首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The well-documented Floridian Gulf/Atlantic marine genetic disjunction provides an influential example of presumed vicariant cladogenesis along a continental coastline for major elements of a diverse nearshore fauna. However, it is unclear if this disjunction represents a local anomaly for regionally distributed morphospecies, or if it is merely one of many such cryptic phylogenetic splits that underlay their assumed genetic cohesiveness. We aimed to place the previously characterized scorched mussel Gulf/Atlantic genetic disjunction into a regional phylogenetic perspective by incorporating genotypes of nominal conspecifics sampled throughout the Caribbean Basin as well as those of eastern Pacific potential geminate species. Our results show it to be one of multiple latent regional genetic disjunctions, involving five cryptic Caribbean species, that appear to be the product of a long history of regional cladogenesis. Disjunctions involving three stem lineages clearly predate formation of the Isthmus of Panama and of the Caribbean Sea, although four of the five cryptic species have within-basin sister relationships. Surprisingly, the Atlantic clade was also found to be widespread in the southern Caribbean, and ancestral demography calculations through time for Atlantic coast-specific genotypes are consistent with a northward range extension after the last glacial maximum. Our new data seriously undermine the hypothesis of a Floridian vicariant genesis and imply that the scorched mussel Gulf/Atlantic disjunction represents a case of geographic and temporal pseudocongruence. All five Caribbean Basin cryptic species exhibited an intriguing pattern of predominantly allopatric distribution characterized by distinct geographic areas of ecological dominance, often adjoining those of sister taxa. This pattern of distribution is consistent with allopatric speciation origins, coupled with restricted postspeciation range extensions. Several lines of indirect evidence favor the hypothesis that the predominantly allopatric distributions are maintained over evolutionary time scales, primarily by postrecruitment ecological filters rather than by oceanographic barriers to larval-mediated gene flow.  相似文献   

2.
Disjunct species distributions may result from a combination of geologic events and long-distance dispersal. The foliose lichen species complex Leptogium furfuraceum-L. pseudofurfuraceum has an intercontinental disjunction pattern. Populations of this species complex are found in western North America, southern South America, Africa, and southern Europe. We conducted a phylogenetic study to reconstruct the biogeographic history of this species complex using two ribosomal genes (ITS and LSU) and a protein-coding gene (partial RPB2). Results indicated that the complex comprises four geographically restricted genetic lineages. A sister relationship was found between populations from the same hemispheres, incongruent with previous data derived from morphological characteristics and geographical classification schemes. Incorporating Bayesian ancestral area reconstruction and Bayesian divergence time estimation, we proposed an evolutionary hypothesis for the species complex. The results suggested that processes of biotic expansion via transoceanic dispersal were responsible for the species divergence and distribution patterns observed today. This study also expands the view that cryptic speciation is not a rare phenomenon among fungi and lichens.  相似文献   

3.
Pinpointing processes that structure the geographical distribution of genetic diversity of marine species and lead to speciation is challenging because of the lack of obvious dispersal barriers and the likelihood of substantial (passive) dispersal in oceans. In addition, cryptic radiations with sympatric distributions abound in marine species, challenging the allopatric speciation mechanism. Here, we present a phylogeographical study of the marine nematode species complex Rhabditis ( Pellioditis ) marina to investigate processes shaping genetic structure and speciation. Rhabditis ( P .) marina lives on decaying macroalgae in the intertidal, and may therefore disperse over considerable distances. Rhabditis ( P .) marina consists of several cryptic species sympatrically distributed at a local scale. Genetic variation in the COI gene was screened in 1362 specimens from 45 locations around the world. Two nuclear DNA genes (ITS and D2D3) were sequenced to infer phylogenetic species. We found evidence for ten sympatrically distributed cryptic species, seven of which show a strong genetic structuring. A historical signature showed evidence for restricted gene flow with occasional long-distance dispersal and range expansions pre-dating the last glacial maximum. Our data also point to a genetic break around the British Isles and a contact zone in the Southern Bight of the North Sea. We provide evidence for the transoceanic distribution of at least one cryptic species (PmIII) and discuss the dispersal capacity of marine nematodes. The allopatric distribution of some intraspecific phylogroups and of closely related cryptic species points to the potential for allopatric speciation in R. ( P .) marina .  相似文献   

