首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of the study was to investigate the prenatal influence of different incubation temperatures on the early postnatal development of neuronal hypothalamic thermosensitivity in birds. The experiments were carried out in brain slices of 1-, 5- and 10-days-old Muscovy ducklings incubated at 35, 37.5 (control) or 38.5 degrees C during the last week of incubation. Firing rate of neuronal activity was recorded extracellularly during sinusoidal temperature changes. The results show that the temperature experienced prenatally has a clear influence on postnatal neuronal hypothalamic thermosensitivity. For instance, at the 10th day post-hatching, exposure to the cooler prenatal incubation temperature resulted in elevated neuronal hypothalamic warm sensitivity through an increased proportion of warm sensitive neurons and a reduced proportion of cold sensitive neurons in comparison with the control group. Exposure to the warmer prenatal incubation temperature induced the opposite effect. In these age group changes in neuronal hypothalamic thermosensitivity occur in relation to the prenatal temperature experienced (proximate adaptive). During the first days of life, prenatal temperature load induced a significant change in the thermosensitivity of hypothalamic neurons which was independent of the direction of change in incubation temperature in comparison with control conditions (proximate non-adaptive). Changes in the thermosensitivity of hypothalamic neurons after prenatal temperature experiences observed in all age groups may be the result of epigenetic temperature adaptation.  相似文献   

2.
Neuronal activity was recorded in surviving hippocampal and medial preoptic thalamic slices from guinea pigs using extracellular techniques during thermal changes. Rate of generating action potentials changed in seven of the 19 hypothalamic cells tested once a threshold temperature of 36–38°C had been reached. Above this range, activity in these neurons was temperature dependent. It is suggested that these neurons form a sensory element in the system controlling brain temperature over a narrow (1–2°C) range. In the hippocampus (the control structure), pyramidal layer cells were insensitive to temperatures in the 32–40°C range.Institute of Physiology, Academy of Sciences of the Byelorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 358–365, May–June, 1989.  相似文献   

3.
Unit responses in the medial preoptic region of the anterior hypothalamus and septum to local temperature stimulation of various parts of the skin were studied in chronic experiments on rabbits. The temperature of an area of skin on the back (zone I) and head (zone II) was altered by means of thermodes: heated to 38–40°C and cooled to 22–26°C. Of 111 neurons tested 21 responded to a change of skin temperature (mainly to cooling). Temperature-sensitive hypothalamic neurons were shown to react to temperature stimulation of both skin zones stimulated. The types of the responses recorded are described.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 13, No. 4, pp. 365–370, July–August, 1981.  相似文献   

4.
The distribution of interspike intervals (ISI) in discharges of posterior hypothalamic neurons at a temperature of 39.1-0.02°C (thermoneutral zone) and during a rise and fall of the temperature of this region of the brain by 0.6–1.5°C was investigated in chronic experiments on rabbits. Spontaneous posterior hypothalamic unit activity recorded in the thermoneutral zone was characterized by several types of ISI distributions. Thermosensitive posterior hypothalamic neurons responded to a rise and fall of the temperature of this brain region by changes in the type of ISI distribution; the discharge pattern returned to its original form after temperature stimulation ended.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 360–367, July–August, 1978.  相似文献   

5.
Changes in the mean firing rate of posterior hypothalamic neurons were studied in experiments on unanesthetized cats in response to elevation of the brain temperature by 0.7–1.5°C and the skin temperature by 3–5°C separately or simultaneously. Altogether 85 neurons were studied in 14 animals: 11 responded to only one form of temperature stimulation, whereas in 16 neurons changes in the firing pattern (in most cases in the same direction) were observed in response to both forms of temperature stimulation. Different types of responses of these neurons were established. Sensitivity to the central temperature stimulus was increased in some neurons of this group when skin temperature stimulation was intensified.I. P. Pavlov Institute of Physiology, Academy of Sciences of the USSR, Leningrad. Translated from Neirofiziologiya, Vol. 8, No. 6, pp. 613–619, November–December, 1976.  相似文献   

