首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Effects of factors associated with soil acidity (low pH, low calcium, high aluminium and high manganese) on theTrifolium repens-Rhizobium trifolii symbiosis were investigted under laboratory conditions using an axenic solution-culture technique. 200 μM manganese increased root elongation in the range pH 4.3–5.5, but had no effect on root hair formation, the number of Rhizobium in the rhizosphere, or nodule formation. Root elongation and root hair formation were unaffected at pH 4.3 when 500 or 1000μM calcium was supplied, whereas multiplication of Rhizobium in the rhizosphere and nodulation were inhibited at pH 4.3 and 4.7.50–1000μM calcium had no effect either on the multiplication of Rhizobium in the range pH 4.3–5.5, or on nodule formation in the absence of aluminium. 50 μM aluminium inhibited, root elongation and root hair formation at pH 4.3 and 4.7; the effect on root elongation was reduced by increasing the calcium concentration from 50 to 1000μM. 50μM aluminium also inhibited Rhizobium multiplication in the rhizosphere and reduced nodule formation at pH 5.5 (at which aluminium precipitated out of solution), but root elongation and root hair formation were unaffected. These, effects of aluminium at pH 5.5 may explain the poor response to inoculation by white clover in acid mineral soils after liming.  相似文献   

2.
T. Olsen  M. Habte 《Mycorrhiza》1995,5(6):395-399
The interaction of Cajanus cajan with Rhizobium and vesicular-arbuscular mycorrhizal fungi (VAMF) was investigated in a greenhouse experiment. C. cajan was planted in soil that had been inoculated with Glomus aggregatum or treated with benlate to suppress VAMF activity. Initial soil solution P concentrations of 0.06, 0.2, 0.4, and 0.8 mg l-1 were established to test the interaction at external P levels that ranged from inadequate to nonlimiting for the host plant. At 0.06 and 0.2 mg P l-1, mycorrhizal inoculation significantly increased plant P concentrations as well as nodule numbers and shoot dry weight. Mycorrhizal inoculation also significantly increased nodule dry weight at a soil P concentration of 0.4 mg l-1 but did not significantly influence any of the other variables. The mycorrhizal inoculation effect observed at this soil solution P concentration could not be explained by any of the measures of plant P status. At 0.8 mg P l-1, none of the measured variables were affected significantly by mycorrhizal inoculation. The results indicate that the enhanced nodulation associated with mycorrhizal inoculation at soil P concentrations lower than 0.4 mg l-1 was explainable by mycorrhizal-mediated P uptake. The small but significant increase in nodule mass due to VAMF inoculation at 0.4 mg P l-1 suggests that factors not related to plant P nutrition may be involved. On the other hand, the lack of a VAMF inoculation effect at 0.8 mg P l-1 despite VAMF colonization at a level comparable to that observed at the former P concentration appear to discount this hypothesis. This observation is also supported by the lack of response of plant N status and nodule number to VAMF inoculation at this soil P concentration.Contribution from the Hawaii Institute of Tropical Agriculture and Human Resources Journal Series No.4066  相似文献   

3.
The effect of soil pH on the competitive abilities of twoRhizobium leuminosarum bv.phaseoli type I and one type II strains was examined in a nonsterile soil system.Phaseolus vulgaris seedlings, grown in unlimed (pH 5.2) or limed (pH 7.6) soil, were inoculated with a single-strain inoculum containing 1 × 106 cells mL–1 of one of the three test strains or with a mixed inoculum (1:1, type I vs. type II) containing the type II strain CIAT 899 plus one type I strain (TAL 182 or CIAT 895). At harvest, nodule occupants were determined. In a separate experiment, a mixed suspension (1:1, type I vs. type II) of CIAT 899 paired with either TAL 182 or CIAT 895 was used to inoculateP. vulgaris seedlings grown in sterile, limed or unlimed soil. The numbers of each strain in the rhizosphere were monitored for 10 days following inoculation. The majority of nodules (> 60%) formed on plants grown in acidic soil were occupied by CIAT 899, the type II strain. This pattern of nodule occupancy changed in limed soil. When CIAT 899 was paired with TAL 182, the type I strain formed 78% of the nodules. The number of nodules formed by CIAT 899 and CIAT 895 (56% and 44%, respectively) were not significantly different. The observed patterns of nodule occupancy were not related to the relative numbers or specific growth rates of competing strains in the host rhizosphere prior to nodulation. The results indicate that soil pH can influence which symbiotype ofR. leguminosarum bv.phaseoli will competitively nodulateP. vulgaris.  相似文献   

