首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
  • 1.1. Myosin isoforms were analyzed in the dorsal skeletal muscle of four urodelan amphibian species using a modified pyrophosphate gel electrophoresis which allowed better discrimination than classical methods.
  • 2.2. The three fast and the intermediate isomyosins were characterized by a specific heavy chain, respectively HCf and HCi, associated with different combinations of the fast light chains LC1f, LC2f and LC3f.
  • 3.3. Slow myosin was characterized by one (P. waltlii, T. palmatus, S. maculata) or two (T. alpestris) isoforms, combining a specific slow myosin heavy chain (HCs) with slow light chains only in the case of P. waltlii, or with slow and fast light chains in the other species.
  相似文献   

2.
The distributions of native myosin isoforms were examined by electrophoresis under non-dissociating conditions, in the fast twitch dorsal skeletal muscle of young larvae, neotenic adults and metamorphosed adults of urodelan amphibians. Both heavy and light chains of myosin isoenzymes were analysed. In pyrophosphate acrylamide gel electrophoresis three isoenzymes were demonstrated in larval myosin; other isoforms of lower electrophoretic mobility were observed in metamorphosed adults myosin. Larval and adult isoenzymes were shown to coexist in myosin from neotenic adults. Analysis of heavy chains in denaturing conditions and proteolytic digestion revealed the sequential occurrence during development of two types of heavy chains, one larval and one adult, that coexist in the myosin of neotenic adults only. Analysis of light chain patterns under denaturing conditions revealed the existence of three fast light chains which displayed no modification during the course of development. The neotenic urodelan amphibian species model represents actually the only model in which the coexistence of larval (or neonatal) and adult heavy chains is maintained throughout life in adults.  相似文献   

3.
The isomyosins from dorsal axial muscle, which appear successively through metamorphosis of P.waltlii, are shown to be composed of identical fast-type light chains but of distinct heavy subunits. We observe that this modification goes with a change in ATPase activity as also in the case of mouse. Metamorphosis in amphibian as well as birth in mammalian are thus both accompanied by the synthesis of new myosins of higher catalytic efficiency.  相似文献   

4.
5.
Skeletal muscle myosin light chain kinase (skMLCK) is a dedicated Ca2+/calmodulin-dependent serine–threonine protein kinase that phosphorylates the regulatory light chain (RLC) of sarcomeric myosin. It is expressed from the MYLK2 gene specifically in skeletal muscle fibers with most abundance in fast contracting muscles. Biochemically, activation occurs with Ca2+ binding to calmodulin forming a (Ca2+)4•calmodulin complex sufficient for activation with a diffusion limited, stoichiometric binding and displacement of a regulatory segment from skMLCK catalytic core. The N-terminal sequence of RLC then extends through the exposed catalytic cleft for Ser15 phosphorylation. Removal of Ca2+ results in the slow dissociation of calmodulin and inactivation of skMLCK. Combined biochemical properties provide unique features for the physiological responsiveness of RLC phosphorylation, including (1) rapid activation of MLCK by Ca2+/calmodulin, (2) limiting kinase activity so phosphorylation is slower than contraction, (3) slow MLCK inactivation after relaxation and (4) much greater kinase activity relative to myosin light chain phosphatase (MLCP). SkMLCK phosphorylation of myosin RLC modulates mechanical aspects of vertebrate skeletal muscle function. In permeabilized skeletal muscle fibers, phosphorylation-mediated alterations in myosin structure increase the rate of force-generation by myosin cross bridges to increase Ca2+-sensitivity of the contractile apparatus. Stimulation-induced increases in RLC phosphorylation in intact muscle produces isometric and concentric force potentiation to enhance dynamic aspects of muscle work and power in unfatigued or fatigued muscle. Moreover, RLC phosphorylation-mediated enhancements may interact with neural strategies for human skeletal muscle activation to ameliorate either central or peripheral aspects of fatigue.  相似文献   

