and factors controlling nitrogen processing. Denitrification was highest in surface and downwelling zone cores, despite high oxygen levels, probably due to high pore-water nitrate concentrations in these cores and isolation of the denitrifying bacteria from oxygen in the bulk water by the hyporheic biofilms. Denitrification was limited by oxygen inhibition in the downwelling group, and by nitrate availability in the upwelling group. Strong evidence indicated that dissimilatory nitrate reduction to ammonium, occurred in almost all cores, and outcompeted denitrification for nitrate. In contrast, nitrification was undetectable in all but two cores, probably because of intense competition for oxygen. Field patterns and lab experiments indicated that the hyporheic zone at this moderately N-rich site is a strong sink for nitrate, fitting current theories that predict where hyporheic zones are nitrate sinks or nitrate sources.  相似文献   

3.
Along a single stream riffle, there is a typical flow pattern in which surface water enters the hyporheic zone in a downwelling zone at the head of the riffle and hyporheic water returns to the stream surface in an upwelling zone at the tail of the riffle. Distinct patterns of physical and chemical conditions in the hyporheic zone are likely to determine patterns of microbial activity and occurrence of hyporheic fauna. Interstitial water and core samples were taken at three depths in the downwelling and upwelling zones of a single riffle in the Speed River, Southern Ontario, Canada. Physical and chemical characteristics of the hyporheic water, bacterial density, protein content, detritus content and faunal composition of the hyporheic sediment were analysed. The downwelling and upwelling zones differed significantly in temperature, pH, redox potential, dissolved oxygen and nitrate with significant positive correlations occurring among the latter three. There were no differences in bacterial density or detritus content between the two zones nor between depths in either zone, but protein content, considered to be a measure of biofilm biomass, was significantly higher in the downwelling zone. Total density of hyporheic fauna and the number of taxa decreased with increasing depth in both upwelling and downwelling zones, and were positively correlated with surface water characteristics (oxygen, temperature and nitrate), sediment protein content and detritus; however, only a weak correlation was found with zone. The composition of taxa differed between the two zones, and faunal distribution was correlated with dissolved oxygen, detritus, protein content and depth.  相似文献   

4.
1. Large amounts of coarse particulate organic matter (CPOM) are buried in the sand and gravel beds of many rivers during spates. The effects of these patchily distributed resources on hyporheic invertebrates and water chemistry are poorly understood. Buried CPOM may provide local ‘hot-spots’ of food for hyporheic detritivores and their predators, alter nutrient supply to nearby sediment biofilms, and generate habitat for some invertebrates. 2. To examine potential short-term effects on hyporheic water chemistry, nutrient concentrations and invertebrate assemblage composition, leaf packs were buried in downwelling (surface water infiltrating the hyporheic zone) and upwelling (hyporheic water emerging to the surface) zones at two sites along a gravel-bed river in northern New South Wales. At one site, pits were excavated to simulate leaf burial (procedural control) and plastic ‘leaves’ were buried to test whether invertebrates might respond to leaves as refuges rather than food. Hyporheic CPOM, sediment size fractions, and interstitial silt content were also quantified at these sites. 3. Dry weights of naturally buried CPOM (leaf litter and wood fragments) varied substantially (0.6–71.7 g L–1 sediment). Amounts of CPOM did not differ between up- vs. downwelling zones or between sites. Hyporheic dissolved oxygen saturation was generally high (> 75%), and was lower in upwelling zones. The hyporheos was dominated taxonomically by water mites (≈ 20 species), whereas small oligochaetes were most abundant (40% of total abundance). Tiny instars of elmid beetle larvae and leptophlebiid mayfly nymphs were also common. Before experimental manipulation, faunal composition differed between up- and downwelling zones. In upwelling zones, bathynellaceans and blind peracarids were found, whereas small individuals of the surface benthos were common in samples from downwelling zones. This validated stratification of the experiment across zones of hydrologic exchange. 4. Twenty days after leaf burial, there was no effect of the treatments at either site on changes in most variables, including mean numbers of taxa and individuals per sample. Similarly, changes in faunal composition of the hyporheos in the treatments paralleled those in the controls except for a weak response in the buried leaves treatment in the upwelling zone at site 1. Artificially buried leaf litter does not seem to influence hyporheic water chemistry or fauna at these two sites. It is probable that naturally buried leaf litter is swiftly processed soon after entrainment and that repeating this experiment immediately after a flood may yield different results.  相似文献   

