首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Cyclin-dependent kinase (CDK) inhibitor genes encode low molecular weight proteins which have important functions in cell cycle regulation, development and perhaps also in tumorigenesis. The first plant CDK inhibitor gene ICK1 was recently identified from Arabidopsis thaliana . Although the C-terminal domain of ICK1 contained an important consensus sequence with the mammalian CDK inhibitor p27Kip1, the remainder of the deduced ICK1 sequence showed little similarity to any known CDK inhibitors. In vitro assays showed that recombinant ICK1 exhibited unique kinase inhibitory properties. In the present study we characterized ICK1 in terms of its gene structure, its interaction with both A. thaliana Cdc2a and CycD3, and its induction by the plant growth regulator, abscisic acid (ABA). ICK1 was expressed at a relatively low level in the tissues surveyed. However, ICK1 was induced by ABA, and along with ICK1 induction there was a decrease in Cdc2-like histone H1 kinase activity. These results suggest a molecular mechanism by which plant cell division might be inhibited by ABA. ICK1 clones were also identified from independent yeast two-hybrid screens using the CycD3 construct. The implication that ICK1 protein could interact with both Cdc2a and CycD3 was confirmed by in vitro binding assays. Furthermore, deletion analysis indicated that different regions of ICK1 are required for the interactions with Cdc2a and CycD3. These results provide a mechanistic basis for understanding the role of CDK inhibitors in cell cycle regulation in plant cells.  相似文献   

2.
Interactor/inhibitor 1 of Cdc2 kinase (ICK1) from Arabidopsis thaliana is the first plant cyclin-dependent kinase (CDK) inhibitor, and overexpression of ICK1 inhibits CDK activity, cell division and plant growth in transgenic plants. In this study, ICK1 and deletion mutants were expressed either alone or as green fluorescent protein (GFP) fusion proteins in transgenic Arabidopsis plants. Deletion of the C-terminal 15 or 29 amino acids greatly reduced or completely abolished the effects of ICK1 on the transgenic plants, and recombinant proteins lacking the C-terminal residues lost the ability to bind to CDK complex and the kinase inhibition activity, demonstrating the role of the conserved C-terminal domain in in vivo kinase inhibition. In contrast, the mutant ICK1DeltaN108 with the N-terminal 108 residues deleted had much stronger effects on plants than the full-length ICK1. Analyses demonstrated that this effect was not because of an enhanced ability of ICK1DeltaN108 protein to inhibit CDK activity, but a result of a much higher level of ICK1DeltaN108 protein in the plants, indicating that the N-terminal domain contains a sequence or element increasing protein instability in vivo. Furthermore, GFP-ICK1 protein was restricted to the nuclei in roots of transgenic plants, even with the C-terminal or the N-terminal domain deleted, suggesting that a sequence in the central domain of ICK1 is responsible for nuclear localization. These results provide mechanistic understanding about the function and regulation of this cell cycle regulator in plants.  相似文献   

3.
4.
The plant CDK inhibitor ICK1 was identified previously from Arabidopis thaliana with its inhibitory activity characterized in vitro. ICK1 displayed several structural and functional features that are distinct from known animal CDK inhibitors. Despite the initial characterization, there is no information on the functions of any plant CDK inhibitor in plants. To gain insight into ICK1 functions in vivo and the role of cell division during plant growth and development, transgenic plants were generated expressing ICK1 driven by the cauliflower mosaic virus 35S promoter. In comparison to control plants, growth was significantly inhibited in transgenic 35S-ICK1 plants, with some plants weighing <10% of wild-type plants at the 3 week stage. Most organs of 35S-ICK1 plants were smaller. There were also modifications in plant morphology such as shape and serration of leaves and petals. The changes were so drastic that 35S-ICK1 plants with strong phenotype no longer resembled wild-type plants morphologically. Analyses showed that increased ICK1 expression resulted in reduced CDK activity and reduced the number of cells in these plants. Cells in 35S-ICK1 plants were larger than corresponding cells in control plants. These results demonstrate that ICK1 acts as a CDK inhibitor in the plant, and the inhibition of cell division by ICK1 expression has profound effects on plant growth and development. They also suggest that alterations of plant organ shape can be achieved by restriction of cell division.  相似文献   