6.
Myosin heavy chain degradation fragments produced in vivo have been identified in chicken pectoralis muscle. The fragments were identified by electrophoresis of unfractionated extracts of chicken pectoralis muscle on sodium dodecyl sulfate/polyacrylamide gels followed by immunoblotting on nitrocellulose sheets. Monoclonal antibodies directed against the S2 and light meromyosin subfragments as well as type II myosin-specific polyclonal antibodies directed against the entire myosin heavy chain were used to characterize the fragments, which range in molecular weight from approximately 80,000 to 180,000. All fragments contain the extreme carboxy-terminal portion of the molecule and are distinct from the classical proteolytic fragments such as heavy and light meromyosin, S1, S2 or rod. These fragments appear to be produced in vivo by proteolytic cleavage of peptides from the amino-terminal (S1) end of the heavy chain while the myosin molecule is still embedded in the thick filament. Fragment concentrations are estimated to be approximately 5 to 10% of that of the intact myosin heavy chain. These fragments are not the result of artifactual damage to myosin, e.g. proteolysis or hydrodynamic shear. The techniques described in this paper provide a probe into the early stages of myosin and thick filament degradation in vivo.  相似文献   

7.
Myosin isoforms in mammalian skeletal muscle   总被引:9,自引:0,他引:9  
  相似文献   

8.
Myosin types in human skeletal muscle fibers   总被引:2,自引:0,他引:2  
By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

9.
Summary By combining enzyme histochemistry for fiber typing with immunohistochemistry for slow and fast myosin a correlation between fiber type and myosin type was sought in human skeletal muscle. Fiber typing was done by staining for myofibrillar ATPases after preincubation at discriminating pH values. Myosin types were discriminated using type specific anti-rabbit myosin antibodies shown to cross-react with human myosin and were visualized by a protein A-peroxidase method. Type I fibers were shown to contain slow myosin only, type IIA and IIB fibers fast myosin only, and type IIC fibers both myosins in various proportions. When muscle biopsies from well-trained athletes were investigated essentially the same staining pattern was observed. However, rarely occurring type I fibers with high glycolytic activity were detected containing additional small amounts of fast myosin and occasional type IIA fibers had small amounts of slow myosin. Based on the observation of various fiber types in which slow and fast myosin coexist we propose a dynamic continuum of fibers encompassing all fiber types.  相似文献   

10.
Gary Bailin 《BBA》1976,449(2):310-326
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (±2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37°C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 μM Ca2+ concentration (CaEGTA binding constant = 4.4 · 105 at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6–9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8-and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6–10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle  相似文献   

11.
Human skeletal natural actomyosin contained actin, tropomyosin, troponin and myosin components as judged by polyacrylamide gel electrophoresis in sodium dodecyl sulfate. Purified human myosin contained at least three light chains having molecular weights (+/-2000) of 25 000, 18 000 and 15 000. Inhibitory and calcium binding components of troponin were identified in an actin-tropomyosin-troponin complex extracted from acetone-dried muscle powder at 37 degrees C. Activation of the Mg-ATPase activity of Ca2+-sensitive human natural or reconstituted actomyosin was half maximal at approximately 3.4 muM Ca2+ concentration (CaEGTA binding constant equals 4.4 - 10(5) at pH 6.8). Subfragment 1, isolated from the human heavy meromyosin by digestion with papain, appeared as a single peak after DEAE-cellulose chromatography. In the pH 6-9 range, the Ca2+-ATPase activity of the subfragment 1 was 1.8- and 4-fold higher that the original heavy meromyosin and myosin, respectively. The ATPase activities of human myosin and its fragments were 6-10 fold lower than those of corresponding proteins from rabbit fast skeletal muscle. Human myosin lost approximately 60% of the Ca2+-ATPase activity at pH 9 without a concomitant change in the number of distribution of its light chains. These findings indicate that human skeletal muscle myosin resembles other slow and fast mammalian muscles. Regulation of human skeletal actomyosin by Ca2+ is similar to that of rabbit fast or slow muscle.  相似文献   