4.
Aim To compare the wider distribution of the pteridophytes, flowering plants, liverworts and mosses recorded as natives of Britain and Ireland, and to assess the proportion and distribution of species in each group which belong to predominantly extra-European genera. Location The species native to the British Isles are considered in relation to their distribution in the Northern Hemisphere, and predominantly extra-European genera are identified by consideration of the distribution and centre of numerical diversity of the genera worldwide. Methods A recent classification of the pteridophytes, flowering plants, liverworts and mosses into floristic elements is used in a quantitative study of the distribution of species in the four groups, the patterns of occurrence being compared by standardized residuals. Results Mosses and liverworts have more northerly distributions than the flowering plants in the Northern Hemisphere; pteridophytes show an intermediate pattern. There are marked differences in the longitudinal ranges of the groups south of the Boreal biome, with vascular plants tending to be confined to Europe or western Eurasia whereas cryptogams are more likely to occur additionally in North America or have a circumpolar distribution. The proportion of predominantly extra-European genera is particularly high in the pteridophytes and the liverworts and in these groups the rich hyperoceanic flora of the British Isles is almost entirely composed of species in genera that attain their centre of diversity in the tropics. Main conclusions Major taxonomic groups show different distribution patterns, reflecting their rates of evolution and powers of dispersal. The flowering plants, as the least mobile and most rapidly evolving group, have a greater proportion of their species in the European and Eurosiberian elements and a higher proportion of species from extra-European genera in the more northerly elements.  相似文献   

5.
Aim To explore species richness patterns in liverworts and mosses along a central Himalayan altitudinal gradient in Nepal (100–5500 m a.s.l.) and to compare these patterns with patterns observed for ferns and flowering plants. We also evaluate the potential importance of Rapoport’s elevational rule in explaining the observed richness patterns for liverworts and mosses. Location Nepal, Central Himalaya. Methods We used published data on the altitudinal ranges of over 840 Nepalese mosses and liverworts to interpolate presence between maximum and minimum recorded elevations, thereby giving estimates of species richness for 100‐m altitudinal bands. These were compared with previously published patterns for ferns and flowering plants, derived in the same way. Rapoport’s elevational rule was assessed by correlation analyses and the statistical significance of the observed correlations was evaluated by Monte Carlo simulations. Results There are strong correlations between richness of the four groups of plants. A humped, unimodal relationship between species richness and altitude was observed for both liverworts and mosses, with maximum richness at 2800 m and 2500 m, respectively. These peaks contrast with the richness peak of ferns at 1900 m and of vascular plants, which have a plateau in species richness between 1500 and 2500 m. Endemic liverworts have their maximum richness at 3300 m, whereas non‐endemic liverworts show their maximum richness at 2700 m. The proportion of endemic species is highest at about 4250 m. There is no support from Nepalese mosses for Rapoport’s elevational rule. Despite a high correlation between altitude and elevational range for Nepalese liverworts, results from null simulation models suggest that no clear conclusions can be made about whether liverworts support Rapoport’s elevational rule. Main conclusions Different demands for climatic variables such as available energy and water may be the main reason for the differences between the observed patterns for the four plant groups. The mid‐domain effect may explain part of the observed pattern in moss and liverwort richness but it probably only works as a modifier of the main underlying relationship between climate and species richness.  相似文献   

6.
Spatial patterns of genetic diversity provide insight into the demography and history of species. Morphologically similar but genetically distinct “cryptic” species are increasingly being recognized in marine organisms through molecular analyses. Such species are, on closer inspection, often discovered to display contrasting life histories or occasionally minor morphological differences; molecular tools can thus be useful indicators of diversity. Bostrychia intricata, a marine red alga, is widely distributed throughout the Southern Hemisphere and comprises many cryptic species. We used mitochondrial cytochrome c oxidase I gene sequences to assess the genetic variation, population genetic structure, and demographic history of B. intricata in New Zealand. Our results supported the existence of three cryptic species of B. intricata (N2, N4, and N5) in New Zealand. Cryptic species N4, which was found throughout New Zealand, showed a higher genetic diversity and wider distribution than the other two species, which were only found in the North Island and northern South Island. Our analyses showed low to moderate genetic differentiation among eastern North Island populations for cryptic species N2, but high differentiation among North and South Island populations for N4, suggesting different population structure between these cryptic species. Data also indicated that N2 has recently undergone population expansion, probably since the Last Glacial Maximum (LGM), while the higher genetic diversity in N4 populations suggests persistence in situ through the LGM. The contrasting population structures and inferred demographic histories of these species highlight that life history can vary greatly even among morphologically indistinguishable taxa.  相似文献   