4.
In this study different bacterial inoculation methods were tested for tobacco plants growing in a mine-soil contaminated with Pb, Zn, and Cd. The inoculation methods evaluated were: seed inoculation, soil inoculation, dual soil inoculation event, and seed+soil inoculation. Each inoculum was added at two bacterial densities (106 CFUs mL?1 and 108 CFUs mL?1). The objectives were to evaluate whether or not the mode of inoculation or the number of applied microorganisms influences plant response. The most pronounced bacterial-induced effect was found for biomass production, and the soil inoculation treatment (using 106 CFUs mL?1) led to the highest increase in shoot dry weight yield (up to 45%). Bacterial-induced effects on shoot metal concentrations were less pronounced; although a positive effect was found on shoot Pb concentration when using 108 CFUs mL?1 in the soil inoculation (29% increase) and in the seed+soil inoculation (34% increase). Also shoot Zn concentration increased by 24% after seed inoculation with 106 CFUs mL?1. The best effects on the total metal yield were not correlated with an increasing number of inoculated bacteria. In fact the best results were found after a single soil inoculation using the lower cellular density of 106 CFUs mL?1.  相似文献   

5.
Detailed individual nodulation profiles were obtained for five strains of Rhizobium leguminosarum biovar trifolii inoculated onto roots of Trifolium repens seedlings growing on an agar medium of pH 4.5. The time of appearance and the location of every nodule were noted for a period of 10 days after inoculation. Using these nodulation frequency profiles, pairings of strains were identified and six mixed-strain inoculation (1:1 ratio) experiments were subsequently performed at pH 4.5. Results from the mixed-inoculum experiments showed that the performance of a Rhizobium strain in single culture could not be reliably used to predict the outcome of a paired-inoculation study and that some seedlings were exclusively nodulated by rhizobia that performed poorly at low pH in single-culture inoculations. Received: 26 November 1996 / Accepted: 18 April 1997  相似文献   

6.
陈萍  夏江宝  王善龙  李栋  高芳磊  赵万里  马金昭 《生态学报》2022,42(24):10180-10190
为探讨黄河三角洲滨海滩涂不同密度柽柳林的土壤盐碱和养分特征,明确不同密度柽柳林的“盐谷”及“肥岛”效应,以黄河三角洲山东省滨州市北海新区滨海滩涂的低密度(1100 株/hm2)、中密度(4100 株/hm2)和高密度(7100 株/hm2)柽柳林为研究对象,测定分析不同密度柽柳林及柽柳植株周边不同位置的土壤pH、电导率、速效氮、速效磷、速效钾、有机碳等指标。结果表明:(1)土壤电导率随林分密度增大表现为逐渐减小,在中、高密度柽柳林,土壤电导率分别比低密度降低28.39%、55.74%;随距离柽柳植株远近不同,中、高密度柽柳林土壤电导率表现为根部<冠幅中心<冠幅边缘<株间空地,即中、高密度柽柳林出现“盐谷”效应,而低密度林分未出现。(2)土壤速效氮、速效磷和有机碳含量随林分密度增大表现出先增大后减小,在中、高密度柽柳林,柽柳植株周边不同位置的速效氮、速效磷和有机碳含量存在显著差异(P<0.05),表现为根部>冠幅中心>冠幅边缘>株间空地,而低密度柽柳林差异不显著(P>0.05);即中、高密度柽柳林出现“肥岛”效应,而低密度林分未出现。(3)中密度柽柳林在养分含量、养分富集率方面高于高密度,在盐分富集率方面低于高密度,具有更强的“肥岛”、“盐谷”效应。(4)不同密度柽柳林以及柽柳植株周边不同位置的土壤pH差异均不显著(P>0.05)。林分密度显著影响土壤盐分及养分含量,中密度柽柳林具有显著提高土壤肥力的作用,高密度次之,而低密度较差。不同密度柽柳林的降盐作用表现为中、高密度较好,低密度较差。基于柽柳林改良土壤盐碱与养分的作用,建议黄河三角洲滨海滩涂柽柳合理的初植密度为4100 株/hm2。  相似文献   