6.
When pharate adults of the flesh fly Sarcophaga crassipalpis are exposed to 40°C for 4 h they become more tolerant of high temperatures that are normally lethal (thermotolerance). In contrast, a 1-h exposure to 45°C decreases tolerance to a subsequent high temperature challenge (thermosensitivity). While control flies experience little mortality when held at 35°C for 24–48 h the thermosensitized flies die when exposed to 35°C. Sensitivity to a second thermal challenge slowly decays over a 72-h period. The acquisition of thermotolerance prevents the development of thermosensitivity. Brains from thermosensitized flies cultured at 43°C express the 72-kDa heat-shock protein and normal protein synthesis is inhibited. This implies that development of thermosensitivity is not associated with a loss in the capacity to express the 72-kDa heat-shock protein.Abbreviations ICN ICN Biomedicals, Inc. PO Box 19536, Irvine, CA 92713-9921 - LD light dark cycle - LT50 time required to kill 50% of the test animals - SDS sodium dodecyl sulfate - TRIS Tris(hydroxymethyl)aminomethane  相似文献   

7.
The purpose of this study was to see whether artificial acclimatization to cold would reduce the pressor response to noradrenaline (NA) as natural acclimatization has been shown to do, and whether it would induce nonshivering thermogenesis. Three white men were infused with NA at four dosage levels between 0.038 and 0.300 g·kg–1·min–1 (2–23 g·min–1), before and after artificial acclimatization to cold and again 4 months later when acclimatization had decayed. Acclimatization was induced by ten daily cold (15°Q baths of 30–60 min followed by rapid rewarming in hot (38–42°C) water, and was confirmed by tests of the subjects responses to whole-body cooling in air. Three control subjects also underwent the first and third tests. Acclimatization substantially reduced the pressor response to NA at 0.150 and 0.300 g·kg–1·min–1, confirming earlier findings by the same technique in naturally acclimatized men, and its decay increased this response to beyond its initial levels (P<0.05 for both changes). Acclimatization did not change the response to NA of heart rate, subjective impressions, skin temperature of finger and toe, pulmonary ventilation, or plasma free fatty acids and ketone bodies. At no time did NA increase oxygen consumption, or increase skin temperature or heat flow over reported sites of brown fat. These findings would seem to show that acclimatization to cold reduces sensitivity to the pressor effect of NA but does not induce nonshivering thermogenesis, and that the reduced sensitivity is replaced by a hypersensitivity to NA when acclimatization decays.  相似文献   

8.
Summary We studied the effect of temperature on the production of an extracellular neutral metalloproteinase of Bacillus megaterium in a laboratory fermentor under constant aeration and pH. The optimal temperature for growth (35–38° C) was higher than that for the synthesis of proteinase during exponential growth (below 31° C). The critical biomass concentration at which the exponential growth terminated decreased with increase in cultivation temperature. The specific rate of proteinase synthesis decreased when the critical biomass concentration was achieved. The observed decrease in proteinase synthesis was related to the cultivation temperature. The temperature also influenced the level of mRNA coding for proteinase. We formulated a mathematical model of cultivation describing the dependence of growth and proteinase synthesis on dissolved oxygen and temperature. The parameters of the model were identified for temperature intervals from 21 to 41° C using a computer. The optimum temperature for the enzyme production was 21° C. The productivity (enzyme activity/time) was maximal at 24–28° C. When optimizing the temperature profile of cultivation, we designed a suboptimal solution represented by a linear temperature profile. We have found that under conditions of continuous decrease in temperature, the maximal production of the proteinase was achieved at a broad range of temperature (26–34° C) when the rate of temperature decrease was 0.2–0.8° C/h. The initial optimal temperature for the enzyme productivity was in the range of 32–34° C. The optimum temperature decrease was 0.8° C/h. Offprint requests to: J. Chaloupka  相似文献   