7.
In the last decade a number of studies has illustrated quite different phylogeographical patterns amongst plants with a northern present‐day geographical distribution, spanning the entire circumboreal region and/or circumarctic region and southern mountains. These works, employing several marker systems, have brought to light the complex evolutionary histories of this group. Here I focus on one circumboreal plant species, Chamaedaphne calyculata (leatherleaf), to unravel its phylogeographical history and patterns of genetic diversity across its geographical range. A survey of 29 populations with combined analyses of chloroplast DNA (cpDNA), internal transcribed spacer (ITS) and AFLP markers revealed structuring into two groups: Eurasian/north‐western North American, and north‐eastern North American. The present geographical distribution of C. calyculata has resulted from colonization from two putative refugial areas: east Beringia and south‐eastern North America. The variation of chloroplast DNA (cpDNA) and ITS sequences strongly indicated that the evolutionary histories of the Eurasian/north‐western North American and the north‐eastern North American populations were independent of each other because of a geographical disjunction in the distribution area and ice‐sheet history between north‐eastern and north‐western North America. Mismatch analysis using ITS confirmed that the present‐day population structure is the result of rapid expansion, probably since the last glacial maximum. The AFLP data revealed low genetic diversity of C. calyculata (P = 19.5%, H = 0.085) over the whole geographical range, and there was no evidence of loss of genetic diversity within populations in the continuous range, either at the margins or in formerly glaciated and nonglaciated regions. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105 , 761–775.  相似文献   

8.
中国与北美苔藓植物区系关系的探讨   总被引:9,自引:0,他引:9  
关于中国和北美间苔藓植物区系关系的研究是在20世纪90年代开始的。研究表明中国和北美苔类和藓类的种间关系疏远,这一事实说明两个大陆在第三纪后期分离后,由于地质、地理、气候等因素的差异致使苔藓植物区系成分也产生明显分异。虽然它们在科、属方面差异较小,但两个大陆已各自形成地区特有的苔类和藓类的属。已知的中国特有及东亚特有的苔类属有5个,藓类属有22个;而已知北美地区特有的苔类属有4个、藓类属有5个。北美东部和西部形成于不同地质时期,在苔藓植物方面与中国共同分布的科、属和种存在一定差异。从神农架藓类植物研究表明,从共同分布的种来看,北美东部与中国比北美西部与中国的相似性系数高约6%。从两地区间苔类和藓类植物的雌雄同株或雌雄异株及孢子直径大小而论,这两个因素似乎并不是影响苔藓植物在两大地区间分布的主要原因,但对苔藓植物的分布仍然十分重要。本文作者认为结合中国和北美的地史、地理条件及苔藓植物自身的特点,可以认为白令海峡不是阻碍中国和北美苔藓植物交流的绝对自然屏障;中国和北美苔藓植物区系关系目前的状况,是长期多次交流融合和分异的结果。  相似文献   

9.
Intercontinental disjunct distributions are a main issue in current biogeography. Bryophytes usually have broad distribution ranges and therefore constitute an interesting subject of study in this context. During recent fieldwork in western North America and eastern Africa, we found new populations of a moss morphologically similar to Orthotrichum acuminatum. So far this species has been considered to be one of the most typical epiphytic mosses of the Mediterranean Basin. The new findings raise some puzzling questions. Do these new populations belong to cryptic species or do they belong to O. acuminatum, a species which then has a multiple‐continent disjunct range? In the latter case, how could such an intercontinental disjunction be explained? To answer these questions, an integrative study involving morphological and molecular approaches was conducted. Morphological results reveal that Californian and Ethiopian samples fall within the variability of those from the Mediterranean Basin. Similarly, phylogenetic analyses confirm the monophyly of these populations, showing that O. acuminatum is one of the few moss species with a distribution comprising the western Nearctic, the western Palaearctic and Palaeotropical eastern Africa. Pending a further genetic and phylogeographical study to support or reject the hypothesis, a process of long‐distance dispersal (LDD) is hypothesized to explain this distribution and the origin of the species is suggested to be the Mediterranean Basin, from where diaspores of the species may have migrated to California and Ethiopia. The spore release process in O. acuminatum is revisited to support the LDD hypothesis, © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2016, 180 , 30–49.  相似文献   

