首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The structure of the gene for a small, very basic ribosomal protein in Sulfolobus solfataricus has been determined and the structure of the protein coded by this gene (L46e) has been confirmed by partial amino acid sequencing. The protein shows substantial sequence homology to the eukaryotic ribosomal proteins L39 in rat and L46 in yeast. There is no sequence homology to any of the eubacterial ribosomal proteins suggesting that this protein is absent in the eubacterial ribosome.  相似文献   

2.
The structure of the gene for a small, very basic ribosomal protein in Sulfolobus solfataricus has been determined and the structure of the protein coded by this gene (L46e) has been confirmed by partial amino acid sequencing. The protein shows substantial sequence homology to the eukaryotic ribosomal proteins L39 in rat and L46 in yeast. There is no sequence homology to any of the eubacterial ribosomal proteins suggesting that this protein is absent in the eubacterial ribosome.  相似文献   

3.
A 1643 base pair fragment encoding the S3 and L29 equivalent ribosomal proteins has been sequenced from the archaebacterium Halobacterium halobium. The incomplete open reading frame present upstream from the S3 gene encodes a protein homologous to the eubacterial ribosomal protein L22. The initiation codons of the S3 and L29 genes overlap with the termination codons of the upstream genes. A tight physical organization suggests that these genes are transcribed as a polycistronic operon. Peculiarities of the protein structure and gene organization are discussed.  相似文献   

4.
The yeast tcml gene, which codes for ribosomal protein L3, has been isolated by using recombinant DNA and genetic complementation. The DNA fragment carrying this gene has been subcloned and we have determined its DNA sequence. The 20 amino acid residues at the amino terminus as inferred from the nucleotide sequence agreed exactly with the amino acid sequence data. The amino acid composition of the encoded protein agreed with that determined for purified ribosomal protein L3. Codon usage in the tcml gene was strongly biased in the direction found for several other abundant Saccharomyces cerevisiae proteins. The tcml gene has no introns, which appears to be atypical of ribosomal protein structural genes.  相似文献   

5.
Yeast ribosomal protein S33 is encoded by an unsplit gene.   总被引:12,自引:8,他引:4       下载免费PDF全文
The structure of the gene coding for ribosomal protein S33, - a protein which escapes the coordinate control of ribosomal protein synthesis in rna 2 mutant cells -, was determined by sequence analysis. The gene comprises an uninterrupted coding region of 204 nucleotides encoding a protein of 8.9 kD. Like for other yeast ribosomal protein genes that have been sequenced so far, a relatively strong codon bias was observed. By S1 nuclease mapping the 5' end of the S33 mRNA was shown to be located at 11 to 15 nucleotides upstream from the initiation codon.  相似文献   

6.
The gene encoding protein n of the Escherichia coli primosome has been discovered in the rpsF-rpsR-rplI ribosomal protein operon and designated priB. The low copy number of PriB protein and the distinctive codon usage of its gene argue against its being a ribosomal protein. A strain which overproduces PriB was constructed and has been used to purify the protein to homogeneity. The overproduced protein behaves like that purified from wild-type cells.  相似文献   

7.
8.
A DNA fragment containing the structural gene for the 5 S ribosomal RNA and intergenic regions before and after the 35 S ribosomal RNA precursor gene of Saccharomyces cerevisiae has been amplified in a bacterial plasmid and physically mapped by restriction endonuclease cleavage and hybridization to purified yeast 5 S ribosomal RNA. The nucleotide sequence of the DNA fragments carrying the 5 S ribosomal RNA gene and adjacent regions has been determined. The sequence unambiguously identifies the 5 S ribosomal RNA gene, determines its polarity within the ribosomal DNA repeating unit, and reveals the structure of its promoter and termination regions. Partial DNA sequence of the regions near the beginning and end of the 35 S ribosomal RNA gene has also been determined as a preliminary step in establishing the structure of promoter and termination regions for the 35 S ribosomal RNA gene.  相似文献   

9.
10.
A small and extremely basic ribosomal protein (HL46e) has been purified from Halobacterium marismortui using reversed-phase high-performance liquid chromatography (HPLC). The amino acid sequence of the protein was determined by automated N-terminal and internal sequence analysis. Comparison of this sequence with other ribosomal protein sequences from eubacteria, archaebacteria and eukaryotes revealed a strong homology to SL46e from Sulfolobus solfataricus, YeaL46 from yeast and RL39 from rat. No significant sequence similarly was found to any eubacterial ribosomal protein so far known. Using a specific oligonucleotide probe the HL46e gene was identified, cloned and the nucleotide sequence including the 5'- and 3'-flanking regions were analysed. The HL46e gene is followed by the gene coding for HL30. A putative halobacterial promoter sequence with the motive 'TTTAAA' has been localized 32 bp upstream of the HL46e gene and a putative terminator sequence localized downstream from the HL30 gene. An equivalent to this HL46e/HL30 operon is apparently not present in Escherichia coli.  相似文献   

