首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel antibodies were generated that are highly selective for either acetylated or unacetylated iso-forms of histone H3, or the acetylated form of histone H4 in organisms as diverse asTetrahymena and humans. Using these antibodies as pair-wise sets in immunocytological analyses, we demonstrate that the inactive X chromosome is hypoacetylated for both histone H3 and H4 in female mammalian cells, whereas the antibody that recognizes the unacetylated form of histone H3 identifies all chromosomes uniformly. These data verify and extend previous results and suggest that hypoacetylation of core histones may be a general feature of the chromatin along the inactive X chromosome. Edited by: D. Bazett-Jones  相似文献   

2.
A possible active segment on the inactive human X chromosome   总被引:6,自引:0,他引:6  
An idic(Xp-) in which the two X chromosomes are attached short arm to short arm, and which thus has two b regions (the Q-dark segment next to the centromere on Xp) between the inactivation centers, assumed to be situated on the Q-dark region next to the centromere on Xq, showed 63.8% bipartite Barr bodies as compared with 22.2% formed by idic(Xq-). In addition, the mean distance of the two parts of the Barr bodies in the fibroblasts of a patient with idic(Xp-) is significantly greater than in the cases with one or no b region. Contrary to the other patients with abnormal X chromosomes, the buccal cells of a woman idic(Xp-) showed a number of bipartite Barr bodies. — To explain these observations we have put forward the hypothesis that the b region on the Xp always remains active and thus, when the rest of the chromosome forms a Barr body, this segment is extended, allowing the two parts of the X chromatin to get farther apart and at the same time increasing the percentage of bipartite bodies.  相似文献   

3.
Inactivation of the X chromosome occurs in female somatic cells and in male meiosis. In both cases, the inactive X chromosome undergoes changes in histone modifications including deacetylation of core histone proteins and enrichment with histone H3 lysine 9 (H3-K9) dimethylation. In this study we show that while the inactive X in female somatic cells is largely devoid of H3-K4 dimethylation, the inactive X in male meiosis is enriched with this modification. However, the inactive X chromosome in female somatic cells and the inactive X and Y in male meiosis are devoid of H3-K4 trimethylation. Further, trimethylation of H3-K4 is present at discrete regions along most of the autosomes, while H3-K4 dimethylation shows a more homogenous staining. Also, the Y chromosome is largely devoid of H3-K4 di- and trimethylation in somatic cells of both humans and mice, however, the Y chromosome is enriched with H3-K4 di- but not trimethylation throughout spermatogenesis. Our results provide insights into the differences between female somatic cells and male germ cells in inactivating the X chromosome, and suggest that trimethylation, and not dimethylation, of H3-K4 is a more robust indicator of the active regions of the genome.  相似文献   

4.
Replication variants of the inactive X chromosome were investigated in lymphocytes from six donors by means of terminal BrdU or thymidine incorporation. There were interindividual differences in the incidence of particular variants. In endoreduplicated and tetraploid cells both allocyclic X chromosomes showed the same replication sequence. The Xp22 band of the allocyclic X chromosome seemed to replicate later than the homologous material in some cells. Initiation time of DNA synthesis within the inactive X chromosome was found to be stable; termination time, however, varied greatly relative to the other chromosomes. Early completion of replication within the heterochromatic X chromosome could be demonstrated preferentially for the Xq25–27 terminal sequence, but other variants expressed the phenomenon also. A variable replication rate of the inactive X chromosome is believed to be responsible for its asynchronous, independent replication. The biological significance of the phenomenon is discussed with respect to cell differentiation.  相似文献   

5.
The sequence of DNA replication was studied within the inactive X chromosome in human lymphocytes, by means of the FPG method. Several variants of the replication sequence were found. The number of variants in the cells of a single donor exceeded 2 in each of the 4 normal individuals studied. The phenomenon is discussed with respect to the regulation of DNA synthesis and to the cell differentiation process.  相似文献   