10.
Abstract What causes species richness to vary among different groups of organisms? Two hypotheses are that large geographical ranges and fast life history either reduce extinction rates or raise speciation rates, elevating a clade's rate of diversification. Here we present a comparative analysis of these hypotheses using data on the phylogenetic relationships, geographical ranges and life history of the terrestrial mammal fauna of Australia. By comparing species richness patterns to null models, we show that species are distributed nonrandomly among genera. Using sister‐clade comparisons to control for clade age, we then find that faster diversification is significantly associated with larger geographical ranges and larger litters, but there is no evidence for an effect of body size or age at first breeding on diversification rates. We believe the most likely explanation for these patterns is that larger litters and geographical ranges increase diversification rates because they buffer species from extinction. We also discuss the possibility that positive effects of litter size and range size on diversification rates result from elevated speciation rates.  相似文献   

11.
Closely related species (e.g., sister taxa) often occupy very different ecological niches and can exhibit large differences in geographic distributions despite their shared evolutionary history. Budding speciation is one process that may partially explain how differences in niche and distribution characteristics may rapidly evolve. Budding speciation is the process through which new species form as initially small colonizing populations that acquire reproductive isolation. This mode of species formation predicts that, at the time of speciation, sister species should have highly asymmetrical distributions. We tested this hypothesis in North American monkeyflowers, a diverse clade with a robust phylogeny, using data on geographical ranges, climate, and plant community attributes. We found that recently diverged sister pairs have highly asymmetrical ranges and niche breadths, relative to older sister pairs. Additionally, we found that sister species occupy distinct environmental niche positions, and that 80% of sister species have completely or partially overlapping distributions (i.e., are broadly sympatric). Together, these results suggest that budding speciation has occurred frequently in Mimulus, that it has likely taken place both inside the range and on the range periphery, and that observed divergences in habitat and resource use could be associated with speciation in small populations.  相似文献   

12.
广东内伶仃岛自然保护区的苔藓植物   总被引:3,自引:0,他引:3  
报道广东内伶仃岛自然保护区的苔藓植物共19 科、34 属、61 种, 其中藓类13 科、26属、50 种, 苔类6 科、8 属、11 种。全缘疣鳞苔( Cololejeunea schwabei) 等3 种苔类和拟阔叶小石藓( Weisia platyphylloides) 等10 种藓类为广东省新记录。分析了保护区内的苔藓植物区系特点, 并与车八岭、黑石顶、鼎湖山及南岭自然保护区的苔藓植物区系进行了比较。研究表明, 内伶仃岛的苔藓植物区系由于受地理位置及地形特征的影响而具有一定的特殊性。  相似文献   

13.
Aim We investigated the geographical pattern of genetic divergence and demographic history in the prodoxid moth Greya obscura throughout its entire geographical range in far western North America and compared it to the geographical patterns found in a previously studied species, Greya politella, which co‐occurs over the same range, in the same habitats, and on the same host plants. Location The study included sites distributed throughout the California Floristic Province. Methods We used analysis of cytochrome c oxidase subunit I (COI) and amplified fragment length polymorphisms to evaluate the pattern and history of genetic continuity among populations. Results Greya obscura populations show a history of spatial expansion with considerable haplotype diversity in the centre of the geographical range. As with G. politella, some range‐edge populations of G. obscura are sufficiently divergent (6.7% in COI) to be considered as potentially cryptic species. Greya obscura and G. politella, however, differ in the specific range‐edge sites showing greatest genetic divergence and cryptic speciation. Main conclusions These results corroborate the view that range edges are important cradles of divergence and speciation. In addition, the results indicate that the geographical pattern of divergence at edges may differ even among closely related species occupying the same habitats and using the same hosts.  相似文献   

14.
Baird HP  Miller KJ  Stark JS 《Molecular ecology》2011,20(16):3439-3454
Recent molecular research on Antarctic benthic organisms has challenged traditional taxonomic classifications, suggesting that our current perceptions of Antarctic biodiversity and species distributions must be thoroughly revised. Furthermore, genetic differentiation at the intraspecific level remains poorly understood, particularly in eastern Antarctica. We addressed these issues using DNA sequence data for two sibling amphipod species that could be collected on a circum-Antarctic scale: Eusirus perdentatus and Eusirus giganteus. Haplotype networks and Bayesian phylogenies based on mitochondrial (COI, CytB) and nuclear (ITS2) DNA provided strong evidence of multiple cryptic species of Eusirus, with several occurring in sympatry and at least one likely to have a true circum-Antarctic distribution. Within species, gene flow was often highly restricted, consistent with a brooding life history and in some cases suggestive of current or future allopatric speciation. Patterns of genetic structure were not always predictable: one cryptic species showed preliminary evidence of high genetic differentiation across ~150 km in eastern Antarctica (F(ST) > 0.47, P < 0.01), yet another was remarkably homogenous across ~5000 km (F(ST) = 0.00, P = 1.00). Genetic diversity also varied among cryptic species, independent of sample size (π = 0.00-0.99). These results indicate several hidden levels of genetic complexity in these Antarctic amphipods that are neither apparent from previous taxonomic or ecological studies nor predictable from their life history. Such genetic diversity and structure may reflect different modes of survival for Antarctic benthic organisms during historic glacial cycles, and/or subsequent re-establishment of populations on the shelf, and highlight our misunderstanding of Antarctic marine species diversity.  相似文献   