12.
Myosin is an asymmetric protein that comprises two globular heads (S1) and a double-stranded alpha-helical rod. We have investigated the effects of urea and the methylamines trimethylamine oxide (TMA-O) and glycine betaine (betaine) on activity and structure of skeletal muscle myosin. K(+) EDTA ATPase activity of myosin was almost completely inhibited by urea (2M); TMA-O stimulated myosin activity, whereas betaine had no effect. When combined with urea (0-2M), TMA-O or betaine (1 M) effectively protected the ATPase activity of myosin against inhibition. Intrinsic fluorescence measurements showed that in urea or TMA-O (0-2M), there were no shifts in the center of mass of the fluorescence spectrum of myosin, despite a decrease in fluorescence intensity. However, these osmolytes at concentrations above 2M produced a red shift in the emission spectrum. Betaine alone did not alter the center of mass at any concentration tested up to 5.2M. Thus, modifications in ATPase activity induced by low concentrations of solutes (<2M) are not directly correlated with the modifications in myosin structure detected by fluorescence. Both methylamines (>or=1M) were also able to protect myosin structure against urea-induced effects (2-8M). Protection was not observed for S1, supporting the hypothesis that these osmolytes have a biphasic effect on myosin: at lower concentrations there is an effect on the globular portion (S1), and at higher concentrations there is an effect on the coiled-coil (rod) portion of myosin.  相似文献   

13.
Overload hypertrophy of the chicken anterior latissimus dorsi muscle is accompanied by a replacement of one myosin isoenzyme (slow myosin-1, SM1) by another (slow myosin-2, SM2). To investigate the molecular mechanisms by which these changes occur, we measured the fractional synthesis rates (ks) in vivo of individual myosin-heavy-chain isoenzymes, total actin and total protein during the first 72 h of muscle growth. Although the ks of total protein and actin were doubled at 24 h, the ks for SM1 and SM2 were depressed. However, the ks of both isomyosins were nearly tripled by 72 h. Despite the increase in muscle size observed at 72 h, the amount of SM1 was reduced by half, indicating increased degradation of SM1. Results of translation of polyribosomes in vitro paralleled the results obtained in vivo. The proportion of total polyadenylylated mRNA in total RNA was increased at 48 and 72 h, but unchanged at 24 h despite the increase in protein synthesis at 24 h. Nuclease-protection analyses indicate that the level of specific SM1 and SM2 mRNAs change in a reciprocal fashion during overload. We conclude that gene-specific and temporal differences exist in the regulatory mechanisms that control overload-induced muscle growth.  相似文献   

14.
15.
16.
17.
18.
After experimental cease of neurotrophic control of skeletal muscle by denervation no changes in myosin ATP-ase histochemistry and immunohistochemical profile in slow (m. soleus) muscle of guinea pig were found. All muscle fibers in intact muscle fibers). However after colchicine blockade of axoplasmic transport in this slow muscle some muscle fibers reacting with monoclonal antibodies against fast myosin heavy chain were found. At the same time no changes in histochemical ATP-ase profile were observed. Validity of myosin ATP-ase histochemistry for muscle fibers typing as well as possible influence of nerve activity and neurotrophic control itself were discussed.  相似文献   