5.
Environmental flow releases have been advocated as a useful rehabilitation strategy for improving river condition but assessments of their success have typically focused on surface water quality and biota. In this study, we investigated the impacts of an environmental flow release on water temperature, conductivity, dissolved oxygen, and nitrate concentrations in surface and subsurface (hyporheic) water at upwelling and downwelling zones in three sites along the Hunter River, New South Wales, Australia. We hypothesised that the flow pulse would ‘flush’ the sediments with oxygenated water, stimulating hyporheic microbial activity and nitrification, enhancing nitrate concentrations over time. Surface and subsurface samples were collected before, 7 days after, and 49 days after an environmental flow release of 5000 Ml for a period of 3 days. No lasting effects on dissolved oxygen or conductivity were evident at most sites although dissolved oxygen declined over time at the downwelling site at Bowmans Crossing. At the downwelling zones at all sites, hyporheic nitrate concentrations declined initially following the release, but then rose or leveled off by Day 49. This initial drop in concentration was attributed to flushing of nitrate from the sediments. At two sites, nitrate concentrations had increased by Day 49 in the upwelling zones while at the third site, it fell significantly, associated with very low dissolved oxygen and likely reductive loss of nitrate. Electrical conductivity data indicate that potential inputs of agriculturally enriched groundwater may contribute to the nitrogen dynamics of the Hunter River. This study highlights the spatial heterogeneity that occurs in the hyporheic zone within and among sites of a regulated river, and emphasises the need for multiple-site surveys and an understanding of groundwater dynamics to assess physicochemical responses of the hyporheic zone to environmental flow releases.  相似文献   

6.
7.
The influence of riffle-pool units on hyporheic zone hydrology and nitrogen dynamics was investigated in Brougham Creek, a N-rich agricultural stream in Ontario, Canada. Subsurface hydraulic gradients, differences in background stream and groundwater concentrations of conservative ions, and the movement of a bromide tracer indicated the downwelling of stream water at the head of riffles and upwelling in riffle-pool transitions under base flow conditions. Channel water also flowed laterally into the floodplain at the upstream end of riffles and followed a subsurface concentric flow path for distances of up to 20 m before returning to the stream at the transition from riffles to pools. Differences in observed vs predicted concentrations based on background chloride patterns indicated that the hyporheic zone was a sink for nitrate and a source for ammonium. The removal of nitrate in the streambed was confirmed by the loss of nitrate in relation to co-injected bromide in areas of downwelling stream water in two riffles. Average stream water nitrate-N concentrations of 1.0 mg/L were often depleted to <0.005 mg/L near the sediment-water interface. Consequently, an extensive volume of the hyporheic zone in the streambed and floodplain had a large unused potential for nitrate removal. Conceptual models based mainly on studies of streams with low nutrient concentrations have emphasized the extent of surface-subsurface exchanges and water residence times in the hyporheic zone as important controls on stream nutrient retention. In contrast, we suggest that nitrate retention in N-rich streams is influenced more by the size of surface water storage zones which increase the residence time of channel water in contact with the major sites of rapid nitrate depletion adjacent to the sediment-water interface.  相似文献   

8.
9.
We studied the response of benthic algae to points of hyporheic-surface water exchange in the main channel of the Middle Fork Flathead River within the Nyack Flood Plain, Montana. We examined hyporheic exchange at 120 sites using piezometers and measuring vertical hydraulic gradient (VHG), hydraulic conductivity, and vertical discharge. We removed benthic algae from a single cobble at each site, and we used VHG to group sampling sites for statistical analysis. Algal cell density and chlorophyll a concentration were significantly higher at sites with hyporheic discharge (+VHG, upwelling) compared to both sites with hyporheic recharge (−VHG, downwelling) and sites with no hyporheic-surface water exchange (=VHG, neutral) (ANOVA, P < 0.05). The assemblages of algae at upwelling sites were also significantly different from downwelling and neutral exchange sites (ANOSIM, P < 0.05). Filamentous green algae Stigeoclonium sp. and Zygnema sp. and a chrysophyte, Hydrurus foetidus (Villars) Trevisan were abundant at upwelling sites, whereas an assemblage of diatoms Achnanthidium minutissimum (Kützing) Czarnecki, Cymbella excisa Kützing, Diatoma moniliformis Kützing, and Gomphonema olivaceoides Hustedt, were the most abundant taxa at downwelling and neutral exchange sites, occurring attached to, or in close association with the stalks of Didymosphenia geminata (Lyngbye) Schmidt. These data show that benthic algal communities are structured differently depending on the direction of hyporheic flux in the main channel of a large alluvial river, suggesting that hyporheic-surface exchange may influence the spatial distribution of main-channel benthic algae in rivers with hyporheic-surface water connectivity. Handling editor: J. Padisak  相似文献   

