首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Catalytic mechanism of hamster arylamine N-acetyltransferase 2   总被引:1,自引:0,他引:1  
Wang H  Liu L  Hanna PE  Wagner CR 《Biochemistry》2005,44(33):11295-11306
Arylamine N-acetyltransferases (NATs) catalyze an acetyl group transfer from AcCoA to primary arylamines, hydrazines, and hydrazides and play a very important role in the metabolism and bioactivation of drugs, carcinogens, and other xenobiotics. The reaction follows a ping-pong bi-bi mechanism. Structure analysis of bacterial NATs revealed a Cys-His-Asp catalytic triad that is strictly conserved in all known NATs. Previously, we have demonstrated by kinetic and isotope effect studies that acetylation of the hamster NAT2 is dependent on a thiolate-imidazolium ion pair (Cys-S(-)-His-ImH(+)) and not a general acid-base catalysis. In addition, we established that, after formation of the acetylated enzyme intermediate, the active-site imidazole, His-107, is likely deprotonated at physiological pH. In this paper, we report steady-state kinetic studies of NAT2 with two acetyl donors, acetyl coenzyme A (AcCoA) and p-nitrophenyl acetate (PNPA), and four arylamine substrates. The pH dependence of k(cat)/K(AcCoA) exhibited two inflection points at 5.32 +/- 0.13 and 8.48 +/- 0.24, respectively. The pK(a) at 5.32 is virtually identical with the previously reported pK(a) of 5.2 for enzyme acetylation, reaffirming that the first half of the reaction is catalyzed by a thiolate-imidazolium ion pair in the active site. The inflection point at 8.48 indicates that a pH-sensitive group on NAT2 is involved in AcCoA binding. A Br?nsted plot constructed by the correlation of log k(4) and log k(H)2(O) with the pK(a) for each arylamine substrate and water displays a linear free-energy relationship in the pK(a) range from -1.7 (H(2)O) to 4.67 (PABA), with a slope of beta(nuc) = 0.80 +/- 0.1. However, a further increase of the pK(a) from 4.67 (PABA) to 5.32 (anisidine) resulted in a 2.5-fold decrease in the k(4) value. Analysis of the pH-k(cat)/K(PABA) profile revealed a pK(a) of 5.52 +/- 0.14 and a solvent kinetic isotope effect (SKIE) of 2.01 +/- 0.04 on k(cat)/K(PABA). Normal solvent isotope effects of 4.8 +/- 0.1, 3.1 +/- 0.1, and 3.2 +/- 0.1 on the k(cat)/K(b) for anisidine, pABglu, and PNA, respectively, were also determined. These observations are consistent with a deacetylation mechanism dominated by nucleophilic attack of the thiol ester for arylamines with pK(a) values or=5.5. The general base is likely His-107 because the His-107 to Gln and Asn mutants were found to be devoid of catalytic activity. In contrast, an increase in pH-dependent hydrolysis of the acetylated enzyme was not observed over a pH range of 5.2-7.5. On the basis of these observations, a catalytic mechanism for the acetylation of arylamines by NAT2 is proposed.  相似文献   

2.
Acetyl CoA-dependent arylamine N-acetyltransferase (EC 2.3.1.5) is the target of a genetic polymorphism in the metabolism of drugs and carcinogens. N-Acetyltransferase was purified 1000-fold from cytosol of human liver and its identity was verified by amino acid sequence homology of two of its tryptic peptides with published rabbit and chicken N-acetyltransferase sequences. Enzyme activity correlated with the presence of two proteins, NAT-1 and NAT-2, with indistinguishable molecular masses (31 kDa). NAT-1 and NAT-2 could be separated by anion-exchange chromatography and were functionally distinguished by their different apparent affinities for the acceptor amine sulfamethazine (SMZ). Antibodies raised against NAT-1 were able to recognize both isozymes on Western blots.  相似文献   

3.
Mycobacterium?tuberculosis, the most successful bacterial pathogen, causes tuberculosis, a disease that still causes more than 2 million deaths per year. Arylamine N-acetyltransferase is an enzyme that is conserved in most Mycobacterium spp. The nat gene belongs to an operon that is important for the intracellular survival of M. tuberculosis within macrophages. The nat operon in Mycobacterium smegmatis and other fast-growing mycobacterial species has a unique organization containing genes with uncharacterized function. Here, we describe the biochemical, biophysical and structural characterization of the MSMEG_0308 gene product (MS0308) of the M. smegmatis nat operon. While characterizing the function of MS0308, we validated the oxidoreductase property; however, we found that the enzyme was not utilizing dihydrofolate as its substrate, hence we first report that MS0308 is not a dihydrofolate reductase, as annotated in the genome. The structure of this oxidoreductase was solved at 2.0 ? in complex with the cofactor NADPH and has revealed the hydrophobic pocket where the endogenous substrate binds.  相似文献   