19.
Slow myosin in developing rat skeletal muscle   总被引:6,自引:6,他引:6       下载免费PDF全文
Through S1 nuclease mapping using a specific cDNA probe, we demonstrate that the slow myosin heavy-chain (MHC) gene, characteristic of adult soleus, is expressed in bulk hind limb muscle obtained from the 18-d rat fetus. We support these results by use of a monoclonal antibody (mAb) which is highly specific to the adult slow MHC. Immunoblots of MHC peptide maps show the same peptides, uniquely recognized by this antibody in adult soleus, are also identified in 18-d fetal limb muscle. Thus synthesis of slow myosin is an early event in skeletal myogenesis and is expressed concurrently with embryonic myosin. By immunofluorescence we demonstrate that in the 16-d fetus all primary myotubes in future fast and future slow muscles homogeneously express slow as well as embryonic myosin. Fiber heterogeneity arises owing to a developmentally regulated inhibition of slow MHC accumulation as muscles are progressively assembled from successive orders of cells. Assembly involves addition of new, superficial areas of the anterior tibial muscle (AT) and extensor digitorum longus muscle (EDL) in which primary cells initially stain weakly or are unstained with the slow mAb. In the developing AT and EDL, expression of slow myosin is unstable and is progressively restricted as these muscles specialize more and more towards the fast phenotype. Slow fibers persisting in deep portions of the adult EDL and AT are interpreted as vestiges of the original muscle primordium. A comparable inhibition of slow MHC accumulation occurs in the developing soleus but involves secondary, not primary, cells. Our results show that the fate of secondary cells is flexible and is spatially determined. By RIA we show that the relative proportions of slow MHC are fivefold greater in the soleus than in the EDL or AT at birth. After neonatal denervation, concentrations of slow MHC in the soleus rapidly decline, and we hypothesize that, in this muscle, the nerve protects and amplifies initial programs of slow MHC synthesis. Conversely, the content of slow MHC rises in the neonatally denervated EDL. This suggests that as the nerve amplifies fast MHC accumulation in the developing EDL, accumulation of slow MHC is inhibited in an antithetic fashion. Studies with phenylthiouracil-induced hypothyroidism indicate that inhibition of slow MHC accumulation in the EDL and AT is not initially under thyroid regulation. At later stages, the development of thyroid function plays a role in inhibiting slow MHC accumulation in the differentiating EDL and AT.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Immunocytochemical characteristics of myosin have been demonstrated directly in normal and cross-reinnervated skeletal muscle fibers whose physiological properties have been defined. Fibers belonging to individual motor units were identified by the glycogen-depletion method, which permits correlation of cytochemical and physiological data on the same fibers. The normal flexor digitorum longus (FDL) of the cat is composed primarily of fast-twitch motor units having muscle fibers with high myosin ATPase activity. These fibers reacted with antibodies specific for the two light chains characteristic of fast myosin, but not with antibodies against slow myosin. Two categories of fast fibers, corresponding to two physiological motor unit types (FF and FR), differed in their immunochemical response, from which it can be concluded that their myosins are distinctive. The soleus (SOL) consists almost entirely of slow-twitch motor units having muscle fibers with low myosin ATPase activity. These fibers reacted with antibodies against slow myosin, but not with antibodies specific for fast myosin. When the FDL muscle was cross-reinnervated by the SOL nerve, twitch contraction times were slowed about twofold, and motor units resembled SOL units in a number of physiological properties. The corresponding muscle fibers had low ATPase activity, and they reacted with antibodies against slow myosin only. The myosin of individual cross-reinnervated FDL muscle units was therefore transformed, apparently completely, to a slow type. In contrast, cross-reinnervation of the SOL muscle by FDL motoneurons did not effect a complete converse transformation. Although cross-reinnervated SOL motor units had faster than normal twitch contraction times (about twofold), other physiological properties characteristic of type S motor units were unchanged. Despite the change in contraction times, cross-reinnervated SOL muscle fibers exhibited no change in ATPase activity. They also continued to react with antibodies against slow myosin, but in contrast to the normal SOL, they now showed a positive response to an antibody specific for one of the light chains of fast myosin. The myosins of both fast and slow muscles were thus converted by cross-reinnervation, but in the SOL, the newly synthesized myosin was not equivalent to that normally present in either the FDL or SOL. This suggests that, in the SOL, alteration of the nerve supply and the associated dynamic activity pattern are not sufficient to completely respecify the type of myosin expressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号