5.
A positive correlation between cell size and DNA content has been recognized in many plant cell types. Conversely, misexpression of a dominant-negative cyclin-dependent kinase (CDK) or CDK inhibitor proteins (ICK/KRPs) in Arabidopsis and tobacco leaves has revealed that cell growth can be uncoupled from cell cycle progression and DNA content. However, cell growth also appears to be controlled in a non-cell-autonomous manner by organ size, making it difficult in a ubiquitous expression assay to judge the cell-autonomous function of putative cell growth regulators. Here, we investigated the function of the CDK inhibitor ICK1/KRP1 on cell growth and differentiation independent of any compensatory influence of an organ context using Arabidopsis trichomes as a model system. By analyzing cell size with respect to DNA content, we dissected cell growth in a DNA-dependent and a DNA-independent process. We further found that ICK1/KRP1 misexpression interfered with differentiation and induced cell death, linking cell cycle progression, differentiation, and cell death in plants. The function of ICK1/KRP1 in planta was found to be dependent on a C-terminal domain and regulated negatively by an N-terminal domain. Finally, we identified CDKA;1 and a D-type cyclin as possible targets of ICK1/KRP1 expression in vivo.  相似文献   

6.
7.
Zhou Y  Wang H  Gilmer S  Whitwill S  Keller W  Fowke LC 《Planta》2002,215(2):248-257
The cyclin-dependent protein kinases (CDKs) have a central role in cell cycle regulation and can be inhibited by the binding of small protein CDK inhibitors. The first plant CDK inhibitor gene ICK1 was previously identified in Arabidopsis thaliana. In comparison to known animal CDK inhibitors, ICK1 protein exhibits unique structural and functional properties. The expression of ICK1 directed by the constitutive CaMV 35S promoter was shown to inhibit cell division and plant growth. The aim of this study was to determine the effects of ICK1 overexpression on particular organs and cells. ICK1 was expressed in specific tissues or cells of Brassica napus L. plants using two tissue-specific promoters, Arabidopsis AP3 and Brassica Bgp1. Transgenic AP3-ICK1 plants were morphologically normal except for some modified flowers either without petals or with petals of reduced size. Surprisingly, petals of novel shapes such as tubular petals were also observed, indicating a profound effect of cell division inhibition on morphogenesis. The cell size in the smaller modified petals was similar to that in control petals, suggesting that the reduction of petal size is mainly due to the reduction of cell numbers and that the inhibition of cell division does not necessarily lead to an increase in cell size. Transgenic Bgp1-ICK1 plants were normal morphologically; however, dramatic decreases in seed production were observed in some plants. In those plants, the ability of pollen to germinate and pollen nuclear number were affected. These results are discussed in relation to the cell cycle and plant development.  相似文献   

8.
The ICK/KRP family of cyclin‐dependent kinase (CDK) inhibitors modulates the activity of plant CDKs through protein binding. Previous work has shown that changing the levels of ICK/KRP proteins by overexpression or downregulation affects cell proliferation and plant growth, and also that the ubiquitin proteasome system is involved in degradation of ICK/KRPs. We show in this study that the region encompassing amino acids 21 to 40 is critical for ICK1 levels in both Arabidopsis and yeast. To determine how degradation of ICK1 is controlled, we analyzed the accumulation of hemagglutinin (HA) epitope‐tagged ICK1 proteins in yeast mutants defective for two ubiquitin E3 ligases. The highest level of HA‐ICK1 protein was observed when both the N‐terminal 1–40 sequence was removed and the SCF (SKP1–Cullin1–F‐box complex) function disrupted, suggesting the involvement of both SCF‐dependent and SCF‐independent mechanisms in the degradation of ICK1 in yeast. A short motif consisting of residues 21–30 is sufficient to render green fluorescent protein (GFP) unstable in plants and had a similar effect in plants regardless of whether it was fused to the N‐terminus or C‐terminus of GFP. Furthermore, results from a yeast ubiquitin receptor mutant rpn10Δ indicate that protein ubiquitination is not critical in the degradation of GFP‐ICK11–40 in yeast. These results thus identify a protein‐destabilizing sequence motif that does not contain a typical ubiquitination residue, suggesting that it probably functions through an SCF‐independent mechanism.  相似文献   