15.
Pattern and process in the geographical ranges of freshwater fishes   总被引:2,自引:0,他引:2  
North American freshwater fishes were studied to determine whether they displayed the same relationships between log (geographical range size) and log (body size) and the same pattern of range shape as found among North American birds and mammals. The forces that produce these patterns were also investigated. The log (geographical range size) : log (body size) relationship was analysed for 121 North American freshwater fish species. Thirty‐two imperilled species were compared with 89 non‐imperilled species to determine if the overall relationship could result from differential extinction. Range geometries were analysed, within and among habitat guilds, to determine if general patterns could be detected. The log (geographical range size) : log (body size) pattern among freshwater fish species was triangular and qualitatively similar to that found for North American birds and mammals. The results suggest that below a minimum geographical range, the likelihood of extinction increases dramatically for freshwater fishes and that this minimum range size increases with body size. The pattern of fish species’ range shapes differs from that found for other North American vertebrate taxa because, on average, fish possess much smaller ranges than terrestrial species and most fish species’ geographical ranges extend further on a north–south axis than on an east–west axis. The log (geographical range size) : log (body size) pattern reveals that fish species’ geographical ranges are more constrained than those of terrestrial species. The triangular relationship may be caused by differential extinction of species with large bodies and small geographical ranges as well as higher speciation rates of small‐bodied fish. The restricted geographical ranges of freshwater fishes gives them much in common with terrestrial species on oceanic islands. Range shape patterns within habitat guilds reflect guild‐specific historical and current ecological forces. The overall pattern of range shapes emerges from the combination of ecologically different subunits.  相似文献   

16.
Some of the effects of past climate dynamics on plant and animal diversity make‐up have been relatively well studied, but to less extent in fungi. Pleistocene refugia are thought to harbour high biological diversity (i.e. phylogenetic lineages and genetic diversity), mainly as a product of increased reproductive isolation and allele conservation. In addition, high extinction rates and genetic erosion are expected in previously glaciated regions. Some of the consequences of past climate dynamics might involve changes in range and population size that can result in divergence and incipient or cryptic speciation. Many of these dynamic processes and patterns can be inferred through phylogenetic and coalescent methods. In this study, we first delimit species within a group of closely related edible ectomycorrhizal Amanita from North America (the American Caesar's mushrooms species complex) using multilocus coalescent‐based approaches; and then address questions related to effects of Pleistocene climate change on the diversity and genetics of the group. Our study includes extensive geographical sampling throughout the distribution range, and DNA sequences from three nuclear protein‐coding genes. Results reveal cryptic diversity and high speciation rates in refugia. Population sizes and expansions seem to be larger at midrange latitudes (Mexican highlands and SE USA). Range shifts are proportional to population size expansions, which were overall more common during the Pleistocene. This study documents responses to past climate change in fungi and also highlights the applicability of the multispecies coalescent in comparative phylogeographical analyses and diversity assessments that include ancestral species.  相似文献   

17.
We present a first comparison of patterns of alpha and beta diversity of ferns, mosses, liverworts and macrolichens in neotropical montane rainforests, and explore the question whether specific taxa may be used as surrogates for others. In three localities in southern Ecuador, we surveyed terrestrial and epiphytic species assemblages in ridge and slope forests in 28 plots of 400 m2 each. The epiphytic habitat was significantly richer in ferns, liverworts, and macrolichens than the terrestrial habitat; mosses, however, were primarily terrestrial. Alpha diversity of ferns and of liverworts was congruent in both habitats. Mosses were similar to ferns and liverworts only in the epiphytic habitat. Macrolichens did not share patterns of alpha diversity with any other group. Beta diversity of ferns, mosses and liverworts (lichens excluded due to low species richness) was similar in the terrestrial habitat, but not in the epiphytic habitat. Our results demonstrate that patterns of alpha diversity of the studied taxa cannot be used to predict patterns of beta diversity. Moreover, diversity patterns observed in epiphytes are different from terrestrial plants. We noted a general coincidence in species patterns of liverworts and ferns. Diversity patterns of macrolichens, in contrast, were completely independent from any other taxonomic group studied.  相似文献   