10.
The distribution of lotic fauna is widely acknowledged to be patchy reflecting the interaction between biotic and abiotic factors. In an in situ field study, the distribution of benthic and hyporheic invertebrates in the heads (downwelling) and tails (upwelling) of riffles were examined during stable baseflow conditions. Riffle heads were found to contain a greater proportion of interstitial fine sediment than riffle tails. Significant differences in the composition of benthic communities were associated with the amount of fine sediment. Riffle tail habitats supported a greater abundance and diversity of invertebrates sensitive to fine sediment such as EPT taxa. Shredder feeding taxa were more abundant in riffle heads suggesting greater availability of organic matter. In contrast, no significant differences in the hyporheic community were recorded between riffle heads and tails. We hypothesise that clogging of hyporheic interstices with fine sediments may have resulted in the homogenisation of the invertebrate community by limiting faunal movement into the hyporheic zone at both the riffle heads and tails. The results suggest that vertical hydrological exchange significantly influences the distribution of fine sediment and macroinvertebrate communities at the riffle scale.  相似文献   

11.
1. Longitudinal changes in physicochemical factors and the composition of the invertebrate community were examined in the hyporheic zone of a glacial river (Val Roseg, Switzerland) over a distance of 11 km from the glacier terminus. Multivariate analysis was used to determine the habitat preferences of taxa along an upstream‐downstream gradient of increasing temperature and groundwater contribution to river flow. 2. The hyporheos conformed to the longitudinal distribution model described for zoobenthic communities of glacial rivers in that taxonomic richness increased with distance from the glacier terminus. Spatial variation in taxonomic richness was best explained by temperature, the influence of groundwater, and the amount of organic matter. The overriding importance of these variables on the distribution of taxa was confirmed by the multivariate analysis. 3. The hyporheic zone contributed significantly to the overall biodiversity of the Roseg River. Whereas insect larvae were predominant in the benthos, hyporheic invertebrates were dominated by taxa belonging to the true groundwater fauna and the permanent hyporheos. Several permanently aquatic taxa (e.g. Nematoda, Ostracoda, Cyclopoida, Harpacticoida, Oligochaeta) appeared exclusively in the hyporheic zone or they extended farther upstream in the hyporheic layer than in the benthic layer. Leuctridae, Nemouridae, and Heptageniidae colonised hyporheic sediments where maximum water temperature was only 4 °C. 4. Despite strong seasonal changes in river discharge and physicochemistry in hyporheic water, the density and distribution of the hyporheos varied little over time. 5. Taxonomic richness increased markedly in the downstream part of a floodplain reach with an extensive upwelling zone. Upwelling groundwater not only maintained a permanent flow of water but also created several species‐rich habitats that added many species to the community of the main channel.  相似文献   