9.
Cyclin dependent kinases (CDKs) play important roles in the plant cell cycle, a highly coordinated process in plant growth and development. To understand the regulatory network involving the CDKs, we have examined the role of ACK1, a gene that has significant homology to known ICKs (inhibitors of CDKs), but occupies a distinct branch of the ICK phylogenetic tree. Overexpression of ACK1 in transgenic Arabidopsis significantly inhibited growth, leading to effects such as serration of leaves, as a result of strong inhibition of cell division in the leaf meristem. ACK1 transgenic plants also differed morphologically from control Arabidopsis plants, and the cells of ACK1 transgenics were more irregular than the corresponding cells of control plants. These results suggest that ACK1 acts as a CDK inhibitor in Arabidopsis, and that the alterations in leaf shape may be the result of restricted cell division.  相似文献   

10.
. The cyclin-dependent kinase (CDK) inhibitors ICK1 and ICK2 have been shown to inhibit plant CDK activity in vitro, and the expression of ICK1 was able to inhibit cell division in the plant and modify plant growth and morphology. In order to characterize other ICK1-related inhibitor genes and understand possible differences among plant CDK inhibitors, the interactions of plant CDK inhibitors with cell cycle regulators were analysed in the yeast two-hybrid system and their functions were compared in transgenic Arabidopsis plants. Yeast two-hybrid results indicate that there are likely two groups of plant CDK inhibitors. The A-group inhibitors ICK1, ICK2, ICK6 and ICK7 interact with Cdc2a and three D-type cyclins (D1, D2 and D3), while the B-group inhibitors ICK4, ICK5 and ICKCr interact with D-type cyclins but not with Arabidopsis Cdc2a. ICK1 (A-group), and ICK4 and ICKCr (B-group) were expressed separately in transgenic Arabidopsis plants. Overexpression of the three inhibitor genes resulted in plants of a smaller size with serrated leaves and modified flowers. These plants also had reduced nuclear DNA content (polyploidy), suggesting that expression of these inhibitors affected endoreduplication. Further, there were apparent differences in the strength of effect among the inhibitors. These results provide the first evidence on the CDK inhibitory function for ICK4 and ICKCr. They also suggest that these CDK inhibitors play important roles in cell division and plant growth.  相似文献   

11.
Recent studies have shown that cyclin-dependent kinase (CDK) inhibitors can have a tremendous impact on cell cycle progression in plants. In animals, CDK inhibitors are tightly regulated, especially by posttranslational mechanisms of which control of nuclear access and regulation of protein turnover are particularly important. Here we address the posttranslational regulation of INHIBITOR/INTERACTOR OF CDK 1 (ICK1)/KIP RELATED PROTEIN 1 (KRP1), an Arabidopsis (Arabidopsis thaliana) CDK inhibitor. We show that ICK1/KRP1 exerts its function in the nucleus and its presence in the nucleus is controlled by multiple nuclear localization signals as well as by nuclear export. In addition, we show that ICK1/KRP1 localizes to different subnuclear domains, i.e. in the nucleoplasm and to the chromocenters, hinting at specific actions within the nuclear compartment. Localization to the chromocenters is mediated by an N-terminal domain, in addition we find that this domain may be involved in cyclin binding. Further we demonstrate that ICK1/KRP1 is an unstable protein and degraded by the 26S proteasome in the nucleus. This degradation is mediated by at least two domains indicating the presence of at least two different pathways impinging on ICK1/KRP1 protein stability.  相似文献   

12.
The activation of cyclin-dependent protein kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). The R2 protein of rice is very similar to CAKs of animals and fission yeast at the amino acid level but phosphorylation by R2 has not yet been demonstrated. When R2 was overexpressed in a CAK-deficient mutant of budding yeast, it suppressed the temperature sensitivity of the mutation. Immunoprecipitates of rice proteins with the anti-R2 antibody phosphorylated human CDK2, one of the rice CDKs (Cdc2Os1), and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II of Arabidopsis. Mutational analysis indicated that R2 phosphorylated the threonine residue within the T-loop of CDK2 and Cdc2Os1. R2 was found mainly in two protein complexes which had molecular masses of 190 kDa and 70 kDa, respectively, whilst the CDK- and CTD-kinase activities associated with R2 were identified in a complex of 105 kDa. These results indicate that R2 is closely related to CAKs of animals and fission yeast in terms of its phosphorylation activity and, moreover, that this CAK of rice is distinct from a CAK of the dicotyledonous plant Arabidopsis.  相似文献   