7.
Since Phaseolus vulgaris (L) is poorly nodulated in all regions of Tunisia where this crop is grown, the response of common-bean lines CocoT and Flamingo to inoculation with reference Rhizobium tropici CIAT 899 or native rhizobia, namely Sinorhizobium fredii 1a6, Rhizobium etli 12a3, and Rhizobium gallicum 8a3, was studied in a field station. Since R. etli 12a3 was found to be the most effective native rhizobium, it was subsequently compared with R. tropici CIAT 899 in a broader study in two stations over 3 years. A significant interaction between bean and rhizobia was observed for nodule number, shoot dry weight, grain yield, and contents of nitrogen and chlorophyll. The native rhizobia was more efficient than CIAT899 for Flamingo, though not for CocoT. The Enzyme-linked immunosorbent assay technique was used with polyclonal antibody to assess the occupancy in nodule and persistence in soil of the inoculated rhizobia. For both stations the nodule occupancy was 100% during the first year for each rhizobium, but during the next 2 years, between 7 and 15% of nodules were formed by the rhizobia inoculated in the neighboring plot. It is concluded that the first-year inoculation is sufficient to maintain an adequate rate of nodulation during three growth cycles, and that the native R etli can be recommended for the common-bean inoculation in similar soils of Tunisia.  相似文献   

8.
Summary Effects of aluminium on theTrifolium repens var Huia-Rhizobium trifolii strain HP3 symbiosis were studied using an axenic solution-culture system. With, 10 μM phosphate, 50 μM aluminium reduced or inhibited root elongation at pH<5.0, root hair formation at pH< 5.0–5.5, and Rhizobium multiplication in the rhizosphere and nodule formation at pH<6.0. In the absence of aluminium, root elongation and root hair formation were reduced at pH<4.3, and Rhizobium multiplication and nodule formation were inhibited at pH<5.0. Root hair formation was more sensitive to aluminium at pH<5 than was root elongation. No effect of aluminium on Rhizobium multiplication and nodule formation at pH<5 was detected because both were sensitive to pH alone. At pH 5.5 most of the aluminium changed immediately to a form which was susceptible to low-speed centrifugation, but which was detected by the aluminon method of analysis, and after 24 h a precipitate formed. the concentration of phosphate was reduced also, to approximately 1μM. Toxicity was overcome by either increasing the phosphate concentration from 10 to 50 μM, or by increasing the pH to 6.0 and the calcium, concentration to 1000μM.  相似文献   

9.
Summary Phosphate increased nitrogen uptake by lucerne appreciably on a saline soil. Nitrogenous fertiliser or inoculation with an effective strain ofRhizobium meliloti did not increase the yield significantly. In soils where indigenousRhizobium japonicum was absent inoculation increased soybean yields and the additional fixed nitrogen removed by soybeans amounted to 40 to 120 kg ha−1. Gram and groundnut also responded to Rhizobium inoculation in field trials.  相似文献   

10.
Combined light and transmission electron microscopy were used to examine the effect of nitrate on the development of root nodules in lucerne (alfalfa, Medicago sativa L.) following induction by the nitrogen-fixing symbiont, Rhizobium meliloti. The timing of NO 3 - addition was varied in order to study its effect on all of the recognized morphogenetic steps of nodule formation. Roots of plants inoculated in the presence of 18 mM NO 3 - had straight root hairs which were devoid of adherent rhizobia and infection threads, and developed no nodules. However, nodules were formed on roots if 18 mM NO 3 - was added 5 d after inoculation. At this time, the initiation of nodule primordia had already commenced in the root cortex. The histology and ultrastructure of young nodules which had developed for 5 d in the absence of NO 3 - and another 5 d in the presence of 18 mM NO 3 - resembled nodules developing under N-free conditions, except that in the infection threads within the infection zone of the nodule 1) some bacteria tended to loose their normal shape and gain more electron density, indicating premature degradation, and 2) the matrix of the infection threads was abnormally enlarged. In the presence of high NO 3 - levels in the medium, lysis and degeneration of the bacteria released from the infection threads were observed in the infection and bacteroid zones of developing nodules, indicative of premature senescence. On the other hand, the nodule meristems continued to proliferate even after 12 d of exposure of 18 mM NO 3 - . This was the only morphogenetic step of root nodulation which was insensitive to levels of combined nitrogen that completely prevented infection if present at the time of inoculation. These data indicate that all of the recognized steps of root nodule morphogenesis in which the bacteria play a key role are sensitive to the inhibitory effect of combined nitrogen.  相似文献   