12.
The 'hyporheic refuge hypothesis' predicts that the hyporheic zone, the saturated sediments below and alongside rivers and streams, is a refuge from the scouring effects of spates for many aquatic invertebrates including water mites. We tested this hypothesis in two lateral gravel bars and two riffles in a subtropical Australian river by collecting water mites from the hyporheic zone at two depths (10 and 50 cm) at two 'pre-flood' sampling times before experimentally diverting water through the sites for 14 h to simulate a spate. Taxon richness of mites washigh (46 taxa) and dominated by the Prostigmata, with nearly half the species being new to science. Oribatids were also common at the four sites. Samples were collected twice during each 'spate', and again soon after flow was returned to normal. The experimental spate induced changes in the strength and even direction of subsurface-surface water exchange; however, these changes seldom persisted after the experiment, nor after a subsequent natural spate. The hyporheic refuge hypothesis was not supported by our water mite data. Neither during nor shortly after the experimental spates did we find more epigean (surface-dwelling) water mites in downwelling zones where surface streamwater enters the hyporheic zone, demonstrating that these mites were not using the hyporheic zone as a refuge at these locations. There was also no evidence for a 'wash out' effect, because hyporheic mitedensities did not significantly decline late in the spate. Our data indicate that floods of the low magnitude simulated in this study apparently do not pose a lasting disturbance for hypogean water mites. The fact that the same response was found at four sites indicates that the hyporheic refuge hypothesis may not always be an appropriate explanation for rapid post-flood recolonisation. Possibly, the use of the hyporheic zone as a refuge from floods may be dictated by the strength of the disturbance and substrate composition and stability.  相似文献   

13.
1. Hydrological exchange between the surface stream and the hyporheic zone is well documented in the main channel of rivers, especially at the reach scale. Hydrological processes of advection/convection occur at different scales, and in secondary channels of large rivers little is known about these exchanges in the hyporheic zone on a broad scale (i.e. kilometres). This work studied exchanges of water and biota in a secondary channel on a large scale (4 km), using a three-dimensional framework. 2. The exchanges of water were described using physicochemical indicators of surface and groundwaters. Samples of water and biota were taken in three dimensions: (i) vertically from benthic (i.e. 0.20 m below the surface of the substratum) to hyporheic (0.50 m) and deep interstitial (1.0 m) zones; (ii) laterally from the right to the left bank (i.e. right, middle and left positions); and (iii) longitudinally from upstream to downstream (seven stations regularly distributed along the channel). 3. The physicochemical indicators clearly revealed hydrological heterogeneity in the longitudinal and vertical dimensions, whereas lateral variability was not significant. 4. Spatial distribution of biota exhibited strong longitudinal variations that were not gradual as predicted by an upstream/downstream continuum, but patchy and discontinuous. No significant differences were found between the three positions across the channel. 5. Analyses of both physicochemical and faunal data sets produced matched ordination of samples and stations, indicating that interstitial–surface flow relationships appear to be an important governing factor in the distribution of interstitial biota at this broad scale. 6. Results are discussed in relation to the hypothetical three-dimensional models of the hyporheic zone in rivers. Contrasting with other observations on the main channel (where advection/convection patterns are dominated by morphological changes of the river-bed morphology), it is proposed that water exchanges in backwaters are more likely to be related to local modifications of stream-bed porosity.  相似文献   

14.
The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities.  相似文献   

15.
The ‘hyporheic refuge hypothesis’ predicts that the hyporheic zone, the saturated sediments below and alongside rivers and streams, is a refuge from the scouring effects of spates for many aquatic invertebrates including water mites. We tested this hypothesis in two lateral gravel bars and two riffles in a subtropical Australian river by collecting water mites from the hyporheic zone at two depths (10 and 50 cm) at two‘pre-flood’ sampling times before experimentally diverting water through the sites for 14 h to simulate a spate. Taxon richness of mites washigh (46 taxa) and dominated by the Prostigmata, with nearly half the species being new to science. Oribatids were also common at the four sites. Samples were collected twice during each ‘spate’, and again soon after flow was returned to normal. The experimental spate induced changes in the strength and even direction of subsurface-surface water exchange; however, these changes seldom persisted after the experiment, nor after a subsequent natural spate. The hyporheic refuge hypothesis was not supported by our water mite data. Neither during nor shortly after the experimental spates did we find more epigean (surface-dwelling) water mites in downwelling zones where surface streamwater enters the hyporheic zone, demonstrating that these mites were not using the hyporheic zone as a refuge at these locations. There was also no evidence for a ‘wash out’ effect, because hyporheic mitedensities did not significantly decline late in the spate. Our data indicate that floods of the low magnitude simulated in this study apparently do not pose a lasting disturbance for hypogean water mites. The fact that the same response was found at four sites indicates that the hyporheic refuge hypothesis may not always be an appropriate explanation for rapid post-flood recolonisation. Possibly, the use of the hyporheic zone as a refuge from floods may be dictated by the strength of the disturbance and substrate composition and stability.  相似文献   