13.
The regulation of the vertebrate cell cycle is controlled by the function of cyclin-dependent kinases (CDKs), cyclins, and CDK inhibitors. The Xenopus laevis kinase inhibitor, p27(Xic1) (Xic1) is a member of the p21(Cip1)/p27(Kip1)/p57(Kip2) CDK inhibitor family and inhibits CDK2-cyclin E in vitro as well as DNA replication in Xenopus egg extracts. Xic1 is targeted for degradation in interphase extracts in a manner dependent on both the ubiquitin conjugating enzyme, Cdc34, and nuclei. Here we show that ubiquitination of Xic1 occurs exclusively in the nucleus and that nuclear localization of Xic1 is necessary for its degradation. We find that Xic1 nuclear localization is independently mediated by binding to CDK2-cyclin E and by nuclear localization sequences within the C terminus of Xic1. Our results also indicate that binding of Xic1 to CDK2-cyclin E is dispensable for Xic1 ubiquitination and degradation. Moreover, we show that amino acids 180-183 of Xic1 are critical determinants of Xic1 degradation. This region of Xic1 may define a motif of Xic1 essential for recognition by the ubiquitin conjugation machinery or for binding an alternate protein required for degradation.  相似文献   

14.
The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G1-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.  相似文献   

15.
Liu J  Zhang Y  Qin G  Tsuge T  Sakaguchi N  Luo G  Sun K  Shi D  Aki S  Zheng N  Aoyama T  Oka A  Yang W  Umeda M  Xie Q  Gu H  Qu LJ 《The Plant cell》2008,20(6):1538-1554
Following meiosis, plant gametophytes develop through two or three rounds of mitosis. Although the ontogeny of gametophyte development has been defined in Arabidopsis thaliana, the molecular mechanisms regulating mitotic cell cycle progression are not well understood. Here, we report that RING-H2 group F 1a (RHF1a) and RHF2a, two RING-finger E3 ligases, play an important role in Arabidopsis gametogenesis. The rhf1a rhf2a double mutants are defective in the formation of male and female gametophytes due to interphase arrest of the mitotic cell cycle at the microspore stage of pollen development and at female gametophyte stage 1 of embryo sac development. We demonstrate that RHF1a directly interacts with and targets a cyclin-dependent kinase inhibitor ICK4/KRP6 (for Interactors of Cdc2 Kinase 4/Kip-related protein 6) for proteasome-mediated degradation. Inactivation of the two redundant RHF genes leads to the accumulation of ICK4/KRP6, and reduction of ICK4/KRP6 expression largely rescues the gametophytic defects in rhf1a rhf2a double mutants, indicating that ICK4/KRP6 is a substrate of the RHF E3 ligases. Interestingly, in situ hybridization showed that ICK4/KRP6 was predominantly expressed in sporophytes during meiosis. Our findings indicate that RHF1a/2a-mediated degradation of the meiosis-accumulated ICK4/KRP6 is essential to ensure the progression of subsequent mitoses to form gametophytes in Arabidopsis.  相似文献   

16.
In animals, cyclin-dependent kinase inhibitors (CKIs) are important regulators of cell cycle progression. Recently, putative CKIs were also identified in plants, and in previous studies, Arabidopsis thaliana plants misexpressing CKIs were found to have reduced endoreplication levels and decreased numbers of cells consistent with a function of CKIs in blocking the G1-S cell cycle transition. Here, we demonstrate that at least one inhibitor from Arabidopsis, ICK1/KRP1, can also block entry into mitosis but allows S-phase progression causing endoreplication. Our data suggest that plant CKIs act in a concentration-dependent manner and have an important function in cell proliferation as well as in cell cycle exit and in turning from a mitotic to an endoreplicating cell cycle mode. Endoreplication is usually associated with terminal differentiation; we observed, however, that cell fate specification proceeded independently from ICK1/KRP1-induced endoreplication. Strikingly, we found that endoreplicated cells were able to reenter mitosis, emphasizing the high degree of flexibility of plant cells during development. Moreover, we show that in contrast with animal CDK inhibitors, ICK1/KRP1 can move between cells. On the one hand, this challenges plant cell cycle control with keeping CKIs locally controlled, and on the other hand this provides a possibility of linking cell cycle control in single cells with the supracellular organization of a tissue or an organ.  相似文献   

17.
Identification of proteins interacting with the Arabidopsis Cdc2aAt protein   总被引:2,自引:0,他引:2  
Cyclin-dependent kinases (CDK5) control the progression throughthe cell cycle. Using a two-hybrid approach, two clones encodingproteins interacting with the Arabidopsis thailana CDK Cdc2aAtwere identified. One clone encoded a novel putative substrateof Cdc2aAt, whereas the second clone was identified as a D-typecyclin (cycDl;1). Key words: Arabidopsis thaliana, cell cycle, cyclin, cyclindependent kinases, yeast two-hybrid screening  相似文献   