4.
Sikora AL  Frankel BA  Blanchard JS 《Biochemistry》2008,47(40):10781-10789
Arylamine N-acetyltransferases (NATs) are cytosolic enzymes that catalyze the transfer of the acetyl group from acetyl coenzyme A (AcCoA) to the free amino group of arylamines and hydrazines. Previous studies have reported that overexpression of NAT from Mycobacterium smegmatis and Mycobacterium tuberculosis may be responsible for increased resistance to the front-line antitubercular drug, isoniazid, by acetylating and hence inactivating the prodrug. We report the kinetic characterization of M. tuberculosis NAT which reveals that substituted anilines are excellent substrates but that isoniazid is a very poor substrate for this enzyme. We propose that the expression of NAT from M. tuberculosis (TBNAT) is unlikely to be a significant cause of isoniazid resistance. The kinetic parameters for a variety of TBNAT substrates were examined, including 3-amino-4-hydroxybenzoic acid and AcCoA, revealing K m values of 0.32 +/- 0.03 and 0.14 +/- 0.02 mM, respectively. Steady-state kinetic analysis of TBNAT reveals that the enzyme catalyzes the reaction via a bi-bi ping-pong kinetic mechanism. The pH dependence of the kinetic parameters reveals that one enzyme group must be deprotonated for optimal catalytic activity and that two amino acid residues at the active site of the free enzyme are involved in binding and/or catalysis. Solvent kinetic isotope effects suggest that proton transfer steps are not rate-limiting in the overall reaction for substituted aniline substrates but become rate-limiting when poor hydrazide substrates are used.  相似文献   

5.
Arylamine N-acetyltransferases (NAT) are a family of enzymes found in both eucaryotes and procaryotes, which catalyse the N-acetylation of a range of arylamine and hydrazine drugs and carcinogenic arylamines, using acetyl Coenzyme A as a cofactor. Here we describe a nuclear magnetic resonance (NMR) investigation of the interaction of substrates with Salmonella typhimurium NAT. For solution NMR investigations, pure recombinant NAT from S. typhimurium was used at up to 0.1 mM. We demonstrate that a hydrazine substrate, isoniazid (INH), binds to the protein in the absence of the cofactor, acetyl CoA, and thereby suggest that even though the catalysis may follow a ping-pong pathway, ligand-enzyme interactions can occur in the absence of acetyl CoA.  相似文献   

6.
Based on pre-DNA racial/color methodology, clinical and pharmacological trials have traditionally considered the different geographical regions of Brazil as being very heterogeneous. We wished to ascertain how such diversity of regional color categories correlated with ancestry. Using a panel of 40 validated ancestry-informative insertion-deletion DNA polymorphisms we estimated individually the European, African and Amerindian ancestry components of 934 self-categorized White, Brown or Black Brazilians from the four most populous regions of the Country. We unraveled great ancestral diversity between and within the different regions. Especially, color categories in the northern part of Brazil diverged significantly in their ancestry proportions from their counterparts in the southern part of the Country, indicating that diverse regional semantics were being used in the self-classification as White, Brown or Black. To circumvent these regional subjective differences in color perception, we estimated the general ancestry proportions of each of the four regions in a form independent of color considerations. For that, we multiplied the proportions of a given ancestry in a given color category by the official census information about the proportion of that color category in the specific region, to arrive at a "total ancestry" estimate. Once such a calculation was performed, there emerged a much higher level of uniformity than previously expected. In all regions studied, the European ancestry was predominant, with proportions ranging from 60.6% in the Northeast to 77.7% in the South. We propose that the immigration of six million Europeans to Brazil in the 19th and 20th centuries--a phenomenon described and intended as the "whitening of Brazil"--is in large part responsible for dissipating previous ancestry dissimilarities that reflected region-specific population histories. These findings, of both clinical and sociological importance for Brazil, should also be relevant to other countries with ancestrally admixed populations.  相似文献   