18.
The distribution of water across landscapes affects the diversity and composition of ecological communities, as demonstrated by studies on variation in vascular plant communities along river networks and in relation to groundwater. However, non-vascular plants have been neglected in this regard. Bryophytes are dominant components of boreal flora, performing many ecosystem functions and affecting ecosystem processes, but how their diversity and species composition vary across catchments is poorly known. We asked how terrestrial assemblages of mosses and liverworts respond to variation in (i) catchment size, going from upland-forest to riparian settings along increasingly large streams and (ii) groundwater discharge conditions. We compared the patterns found for liverworts and mosses to vascular plants in the same set of study plots. Species richness of vascular plants and mosses increased with catchment size, whereas liverworts peaked along streams of intermediate size. All three taxonomic groups responded to groundwater discharge in riparian zones by maintaining high species richness further from the stream channel. Groundwater discharge thus provided riparian-like habitat further away from the streams and also in upland-forest sites compared to the non-discharge counterparts. In addition, soil chemistry (C:N ratio, pH) and light availability were important predictors of vascular plant species richness. Mosses and liverworts responded to the availability of specific substrates (stones and topographic hollows), but were also affected by soil C:N. Overall, assemblages of mosses and vascular plants exhibited many similarities in how they responded to hydrological gradients, whereas the patterns of liverworts differed from the other two groups.  相似文献   

19.
Close correlations in species numbers may make it possible to indirectly assess the species richness of difficult taxonomic groups by investigating indicator groups, for which data are more easily collected. We asked if species numbers correlate among the four dominating groups of primary producers in boreal forests (liverworts, macrolichens, mosses, and vascular plants) and if substrate affiliation of species (ground vs. other substrates), sample plot size (0.01–1000 m2), and stand age (young vs. old) influence correlation strength. We used three sets of study plots from northern Sweden each including wide ranges of species richness. Although there are large differences in the ecophysiology and substrate use of vascular plants and the two bryophyte groups (mosses and liverworts), we found strong positive correlations among them not previously reported from boreal forests. In contrast, no correlation in total species richness was found between macrolichens and the two bryophyte groups, despite large overlaps in their ecology. We suggest that the positive correlations among land plants (liverworts, mosses, and vascular plants) are linked to positive relationships between site moisture and species number for all three groups. In contrast, total species number of macrolichens has not been shown to be strongly associated with moisture. However, ground‐living lichens and mosses correlated negatively in old forests. This may relate to the inability of macrolichens to exploit shaded and wet old forest ground, a habitat that is used by many moss species. Furthermore, lichens and mosses of ‘other substrates’ correlated positively in old forests, probably because the amount of boulders was positively related to species richness in both groups. Generally, correlations became stronger with increasing plot size, whereas stand age had relatively little influence. We conclude that vascular plants could be used as an indicator group for species richness of mosses and liverworts in boreal landscapes.  相似文献   

20.
Although the moss flora of Mexico consists of nearly 1000 species, only 77 are endemic. The country has many poorly collected or unexplored areas, but the number of endemic mosses is not expected to undergo a substantial increase; percent endemism has in fact decreased with taxonomic revisions and monographs and better exploration in other countries. Literature and herbarium records (n?=?584) were used to obtain an updated list of endemic mosses and their state distribution in Mexico. Cluster analysis and mapping indicate that there are three main areas of endemism: Lowland areas in various states, the mountain area along 19–20°N lat., and the highlands in Oaxaca and Chiapas. Similarity by province shows that Trans-Mexican Volcanic Belt, Sierra Madre Oriental, Chihuahuan Desert, and Sierra Madre del Sur have the highest numbers of endemic species. Five monotypic genera and 76 species (including two infraspecific taxa), many of which have comparatively narrow geographical ranges, suggest that speciation is recent, that species have had little time to disperse, and were formed by Pleistocene environmental climates in the highlands; older speciation may be represented by widespread disjunct species that still are found in the highlands of Mexico.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号