16.
1. Flow permanence (the proportion of time that flowing water is present) strongly influences benthic invertebrate assemblages in ephemeral and intermittent river reaches. Effects of varying flow permanence on hyporheic invertebrate assemblages are not well understood, and have not previously been studied at large spatial scales. 2. We used a 52‐km long flow‐permanence gradient in the alluvial Selwyn River, New Zealand to assess hyporheic assemblage responses to variation in flow permanence and surface–subsurface exchange. The Selwyn mainstem consists of perennial and temporary reaches embedded in longer downwelling (losing) and upwelling (gaining) sections. 3. We predicted that hyporheic invertebrate diversity, density and assemblage stability would increase with increasing flow permanence. We further predicted that assemblage structure would be influenced by the relative contribution of downwelling and upwelling water at the reach‐scale. 4. Hyporheic invertebrates were collected at 15 river cross‐sections over a 13‐month period. As predicted, hyporheic taxon richness, density and assemblage stability varied directly with flow permanence. The distribution of taxa along the flow permanence gradient appeared to be related to desiccation resistance. However, it is possible that proximity to colonist sources also contributed to distribution patterns. 5. Taxon richness was significantly higher at sites in the gaining section compared with the losing section. Sites with high flow permanence in the gaining and losing sections supported distinct hyporheic assemblages, characterised by amphipods and isopods in the gaining section, and ostracods, Hydra sp. and the mayfly Deleatidium spp. in the losing section. 6. Results of the study suggest an expansion of the scope of the Hyporheic Corridor Concept to include large hyporheic flowpaths associated with unbounded alluvial plains rivers. Hyporheic assemblages in alluvial rivers are strongly influenced by large‐scale flow permanence gradients, large‐scale surface water–groundwater exchange, and their interactions.  相似文献   

17.
The spatial distribution of benthic (up to 0.05 m depth) and hyporheic (0.25 and 0.5 m depth) macroinvertebrates from downwelling zones at the heads of riffles and upwelling zones at the tails of riffles was examined in two studies on a 4th order chalk stream in Dorset, England. In the first study, differences in benthic and hyporheic macroinvertebrate community composition between the head and tail of a single riffle were investigated. In the second study, a replicated design involving eight riffles was used to compare benthic and hyporheic macroinvertebrate community composition both between heads and tails of the same riffles and between riffles. In the first (single riffle) study there were significantly higher mean numbers of benthic invertebrates and families at the riffle head (715 individuals and 13.8 families per 0.0225 m2) compared to the tail (192 individuals and 8.7 families). ANOSIM analysis also showed that the community structure of head and tail benthic samples was significantly different. In the second (replicated riffle) study, there were also significantly more benthic invertebrates at riffle heads ( = 594 per 0.0225 m2) compared to tails ( = 417 per 0.0225 m2), although this was not the case for families, and community structure also differed significantly between riffle heads and tails. In contrast, in the hyporheic zone, there were no significant differences between the total numbers of invertebrates in the riffle heads and tails, or between riffles, although a significant difference in family richness between riffle head and tail samples was identified in the first study. Community analysis revealed progressively poorer separation of riffle head and tail samples at 0.25 m and 0.5 m hyporheic depths. Whilst being able to identify clear differences in benthic communities from riffles heads and tails, the physically heterogeneous nature of the riffle habitats studied made it difficult to account for the consistent differences in macroinvertebrate communities observed with the physical variables measured.  相似文献   