7.
The identification, synthesis and evaluation of a series of rhodanine and thiazolidin-2,4-dione derivatives as selective inhibitors of human arylamine N-acetyltransferase 1 and mouse arylamine N-acetyltransferase 2 is described. The most potent inhibitors identified have submicromolar activity and inhibit both the recombinant proteins and human NAT1 in ZR-75 cell lysates in a competitive manner. 1H NMR studies on purified mouse Nat2 demonstrate that the inhibitors bind within the putative active site of the enzyme.  相似文献   

8.
G W Chen  C F Hung  S H Chang  J G Lin  J G Chung 《Microbios》1999,98(391):159-174
N-acetyltransferase from Lactobacillus acidophilus was purified by ultrafiltration, DEAE-Sephacel, gel filtration chromatography on Sephadex G-100, and DEAE-5pw on high performance liquid chromatography, as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) on a 12% (w/v) slab gel. The purified enzyme was thermostable at 37 degrees C for 1 h with a half-life of 32 min at 37 degrees C, and displayed optimum activity at 37 degrees C and pH 7.0. The K(m) and Vmax values for 2-aminofluorene were 0.842 mM and 2.406 nmol/min/mg protein, respectively. Among a series of divalent cations and salts, Zn2+, Ca2+, Fe2+, Mg2+, and Cu2+ were demonstrated to be the most potent inhibitors. The enzyme had a molecular mass of 44.9 kD. The three chemical modification agents, iodoacetamide, phenylglyoxal, and diethylpyrocarbonate, all exhibited dose-, time-, and temperature-dependent inhibition effects. Preincubation of purified N-acetyltransferase with acetyl coenzyme A (AcCoA) provided significant protection against the inhibition of iodoacetamide and diethylpyrocarbonate, but only partial protection against the inhibition of phenylglyoxal. These results indicate that cysteine, histidine, and arginine residues are essential for this bacterial activity, and the first two are likely to reside on the AcCoA binding site, but the arginine residue may be located close to the AcCoA binding site. This report is the first demonstration of acetyl CoA:arylamine N-acetyltransferase in L. acidophilus.  相似文献   

9.
The arylamine N-acetyltransferase 2 (NAT2) enzymes detoxify a wide range of naturally occurring xenobiotics including carcinogens and drugs. Point mutations in the NAT2 gene result in the variant alleles M1 (NAT2 *5A), M2 (NAT2*6A), M3 (NAT2*7) and M4 (NAT2 *14A) from the wild-type WT (NAT2 *4) allele. The current study was aimed at screening genetic polymorphisms of NAT2 gene in 49 lung cancer patients, 54 colorectal cancer patients and 99 cancer-free controls, using PCR-RFLP. There were significant differences in allele frequencies between lung cancer patients and controls in the WT, M2 and M3 alleles (p < 0.05). However, only M2 and M3 allele frequencies were different between colorectal cancer patients and controls (p < 0.05). There was a marginal significant difference in the distribution of rapid and slow acetylator genotypes between lung cancer patients and controls (p = 0.06 and p = 0.05, respectively), but not between colorectal cancer patients and controls (p = 1.0 and p = 0.95, respectively). Risk of lung cancer development was found to be lower in slow acetylators [odds ratio (OR): 0.51, 95% confidence interval (95% CI): 0.25, 1.02, p-value = 0.07]. No effect was observed in case of colorectal cancer. Our results showed that NAT2 genotypes and phenotypes might be involved in lung cancer but not colorectal cancer susceptibility in Jordan.  相似文献   

10.
Arylamine N-acetyltransferase (NAT) enzymes are found in a broad range of eukaryotes and prokaryotes. There is increasing evidence that NAT enzymes could contribute to antibiotic resistance in pathogenic bacteria such as Mycobacterium tuberculosis. Nocardia farcinica is an opportunistic human pathogen that causes pulmonary infections (nocardiosis) with clinical manifestations that resemble tuberculosis. While the genomic sequence of this prokaryote has been determined, studies of N. farcinica proteins remain almost nonexistent. In particular, N. farcinica proteins putatively involved in antibiotic resistance mechanisms have not been described structurally or functionally. Here, we have characterized a new NAT enzyme (NfNAT) from N. farcinica at the structural and functional level. NfNAT is the first N. farcinica protein for which a 3D structure is reported. We showed that this novel prokaryotic isoform is structurally and functionally related to the mycobacterial NAT enzymes. In particular, NfNAT was found to display high N-acetyltransferase activity towards several known NAT substrates including the antitubercular drug isoniazid. Interestingly, isoniazid is not used for the treatment of nocardiosis and has been shown to be poorly active against several nocardial species. On the contrary, NfNAT was found to be poorly active towards sulfamethoxazole, a sulfonamide drug considered as the treatment of choice for the treatment of nocardiosis. The functional and structural data reported in this study will help to develop our understanding of the role of NAT enzymes in nocardia and mycobacteria and may help in the rational design of NAT antagonists for a range of clinical applications.  相似文献   