9.
Expcsure of adult male albino rats to higher environmental temperature (HET) at 35° for 2–12 hr or at 45° for 1–2 hr increases hypothalamic synaptosomal acetylcholinesterase (AChE) activity. Synaptosomal AChE activity in cerebral cortex of rats exposed to 35° for 12 hr and in cerebral cortex and pons-medulla of rats exposed to 45° for 1–2 hr are also activated. AChE activity of synaptosomes prepared from normal rat brain regions incubated in-vitro at 39° or 41° for 0.5 hr increases significantly in cerebral cortex and hypothalamus. The activation of AChE in ponsmedulla is also observed when this brain region is incubated at 41° for 0.5 hr. Increase of (a) the duration of incubation at 41° and (b) the incubation temperature to 43° under in-vitro condition decreases the synaptosomal AChE activity. Lioneweaver-Burk plots indicate that (a) in-vivo and invitro HET-induced increases of brain regional synaptosomal AChE activity are coupled with an increase ofV max without any change inK m (b) very high temperature (43° under in-vitro condition) causes a decrease inV max with an increase inK m of AChE activity irrespective of brain regions. Arrhenius plots show that there is a decrease in transition temperature in hypothalamus of rats exposed to either 35° or 45°; whereas such a decrease in transition temperature of the pons-medulla and cerebral cortex regions are observed only after exposure to 45°. These results suggests that heat exposure increases the lipid fluidity of synaptosomal membrane depending on the brain region which may expose the catalytic site of the enzyme (AChE) and hence activate the synaptosomal membrane bound AChE activity in brain regions. Further the in-vitro higher temperature (43°C)-induced inhibition of synaptosomal AChE activity irrespective of brain regions may be the cause iof partial proteolysis/disaggregation of AChE oligomers and/or solubilization of this membrane-bound enzyme.To whom to address reprint requests:  相似文献   

10.
Responses to cold exposure tests both locally and of the whole body were examined in subjects who stayed in the Arctic (average maximum and minimum temperatures –11 and –21° C respectively) for 14 days of skiing and sleeping in tents. These changes were compared to responses in subjects living working in Ottawa, Canada (average max. and min. temperatures –5 and –11° C respectively). The tests were done before the stay in the Arctic (Pre), immediately after the return (Post 1) and approximately 32 days after the return (Post 2). For the whole-body cold exposure each subject, wearing only shorts and lying on a rope mesh cot, was exposed to an ambient temperature of 10° C. There was no consistent response in the changes of metabolic or body temperature to this exposure in either of groups and, in addition, the changes over time were variable. Cold induced vasodilatation (CIVD) was determined by measuring temperature changes in the middle finger of the nondominant hand upon immersion in ice water for 30 min. CIVD was depressed after the Arctic exposure whilst during the Post 2 testing, although variable, did not return to the Pre values; the responses of the control group were similar. These results indicate that normal seasonal changes may be as important in adaptation as a stay in the Arctic. Caution is advised in the separation of seasonal effects when examining the changes in adaptation after exposure to a cold environment.  相似文献   

11.
Fromlatefallorearlywinteron,thehibernatorbeginsseveralcycles(hibernationbouts),eachofwhichconsistsofhibernationentrance,deephibernationandtransientarousaluntilitswakinginspring.Thebodytemperaturechangeofthehibernatorduringhibernationhastwomajorfeatures:…  相似文献   