18.
Modified p27 Kip1 is efficient in suppressing HER2-mediated tumorigenicity   总被引:1,自引:0,他引:1  
Cyclin-dependent kinase (CDK) inhibitor p27 Kip1, a haplo-insufficient tumor suppressor, is downregulated by oncogenic signal of HER2, a receptor tyrosine kinase oncogene. HER2 promotes mitogenic growth and transformation of cancer cells. HER2 signaling can enhance p27 Kip1 ubiquitination, thereby promoting p27 degradation and subsequent activation of CDK activity. p27 ubiquitination and degradation is enhanced by JAB1 binding as well as by phosphorylation on Thr187. In this study, we generated modified p27 proteins, which are mutated at Thr 187 or deleted at JAB1 binding domain. We applied these modified p27 genes as novel anticancer agents for HER2-overexpressing cells under the control of a tetracycline (tet)-regulated gene expression system. Induction of p27 T187A and p27 T187A DeltaJAB inhibits HER2-activated cell growth, CDK2 activity, cell proliferation, and transformation. Significantly, a modified protein (p27 T187ADeltaJAB) reduced the tumor volume in a HER2-overexpressing tumor model efficiently. These findings demonstrate the applicability of employing modified p27 proteins as a therapeutic intervention in HER2-overexpressing cancers.  相似文献   

19.
Cyclin-dependent kinases (CDKs) play an essential role in cell cycle regulation during the embryonic and post-embryonic development of various organisms. Full activation of CDKs requires not only binding to cyclins but also phosphorylation of the T-loop domain. This phosphorylation is catalysed by CDK-activating kinases (CAKs). Plants have two distinct types of CAKs, namely CDKD and CDKF; in Arabidopsis, CDKF;1 exhibits the highest CDK kinase activity in vitro . We have previously shown that CDKF;1 also functions in the activation of CDKD;2 and CDKD;3 by T-loop phosphorylation. Here, we isolated the knockout mutants of CDKF;1 and showed that they had severe defects in cell division, cell elongation and endoreduplication. No defect was observed during embryogenesis, suggesting that CDKF;1 function is primarily required for post-embryonic development. In the cdkf;1 mutants, T-loop phosphorylation of CDKA;1, an orthologue of yeast Cdc2/Cdc28p, was comparable to that in wild-type plants, and its kinase activity did not decrease. In contrast, the protein level and kinase activity of CDKD;2 were significantly reduced in the mutants. Substitution of threonine-168 with a non-phosphorylatable alanine residue made CDKD;2 unstable in Arabidopsis tissues. These results indicate that CDKF;1 is dispensable for CDKA;1 activation but is essential for maintaining a steady-state level of CDKD;2, thereby suggesting the quantitative regulation of a vertebrate-type CAK in a plant-specific manner.  相似文献   

20.
p27(Kip1) (p27) is often inappropriately downregulated in aggressive human cancers. Although p27 can inhibit cyclin-dependent kinases (CDKs), low p27 does not always correlate with increased CDK activity. Furthermore, cells derived from p27(-/-) mice respond to antimitogens, maintain restriction point control, and do not deregulate CDKs. Thus, disruption of a p27 function other than CDK inhibition may contribute to the disease state. A yeast two-hybrid screen identified growth factor receptor-bound protein 2 (GRB2) as a p27 binding partner. We now demonstrate that p27 can inhibit GRB2 function by blocking its association with the guanine nucleotide exchange factor SOS. Endogenous p27 is rapidly exported from the nucleus to the cytoplasm in response to mitogen stimulation, where it binds GRB2 concomitant with a decrease in GRB2-associated SOS. As predicted, mitogen-stimulated p27(-/-) cells maintained their GRB2-SOS complexes for significantly longer. The Ras/mitogen-activated protein kinase pathway does not appear to be deregulated in cells lacking p27 despite excess GRB2-SOS, suggesting that additional control mechanisms are present. A transient-transfection approach was employed to show that p27 can inhibit Ras activation by targeting GRB2 and further revealed that the CDK and GRB2 inhibitory functions of p27 are separable and distinct. Thus, p27 downregulation may compromise control of Ras, one of the most common oncogenic events in human cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号