11.
Isoniazid is a frontline drug used in the treatment of tuberculosis (TB). Isoniazid is a prodrug, requiring activation in the mycobacterial cell by the catalase/peroxidase activity of the katG gene product. TB kills two million people every year and the situation is getting worse due to the increase in prevalence of HIV/AIDS and emergence of multidrug-resistant strains of TB. Arylamine N-acetyltransferase (NAT) is a drug-metabolizing enzyme (E.C. 2.1.3.5). NAT can acetylate isoniazid, transferring an acetyl group from acetyl coenzyme A onto the terminal nitrogen of the drug, which in its N-acetylated form is therapeutically inactive. The bacterium responsible for TB, Mycobacterium tuberculosis, contains and expresses the gene encoding the NAT protein. Isoniazid binds to the NAT protein from Salmonella typhimurium and we report here the mode of binding of isoniazid in the NAT enzyme from Mycobacterium smegmatis, closely related to the M. tuberculosis and S. typhimurium NAT enzymes. The mode of binding of isoniazid to M. smegmatis NAT has been determined using data collected from two distinct crystal forms. We can say with confidence that the observed mode of binding of isoniazid is not an artifact of the crystallization conditions used. The NAT enzyme is active in mycobacterial cells and we propose that isoniazid binds to the NAT enzyme in these cells. NAT activity in M. tuberculosis is likely therefore to modulate the degree of activation of isoniazid by other enzymes within the mycobacterial cell. The structure of NAT with isoniazid bound will facilitate rational drug design for anti-tubercular therapy.  相似文献   

12.
The RNase T1 maps of 80 isolates of Ross River virus from different regions of mainland Australia and the Pacific Islands were compared. Four different clusters of isolates with greater than an estimated 5 to 6% diversity at the nucleotide level were found. There was a pattern of differences between eastern and western Australian strains; however, the pattern was disturbed by overlaps and incursants. Pacific Islands isolates belonged to the eastern Australian topotype. Our findings suggest that certain genetic types of Ross River virus predominate in different geographical regions. In contrast, populations of other important Australian arboviruses (Murray Valley encephalitis, Kunjin, and Sindbis viruses) are distributed across the Australian continent as minor variants of one strain. Our data also show that in one region, strains of Ross River virus with identical RNase T1 maps circulate during both years when epidemics occur and years when they do not. This finding suggests that Ross River virus epidemics are not dependent on the introduction or evolution of new strains of the virus. Two strains, belonging to the eastern Australian topotype, were isolated in Western Australia. It is likely that viremic humans or possibly domestic livestock travelling by aircraft were responsible for this movement.  相似文献   

13.
Acetyl-CoA:arylamine N-acetyltransferase (EC 2.3.1.5) from pigeon liver was purified by protamine sulfate precipitation, ion exchange chromatography on DEAE-A-25 Sephadex, gel filtration on Sephadex G-75, amethopterin-AH-Sepharose 4B affinity chromatography, and finally, gel filtration on Sephadex G-100. The enzyme preparation was homogeneous as judged by ultracentrifugation studies, SDS-polyacrylamide gel electrophoresis and gel filtration. The N-terminal amino acid was detected to be histidine and the complete amino acid composition is reported. The enzyme contains one disulfide bridge and two cysteine residues/mol monomer. The isoelectric point was estimated to be 4.8. The molecular weight was determined to be 32900 by high-speed sedimentation equilibrium analysis, 33000 by Sephadex G-100 gel filtration and 31600 by SDS-disc gel electrophoresis. The sedimentation coefficient from conventional sedimentation velocity runs was 3.1 S observed by ultraviolet optics. 'Active enzyme centrifugation' showed a sedimentation constant of 5.0 and 4.8 S for the purified enzyme and crude extract from pigeon liver, respectively, indicating that the enzyme forms a dimer under conditions of catalysis. It could be demonstrated that the inhibitor amethopterin was noncompetitive with respect to the acetyl donor and the acetyl acceptor. Acetyl-CoA:arylamine N-acetyltransferase was examined in different organs of pigeon. The enzyme was not inducible by 1,3-phenylenediamine and hexobarbital in vivo.  相似文献   