12.
Male Guinea pigs (n=80) were divided into four groups and maintained in a climatic chamber for three weeks in one of the following environmental conditions: (1) Ta20°C and 55% RH; (2) Ta35°C and 30–35% RH from 08:00 to 20:00 h and 5°C; 60–65% RH, from 20:00 h to 08:00 h; (3) Ta5°C and 60–65% RH; (4) Ta35°C and 30–35% RH. At the end of this period the animals were exposed to either –5°C, 60–65% RH or 45°C, 30–35% RH, for a period of 20 min, following which Tre, plasma 11-OHCS, thyroxin, glucose, and FFA, and body and organ weights were determined. The cold-warm adapted animals seemed to develop a more efficient adaptability to acute heat and cold exposure. It is suggested that on acute exposure to severe environmental conditions the endocrine and the nervous system play a dominant role in maintaining optimal body temperature, while on chronic exposure the metabolic rate of the various organs becomes relatively more important.  相似文献   

13.
Different strains of Thiobacillus ferrooxidans were examined for their ability to produce a heat shock and a cold shock response. Strain A1, heat shocked from 20° to 35°C, acquired thermotolerance, as it showed a 1000-fold reduction in cell mortality when exposed to the supermaximum temperature of 42°C, as compared to a non-heat-shocked control. A heat shock from 25° to 35°C yielded similar results, although a higher degree of thermotolerance was achieved for the shorter exposure times. Cultures heat shocked for 5 h showed a five-log reduction in viable counts after 41 h at 42°C, whereas non-heat-shocked cultures showed a similar reduction in viability in 28 h. Conferred thermotolerance was immediate and sustained for the duration of the exposure to 42°C. Heat-shocked cultures were not significantly protected against loss of viability due to freezing (-15°C for 24 h). Strain S2, cold shocked from 25° to 10°C, and strain D6, cold shocked from 25° to 5°C, were not protected against freezing at-15°C. An analysis of proteins extracted from heat-shocked cells of strain A1 showed the presence of at least one newly induced protein and eight hyper-induced proteins. The molecular weights of the heat shock proteins were in the range of 15–80.3 kDa.  相似文献   

14.
Summary Two strains of Zymomonas mobilis were tested for their ability to ferment sucrose to ethanol at elevated temperatures (30–42.5°C). The optimal temperature for efficient sucrose to ethanol conversion was 35°C with 22–27 h fermentation time and 75% conversion efficiency. Increases in magnesium concentration improved one of the strains at 40°C from 38 to 76% ethanol yield efficiency.  相似文献   

15.
Spontaneous quantal and nonquantal acetylcholine release were investigated at an ambient temperature range of 10–35°C in a preparation of white mouse hemidiaphragm. Quantal transmitter release was assessed by the frequency of miniature endplate potentials and nonquantal secretion by the level of H-effect. Spontaneous quantal release rose exponentially in step with increasing temperature. Two relative maxima, one of 20°C and the other of 35°C were noted in the temperature dependence of nonquantal transmitter release. Nonquantal release of acetylcholine did not take place at a temperature of 10°C. The effective energy of activation of quantal release was calculated as 57.0 kJ/mole over the temperature range investigated; that of the nonquantal release process at intervals of 15–20°C and 25–35°C measured 45.5 and 38.2 kJ/mole respectively. It is suggested that an active transport system process rather than simple diffusion of acetylcholine molecules is responsible for nonquantal release of this neurotransmitter.S. V. Kurashov Medical Institute, Kazan'. Translated from Neirofiziologiya, Vol. 18, No. 3, pp. 361–367, May–June, 1986.  相似文献   

16.
Summary Most of the monarch butterflies kept at 4–5° C for a few days shivered when released at a test temperature of 15–16° C, whereas fewer of the butterflies kept at 23–24° C did so. Cold-acclimated butterflies shivered more readily, as indicated by the length of the interval between release at the test temperature and the onset of shivering, and they shivered for longer periods of time. The effects of cold acclimation were reversible, but in only 1 out of 3 replicates was the warm acclimation clearly reversed. Cool animals shivered at room temperature, indicating that body temperature and not ambient temperature is important in releasing the behavior. It is suggested that the acclimation involves alteration in the central neurons controlling the activity of muscles involved in shivering.I thank Miss Janice Ruppert and Mr. C. J. Doughty for their valuable technical assistance. The co-operation of the administrators of New Brighton Beach State Park in permitting me to collect in the park is appreciated.  相似文献   