11.
Saline and alkaline soils are major problems contributing to the low productivity of common bean (Phaseolus vulgaris) in arid and semi-arid regions such as Egypt. Therefore our study was directed toward selecting strains more tolerant to these environmental stresses. Among seven Rhizobium etli strains isolated from Egyptian soils, we found a high degree of diversity. Strains EBRI 21 and EBRI 26 are highly tolerant to a salt concentration up to 4% NaCl. A positive correlation was found between the salt tolerance and the adaptation to alkaline pH (9). Strains EBRI 2 and EBRI 26 were adapted to elevated temperatures (42°C). The minimum level of low pH for the majority of Rhizobium etli strains from Egypt was pH 4.7 while the Colombian strain Rhizobium tropici CIAT 899 survived well at pH 4. At 0.4% NaCl, the symbiotic efficiency of the salt-tolerant strain EBRI 26 was superior in cultivar Giza 6 compared with the salt-sensitive strain EBRI 2 (18.2 compared with 13.9 nM C2H4 h–1 mg–1 nodule fresh weight). In the bean cultivar Saxa, nitrogen fixation was much more affected by high salt concentration (0.4% NaCl) than in the cultivar Giza 6 with both strains (3.9 and 3.8 nM C2H4 h–1 mg–1 nodule fresh weight, respectively). In general, stress of alkalinity had a less detrimental effect on nodulation and N2 fixation than stress of salinity.  相似文献   

12.
Mixed cultures of several Azospirillum and Rhizobium trifolii strains caused either an inhibition or stimulation of nodule formation on plant hosts as compared with nodulation of plants inoculated with R. trifolii alone. Azospirillum strains affected the nodulation process at a precise cell ratio (R. trifolii/Azospirillum cells) and time of inoculation. All Azospirillum strains used showed a variation in their ability to inhibit or enhance nodulation by R. trifolii strains. When nonviable cell preparations of Azospirillum strains were used for mixing experiments, no effect on nodulation was observed. A decrease in the effectiveness of normally Nod+ Fix+R. trifolii strains was observed when an Azospirillum strain caused an increase in nodule number.  相似文献   

13.
Rhizosphere response was studied as a factor in competition among indigenous Rhizobium japonicum serogroups for the nodulation of soybeans under field conditions. R. japonicum serogroups 110, 123, and 138 were found to coexist in a Waukegan field soil where they were determined to be the major nodulating rhizobia in soybean nodules. Competitive relationships among the three serogroups in that soil and in rhizospheres were examined during two growing seasons with several host cultivars with and without inoculation and with a nonlegume. Enumeration of each of the three competitors was carried out on inner rhizosphere and nonrhizosphere soil by immunofluorescence with serogroup-specific fluorescent antibodies. Rhizobia present in early- and late-season nodules were identified by fluorescent antibody analysis. Populations of each serogroup increased gradually in host rhizospheres, not exceeding 106/g of rhizosphere soil during the first few weeks after planting, whereas numbers in fallow soil remained at initial levels (104 to 105/g). The rhizosphere effects were minor in host plants during this period of nodule initiation and were about the same for all three serogroups. Although serogroup 123 gave no evidence of dominance in early host rhizospheres, it clearly dominated in nodule composition, occupying 60 to 100% of the nodules. High densities of all three serogroups were observed in host rhizospheres during flowering. Rhizosphere populations, especially of serogroup 123, were still high during pod fill and seed maturation. The rhizosphere responses of the R. japonicum serogroups were much greater with the soybean cultivars than with oats, but even in host rhizospheres the R. japonicum populations were greatly outnumbered by other bacteria. The success of serogroup 123 in achieving nodulation does not appear to be due to superior colonization of the host rhizosphere.  相似文献   

14.
Summary Seed inoculation with Rhizobium and soil inoculation withGlomus fasciculatum increased nodulation, nitrogen and phosphorus concentration in plants and yield of chickpea (Cicer arietinum) var. BG 212 in pots containing unsterilized soil especially with 50kgP2O5 ha−1 in the form of superphosphate. Inoculation with Rhizobium orG. fasciculatum separately or in combination significantly increased the N2 fixed in straw and grain than uninoculated controls as determined by15N atom percent excess of plants grown in soil amended with labelled ammonium sulphate (15NH4)2SO4) at the rate of 20kg N ha−1. These increases were most pronounced when P was applied at 50kgP2O5 ha−1.  相似文献   