18.
1. Natural experiments, in the form of disturbance from spates, were used to study the resistance and resilience of interstitial communities. Investigations were conducted in a by-passed section of the Rhône River characterized by an artificial hydrology with frequent spates separated by regular minimum discharge of 30 m3 s–1. 2. Three areas of a bar were studied, upwellings at the head of the bar (stations 1 and 2), and downwelling at the tail of the bar (station 3). In the head of the bar the substratum was characterized by stable cobbles, while mobile gravels dominated in the tail of the bar. At each station, samples were derived from four depths (0.5, 1.0, 1.5 and 2.0 m below the surface of the substratum). Fifteen spates occurred during the study period whose peak discharge ranged from 50 to 1640 m3 s–1. Temporal variations of the fauna were studied by comparing the spate effect observed 1 day (resistance), 7 days (resilience) and 17 days after the spate. Within-class correspondence analysis was used to compare the temporal variability of the fauna within each class {station/depth}. 3. The fauna differed markedly between the three stations, and the relative density of stygobionts (i.e. hypogean fauna) decreased from 55% at station 1 to 4% at station 3. The spatio-temporal variability increased dramatically from station 1 to station 3. 4. The results suggest that the hyporheic zone acts as a patchy refugium: the stations were more or less active refugial zones, depending on hydrology (upwelling or downwelling), substratum stability and spate amplitude. 5. The downwelling station was the main refugium area for benthic taxa. Important migrations of benthic groups (e.g. Gammarus, Cladocera) or hyporheic taxa (e.g. Cyclopoida and Harpacticoida) were observed deep into the sediment (2 m). Vertical movements of stygobionts (Niphargus, Niphargopsis) were also observed at high amplitude spates. These movements were very important (great numbers of individuals migrated) at low and medium magnitude spates, but were unimportant at high discharge, when the threshold of sediment instability was exceeded. In this case the substratum became mobile and induced drift of benthic organisms. 6. Conversely, in the upwelling stable stations, accumulation was less important (lower number of species and lower densities) but more constant with increasing discharge, suggesting that substratum stability is also a key factor. 7. Generally recovery was rapid at all stations (within 7 days) but no relationships were found between resilience (rate of recovery) and the amplitude of spates.  相似文献   

19.
Population studies of enteric bacteria in an agriculturally impacted stream (Ledbetter Creek, Murray, Kentucky, USA) were conducted over a period of 2 years. Total number of bacteria, cultivated heterotrophic aerobic bacteria, and enteric bacteria showed significant differences between winter and summer. The cultivated numbers of heterotrophic aerobic bacteria and enteric bacteria were significantly more abundant in summer than in winter. The abundance of enteric bacteria was 12.9% in an upwelling zone and 9.8% in a downwelling zone in summer. Most of the enteric bacterial strains isolated on MacConkey agar were assigned to Enterobacter cloacae and E. agglomerans by API 20E and an analysis of the restriction patterns produced by amplified DNA coding for 16S rRNA (ARDRA) with the enzyme Hpa II. E. cloacae and E. agglomerans genotypes isolated from three hyporheic and gravel bar depth intervals (0-10 cm, 15-25 cm, and 30-40 cm) in summer and fall showed significant spatial variation and were heterogeneously distributed along the stream. Temperature, inorganic nutrients, and occurrence of anoxic zones affected the distribution of enteric bacteria. These techniques can be used as a model to monitor shifts among different species in the stream ecosystem.  相似文献   

20.
The hyporheic zone is a region underneath streambeds that integrates surface and groundwater. Although its location is central to biogeochemical linkages between the riparian zone, dissolved nutrients, and benthic biota, the seasonal quality and likely sources of dissolved organic matter (DOM) in the hyporheic zone are not well understood. To investigate DOM characteristics in the hyporheic zone, water from the surface and subsurface (at depths 20, 60, and 100 cm below the streambed) was sampled every 4 weeks from 2007 to 2008 in a third-order stream in southern Ontario. Using UV spectroscopy, measures of spectral slopes, aromaticity, and A 254/A 365 ratios (molecular weight) were obtained. Temporal changes in these measures were consistent with watershed processes such as shedding of leaf litter in the fall, and photochemical and biofilm influence in the spring and summer. The fluorescence index (a measure of relative DOM source) suggested that at the surface and in the downwelling zone, DOM microbial sources increased with depth in the sediment, regardless of the season. Excitation–emission matrices (EEMs) showed seasonally distinct, protein-like DOM components of bacterial origin that were stronger in the fall. Leachates from specific allochthonous DOM sources—leaf litter from Betula papyrifera (white birch) and Thuja occidentalis (white cedar)—and an autochthonous source, biofilm, were isolated and incubated with unfiltered surface water. EEMs from these leachates indicated that these sources could indeed help explain observed patterns of DOM in surface and subsurface waters. These results suggest that although DOM sources were relatively constant, biogeochemical processing within the hyporheic zone resulted a DOM pool that was temporally dynamic and altered the nature of organic matter transported downstream into lakes and rivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号