17.
In Mycobacterium phlei, fatty acid unsaturation increased with decreasing temperature. The 10-hexadecenoic acid content increased as the temperature was reduced from 35°C to 26–20°C. At lower temperatures tuberculostearic acid decreased while oleic and linoleic acids increased, the latter being found in M. phlei for the first time. Concomitantly palmitic acid content decreased, and the 6- and 9-hexadecenoic acids increased slightly on reducing the temperature from 35 to 10°C. Thus, down to 26–20°C palmitic acid was mainly replaced by 10-hexadecenoic acid. From this range down to 10°C, palmitic and tuberculostearic acids were replaced by oleic and linoleic acids. Consequently, fatty acid branching decreased and mean chain length increased, as the temperature was reduced. These observations support the view that regulation of membrane fatty acid composition is part of microbial temperature adaptation, and that themechanism behind the responses might be more complex than generally believed.Abbreviations ACP acyl carrier protein - FAS I (Type I) fatty acid synthetase I - FAS II (Type II) fatty acid synthetase II - MGLP methylglucose containing lipopolysaccharide - MMP methylmannose containning polysaccharide  相似文献   

18.
Relationships between post-treatment temperature and toxicity of four synthetic pyrethroids, bioallethrin,d-phenothrin, fenvalerate and cypermethrin, to the fruit-tree false spider mite,Cenopalpus pulcher (Canestrini and Fanzago) were determined in the laboratory. Pyrethroids were evaluated by the slide-dip technique at three post-treatment temperatures, 15, 25 and 35°C.Bioallethrin,d-phenothrin and fenvalerate exhibited positive temperature coefficients againstC. pulcher at all temperature ranges tested. On the other hand, cypermethrin displayed a neutral temperature coefficient at 25–35°C and negative temperature coefficients at 15–25°C and 15–35°C temperature ranges.  相似文献   

19.
Anthers of wheat cultivars Orofen and Pitic 62 were incubated for 8 days at 15, 20, 25, 30, 35 and 40°C before transfer to 25°C. Compared with anthers cultured at 25°C constantly, anthers treated at 30°C produced 40% more microspore callus and green plants in both cultivars whereas those treated at 35°C produced 2–3 fold more green plants. Treatment at 40°C was deleterious. Possible modes of action of high temperature on callus production and albinism were discussed.  相似文献   

20.
The conventional microelectrode technique was applied to study changes in conductance and activation characteristics of potassium and chloride channels in the plasmalemma of characean alga Nitella flexilis(L.) Agardz. during long-term heat treatment. Measurements were conducted at 18–20°C after preliminary exposure of cells to 33°C for 1–25 days. The conductance of outward- and inward-rectifying potassium channels, as well as the currents of excitable chloride channels, decreased after 2–3 days of heat treatment. By the 15th–17th days, the conductance of potassium channels was reduced by a factor of 3–5, whereas the peak values of the chloride current, associated with the action potential, was reduced by a factor of 8–10. These heat-induced changes were long lasting: the restoration of the initial parameters of transport systems after transferring cells to chilling or room temperature occurred within several days. Moreover, the recovery at chilling temperatures (8–10°C) proceeded nearly two times longer than at room temperature. Prolonged hyperthermia accelerated activation and deactivation of outward-rectifying potassium channels and caused the shift of their activation curve towards positive potentials by 35–40 mV. Analysis of current–voltage relations showed that the inward current in inward- and outward-rectifying potassium channels was reduced to a greater extent than the outward current. At the same time, both inward and outward currents of chloride channels were reduced to an equal extent. It is assumed that the changes observed are involved in thermal adaptation and account for the decrease in the intracellular concentrations of potassium and other cations and anions, which represents a nonspecific response of plant cells to stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号