15.
H. Ssali 《Plant and Soil》1981,62(1):53-63
Summary The effect of level of CaCO3, inoculation and lime pelleting on the nodulation, dry matter yield and % N content of common bean plants (Phaseolus vulgaris) grown in five acid soils was investigated in a greenhouse study. The soils represented a range in pH from 3.9 to 5.1, in exchangeable Al from 0.0 to 4 meq/100 gm, in exchangeable Mn from 0.35 to 2.32 me/100 gm, and in %C from 0.69 to 5.60.Nodule weight decreased with increasing %C and for the soil with highest %C (5.60) no nodules were observed. In soils with low organic matter and low exchangeable Al and Mn, inoculation increased nodule weight, dry matter yield and %N especially at the lowest pH level. Where the seeds were not inoculated, nodule weight and dry matter yield increased with soil pH. No such increases were observed where the seeds were inoculated. There was no apparent advantage in lime pelleting in such soils.In soils with low organic matter content and with substantial amounts of Al and/or Mn, liming increased nodule weight and dry matter yield, and decreased exchangeable Al and/or Mn. Lime pelleting was superior to mere inoculation in increasing nodule weight particularly at low lime rates.In soils with relatively high organic matter content, nodulation was very low or none at all. Low lime rates had little effect on exchangeable Al and Ca and dry matter yield. Higher lime rates, however, decreased exchangeable Al and dry matter yield but increased exchangeable Ca.  相似文献   

16.
The influence of seedling age at the time of inoculation on the regulation of nodule number in soybean (Glycine max [L.] Merr.) was examined in cv. Williams 82 and its hypernodulating mutant NOD1-3. Nodulation was evaluated on plants grown in plastic growth pouches or in vermiculite in 50- or 500-ml glass containers in growth chamber studies. Seeds or seedlings were inoculated once with Bradyrhizobium japonicum strain USDA 110 (10k cells seedling?1) between 0 and 15 days after sowing at 3- or 5-day intervals and were grown for 21 days after inoculation. Nodule number plant?1 was similar across inoculation times in plants grown in growth pouches, but was significantly greater when inoculation was delayed and plants were grown in vermiculite in 500-ml containers. Plant culture in vermiculite in 50- or 500-ml containers confirmed the suppressive effect of restricted space for root growth on nodulation. Inoculation with 105 or 109 USDA 110 cells revealed that nodulation was inhibited by a high inoculum dose. There was a large increase in nodule number plant?1 when plants were transferred from a restricted rooting environment (growth pouch culture) to a nonrestricted rooting environment (2-1 hydroponic pots). Autoregulation was also examined in split-root assemblies of plants in 500-ml containers of vermiculite. Controls involved concurrent inoculation of both root halves at 0. 4 or 8 days after transplant. Treatments involved time-separated inoculations of root halves with the primary and secondary inoculations being separated by 4 days. Plants were harvested at 21 days after inoculation. Williams 82 exhibited autoregulation of nodule number on the root half receiving delayed inoculation, regardless of plant age at the time of primary inoculation. Total nodule number plant?1 invariably increased with later inoculation times. In contrast. NOD1 - 3 exhibited little, if any, autoregulation of nodule number. It was concluded that although Williams 82 exhibits autoregulation of nodule number and NODI - 3 does not, there was no finite limit to nodule number in either line since any delay in inoculation resulted in formation of a greater nodule number on both lines if root growth was not restricted. Nodule number in Williams 82 and NODI - 3 appears to be a function of infection sites (root size) at the time of inoculation and of subsequent plant growth.  相似文献   

17.
Summary Selected streptomycin resistant strains ofRhizobium leguminosarum suspended in nutrient broth were added to the planting furrow immediately before the sowing of pea. The nodule occupancy by a strain isolated from Risø soil (Risø la) was increased from 74 to 90%, when the inoculum rate was increased from 3.7×106 to 3.7×108 cells per cm row. The experimental soil contained 103 to 104 cells ofR. leguminosarum per gram. An almost inefficient strain isolated from Risø soil (SV10) was less competitive with respect to nodulation on two pea cultivars than an efficient Risø strain (SV15) and an efficient non-Risø strain (R1045). The nodule occupancy by the introduced strains varied between pea cultivars.Irrespective of the generally high nodulation by the efficient strains introduced to the soil, the pea seed yield, compared to pea nodulated by the indigenous population, was not significantly increased. Neither were two commercial inoculants, applied in rates corresponding to 3 times the recommended rate, able to increase the yield. This suggests that the indigenous populations ofR. leguminosarum were sufficient in number and nitrogen fixing capacity to ensure an optimal pea crop. However, some inoculation treatments slightly increased the seed N concentration and total N accumulation, indicating that it may be possible to select or develop bacterial strains that may increase the yield.  相似文献   