11.
A DNA fragment containing the genes for the eight ribosomal proteins HmaL3, HL6, HmaL23, HmaL2, HmaS19, HmaL22, HmaS3, and HmaL29 from Halobacterium marismortui has been cloned and sequenced. The organization of this gene cluster in general corresponds to the S10 operon of Escherichia coli although there exists some differences between them. The sequence analysis of the 5'- and 3'-region of the gene cluster revealed three open reading frames (orf1, orf2, and orf3) which do not code for any ribosomal protein whose structure is known. A putative promoter is located upstream of orf1. Out of the eight ribosomal proteins five have counterparts in eubacteria only, two in both eubacteria and eukaryotes, and one is exclusively related to an eukaryotic ribosomal protein.  相似文献   

12.
The yeast ribosomal protein L32 and its gene   总被引:12,自引:0,他引:12  
  相似文献   

13.
Recently, an unusual gene structure has been described in species of the genus Thermus, in which the rpmH (ribosomal protein L34) coding sequence was found to be entirely overlapped by the unusually large rnpA (RNase P protein subunit) sequence. Gene overlap is common in viruses, but has not been seen to this extent in any bacterium.  相似文献   

14.
Lim Y  Lee SM  Kim M  Lee JY  Moon EP  Lee BJ  Kim J 《Gene》2002,286(2):291-297
Analysis of the complete genomic structure of the human ribosomal protein S3 (rpS3) gene revealed the presence of a functional U15b snoRNA gene in its intron. Human ribosomal protein S3 (rpS3) gene of 6115 bp long has been identified to contain six introns and seven exons in this study. The first and fifth introns of human S3 gene contain functional U15 snoRNA genes. Although Xenopus and Fugu counterparts also have six introns and seven exons, S3 gene of Fugu contains two functional U15 snoRNAs in the fourth and sixth introns and two pseudo genes for U15 snoRNAs in the first and fifth introns. In Xenopus S1 gene encoding ribosomal protein S3, however, three of its six introns contain U15 snoRNA gene sequence. Sequence comparison of the U15 genes from Xenopus, Fugu and human revealed that the regions involved in binding to 28S rRNA and the consensus sequence (C, D and D' boxes) for snoRNAs are highly conserved among those genes from these three species. Human U15a and U15b RNAs which are derived from the first and the fifth introns, respectively, have been identified to be functional by microinjection of human U15a and U15b snoRNAs into Xenopus oocyte. Northern blot and primer extension analyses confirm that human U15b snoRNA is expressed in vivo.  相似文献   

15.
A cosmid clone bank of yeast DNA has been used to isolate the cycloheximide resistance gene cyh2 of Saccharomyces cerevisiae. A cosmid carrying this gene was identified by cross hybridization to another cloned gene, tsm437. The two genes, which are tightly linked genetically are both present on a 31 kb segment of cloned DNA. The cyh2 gene encodes ribosomal protein L29, a component of the large subunit. Blot hybridization analysis reveals that this gene is present as a single copy in the yeast genome, unlike many other yeast ribosomal protein genes which appear to be duplicated. The cyh2 gene also appears to contain an intervening sequence, a characteristic common to most yeast ribosomal protein genes that have been cloned.  相似文献   

16.
The sequence of a gene for ribosomal protein L4 of Saccharomyces cerevisiae has been determined. Unlike most ribosomal protein genes of S. cerevisiae this gene has no intron. The single open reading frame predicts that L4 is highly homologous to mammalian ribosomal protein L7a. There appear to be two genes for L4, both of which are active.  相似文献   

17.
An intron in a ribosomal protein gene from Tetrahymena   总被引:10,自引:0,他引:10       下载免费PDF全文
We have cloned and sequenced a single copy gene encoding a ribosomal protein from the ciliate Tetrahymena thermophila. The gene product was identified as ribosomal protein S25 by comparison of the migration in two-dimensional polyacrylamide gels of the protein synthesized by translation in vitro of hybrid-selected mRNA and authentic ribosomal proteins. The proteins show strong homology to ribosomal protein S12 from Escherichia coli. The coding region of the gene is interrupted by a 979-bp intron 68 bp downstream of the translation start. This is the first intron in a protein encoding gene of a ciliate to be described at the nucleotide sequence level. The intron obeys the GT/AG rule for splice junctions of nuclear mRNA introns from higher eukaryotes but lacks the pyrimidine stretch usually found in the immediate vicinity of the 3' splice junction. The structure of the intron and the fact that it is found together with the well described self-splicing rRNA intron is discussed in relation to the evolution of RNA splicing.  相似文献   

18.
19.
20.
A yeast ribosomal protein gene whose intron is in the 5' leader   总被引:13,自引:0,他引:13  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号