14.
15.
Arylamine N-acetyltransferases (NATs) are a homologous family of enzymes, which acetylate arylamines, arylhydroxylamines, and arylhydrazines by acetyl transfer from acetyl-coenzyme A (Ac-CoA) and are found in many organisms. NAT was first identified as the enzyme responsible for the inactivation of the anti-tubercular drug isoniazid in humans. The three-dimensional structure of NAT from Salmonella typhimurium has been resolved and shown to have three distinct domains and an active site catalytic triad composed of "Cys(69)-His(107)-Asp(122)," which is typical of hydrolytic enzymes such as the cysteine proteases. The crystal unit cell consists of a dimer of tetramers, with the C terminus of individual monomers juxtaposed. To investigate the function of the first two domains of full-length NAT from S. typhimurium and to investigate the role of the C terminus of NAT, truncation mutants were made with either the C-terminal undecapeptide or the entire third domain (85 amino acids) missing. Unlike the full-length NAT protein (281 amino acids), the truncation mutants of NAT from S. typhimurium are toxic when overexpressed intracellularly in Escherichia coli. Full-length NAT hydrolyses Ac-CoA but only in the presence of an arylamine substrate. Both truncation mutants, however, hydrolyze Ac-CoA even in the absence of arylamine substrate, illustrating that the C-terminal undecapeptide controls hydrolysis of Ac-CoA by NAT from S. typhimurium.  相似文献   

16.
17.
18.
The polynuclear aromatic amine, 2-aminoanthracene, was found to be acetylated with high efficiency in the presence of acetyl-CoA by pigeon liver arylamine N-acetyltransferase (EC 2.3.1.5). As a consequence of acetylation the fluorescence properties of the compound dramatically change and the reaction time course can be easily followed fluorometrically at the emission wavelength of 425 nm upon excitation at 360 nm. When 2-aminoanthracene is employed with pigeon arylamine N-acetyltransferase, as the ultimate acceptor of the acetyl group in coupled fluorometric assays, it is possible to measure enzymatic activities, such as pyruvate dehydrogenase or carnitine acetyltransferase, in continuous assays rapidly and with high sensitivity or to determine with as much sensitivity important metabolites such as acetylcarnitine or acetyl-CoA.  相似文献   

19.
Arylamine N-acetyltransferases (NATs) catalyze the acetylation of arylamines, a key step in the detoxification of many carcinogens. The determinants of NAT substrate specificity are not known, yet this knowledge is required to understand why NAT enzymes acetylate some arylamines, but not others. Here, we use NMR spectroscopy and homology modeling to reveal the structural determinants of arylamine acetylation by NATs. In particular, by using chemical shift perturbation analysis, we have identified residues that play a critical role in substrate binding and catalysis. This study reveals why human NAT1 acetylates the sunscreen additive p-aminobenzoic acid and tobacco smoke carcinogen 4-aminobiphenyl, but not o-toluidine and other arylamines linked to bladder cancer. Our results represent an important step toward predicting whether arylamines present in new products can be detoxified by mammalian NATs.  相似文献   

20.
Human arylamine N-acetyltransferase 1 (NAT1) is a polymorphic phase II xenobiotic-metabolizing enzyme which catalyzes the biotransformation of primary aromatic amines, hydrazine drugs, and carcinogens. Structural and functional studies have shown that the NAT1 and factor XIII transglutaminase catalytic pockets are structurally related with the existence of a conserved catalytic triad (Cys-His-Asp). In addition, it has been reported that factor XIII transglutaminase activity could be regulated by nitric oxide (NO), in particular S-nitrosothiols (RSNO). We thus tested whether NAT1 could be a target of S-nitrosothiols. We show here that human NAT1 is reversibly inactivated by S-nitrosothiols such as SNAP (S-nitroso-N-acetyl-DL-penicillamine). A second-order rate constant for the inactivation of NAT1 by SNAP was determined (k(inact)=270M(-1)min(-1)) and shown to be in the same range of values reported for other enzymes. The inhibition of NAT1 by S-nitrosothiols was reversed by dithiothreitol and reduced glutathione, but not by ascorbate. As reported for some reactive cysteine-containing enzymes, our results suggest that inactivation of NAT1 by S-nitrosothiols is due to direct attack of the highly reactive cysteine residue in the enzyme active site on the sulfur of S-nitrosothiols to form a mixed disulfide between these NO-derived oxidants and NAT1. Finally, our findings suggest that, in addition to the polymorphic-dependent variation of NAT1 activity, NO-derived oxidants, in particular S-nitrosothiols, could also regulate NAT1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号