18.
The parasitism of soybean cyst nematode, Heterodera glycines, by the fungi Hirsutella rhossiliensis and Hirsutella minnesotensis and their biocontrol effectiveness against the nematode were investigated in four soils with various pH, texture, and organic matter. Fungal parasitism was assayed in the soils in 25 mL vials. As expected, percentage of H. glycines second-stage juveniles (J2) parasitized by either fungus increased with increasing number of fungus-colonized J2 initially added into the soils. Parasitism of J2 by the fungi was negatively related with soil pH. Both positive and negative relationships with fungal parasitism were observed for soil sandiness and organic matter. In greenhouse study, both fungi at 0.2–0.8 g fresh mycelium of liquid culture per 0.3 L pot and 1% corn-grits culture effectively reduced nematode population density. The relationship between biocontrol effectiveness and the soil factors depended on fungal species and inoculation levels. In general, percentage reduction of egg population density in the soil was negatively correlated with soil pH and positively correlated with sandiness. There was no or weak correlation between egg reduction and organic matter. The percentage of J2 parasitized by the fungi 2 months after planting did not correlate with the soil factors. Plant growth was better in the two soils with intermediate pH and sand than the soil with high pH and low sand or with low pH and high sand. It appeared that soil pH and/or texture are important in influencing biocontrol effectiveness, but further studies are needed to determine the effect of individual factors because they are correlated.  相似文献   

19.
The response of legumes to inoculation with rhizobia can be affected by many factors. Little work has been undertaken to examine how indigenous populations or rhizobia affect this response. We conducted a series of inoculation trials in four Hawaiian soils with six legume species (Glycine max, Vigna unguiculata, Phaseolus lunatus, Leucaena leucocephala, Arachis hypogaea, and Phaseolus vulgaris) and characterized the native rhizobial populations for each species in terms of the number and effectiveness of the population for a particular host. Inoculated plants had, on average, 76% of the nodules formed by the inoculum strain, which effectively eliminated competition from native strains as a variable between soils. Rhizobia populations ranged from less than 6 × 100/g of soil to 1 × 104/g of soil. The concentration of nitrogen in shoots of inoculated plants was not higher than that in uninoculated controls when the most probable number MPN counts of rhizobia were at or above 2 × 101/g of soil unless the native population was completely ineffective. Tests of random isolates from nodules of uninoculated plants revealed that within most soil populations there was a wide range of effectiveness for N2 fixation. All populations had isolates that were ineffective in fixing N2. The inoculum strains generally did not fix more N2 than the average isolate from the soil population in single-isolate tests. Even when the inoculum strain proved to be a better symbiont than the soil rhizobia, there was no response to inoculation. Enhanced N2 fixation after inoculation was related to increased nodule dry weights. Although inoculation generally increased nodule number when there were less than 1 × 102 rhizobia per g of soil, there was no corresponding increase in nodule dry weight when native populations were effective. Most species compensated for reduced nodulation in soils with few rhizobia by increasing the size of nodules and therefore maintaining a nodule dry weight similar to that of inoculated plants with more nodules. Even when competition by native soil strains was overcome with a selected inoculum strain, it was not always possible to enhance N2 fixation when soil populations were above a threshold number and had some effective strains.  相似文献   

20.
Hatzinger  P. B.  Alexander  M. 《Plant and Soil》1994,158(2):211-222
A study was conducted of the relationship between the density of several bacterial strains introduced into soil or onto seeds and their abundance in the rhizosphere of alfalfa. The abundance of six species in the rhizosphere was directly correlated with the density of bacteria initially added to soil. The density of six species in the rhizosphere of 15-day-old plants also was directly correlated with the density of each strain in nonrhizosphere soil. Tests of seven species added to soil at four inoculum densities showed that bacteria that survived well in the soil attained the highest densities in the rhizosphere and those that survived poorly in the soil were present at the lowest densities in the rhizosphere. Sixteen of 19 bacterial strains added to alfalfa seeds at 107 or 108 cells per g colonized the rhizosphere of 15-day-old plants, but nearly all of the cells were localized in the upper third of the rhizosphere. A study of 12 bacterial strains that failed to colonize the lower part of the rhizosphere if inoculated onto seeds showed that the bacteria colonized the entire rhizosphere of 15-day-old alfalfa plants if initially inoculated throughout the soil. The data suggest that the density of individual bacterial strains in the rhizosphere is dependent on their density in the soil and that seed inoculation only has an effect on the population in the proximal portion of the alfalfa root system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号