6.
L I Baranovskaia 《Genetika》1984,20(10):1708-1713
Kinetics of DNA replication in genetically non-active X chromosome was studied in peripheral lymphocytes and skin fibroblasts from four phenotypically normal women and one fetus using BrdU 33258 Hoechst-Giemsa techniques. The localization of the earliest replicated chromosomal segment was shown to be unstable, varying from cell to cell in both lymphocytes and fibroblasts of all persons examined. Several variants of replication sequence in the X chromosome were found in both types of cells. The variants revealed were classified, according to Willard. The statistically significant differences in replication sequence were found between blood lymphocytes and skin fibroblasts in two individuals. The problem of tissue specificity in replication kinetics of the genetically non-active X chromosome is discussed.  相似文献   

7.
Phylogenetic analysis of the core histones H2A, H2B, H3, and H4.   总被引:19,自引:1,他引:19       下载免费PDF全文
Despite the ubiquity of histones in eukaryotes and their important role in determining the structure and function of chromatin, no detailed studies of the evolution of the histones have been reported. We have constructed phylogenetic trees for the core histones H2A, H2B, H3, and H4. Histones which form dimers (H2A/H2B and H3/H4) have very similar trees and appear to have co-evolved, with the exception of the divergent sea urchin testis H2Bs, for which no corresponding divergent H2As have been identified. The trees for H2A and H2B also support the theory that animals and fungi have a common ancestor. H3 and H4 are 10-fold less divergent than H2A and H2B. Three evolutionary histories are observed for histone variants. H2A.F/Z-type variants arose once early in evolution, while H2A.X variants arose separately, during the evolution of multicellular animals. H3.3-type variants have arisen in multiple independent events.  相似文献   

8.
Telomeres are nucleoprotein complexes at the end of eukaryotic chromosomes, with important roles in the maintenance of genomic stability and in chromosome segregation. Normal somatic cells lose telomeric repeats with each cell division both in vivo and in vitro. To address a potential role of nuclear architecture and epigenetic factors in telomere-length dynamics, the length of the telomeres of the X chromosomes and the autosomes was measured in metaphases from blood lymphocytes of human females of various ages, by quantitative FISH with a peptide nucleic-acid telomeric probe in combination with an X-chromosome centromere-specific probe. The activation status of the X chromosomes was simultaneously visualized with antibodies against acetylated histone H4. We observed an accelerated shortening of telomeric repeats in the inactive X chromosome, which suggests that epigenetic factors modulate not only the length but also the rate of age-associated telomere shortening in human cells in vivo. This is the first evidence to show a differential rate of telomere shortening between and within homologous chromosomes in any species. Our results are also consistent with a causative role of telomere shortening in the well-documented X-chromosome aneuploidy in aging humans.  相似文献   

9.
10.
We have investigated the genetic activation of the hprt (hypoxanthine-guanine phosphoribosyltransferase) gene located on the inactive X chromosome in primary and transformed female diploid Chinese hamster cells after treatment with the DNA methylation inhibitor 5-azacytidine (5azaCR). Mutants deficient in HPRT were first selected by growth in 6-thioguanine from two primary fibroblast cell lines and from transformed lines derived from them. These HPRT- mutants were then treated with 5azaCR and plated in HAT (hypoxanthine-methotrexate-thymidine) medium to select for cells that had reexpressed the hprt gene on the inactive X chromosome. Contrary to previous results with primary human cells, 5azaCR was effective in activating the hprt gene in primary Chinese hamster fibroblasts at a low but reproducible frequency of 2 x 10(-6) to 7 x 10(-6). In comparison, the frequency in independently derived transformed lines varied from 1 x 10(-5) to 5 x 10(-3), consistently higher than in the nontransformed cells. This increase remained significant when the difference in growth rates between the primary and transformed lines was taken into account. Treatment with 5azaCR was also found to induce transformation in the primary cell lines but at a low frequency of 4 x 10(-7) to 8 x 10(-7), inconsistent with a two-step model of transformation followed by gene activation to explain the derepression of hprt in primary cells. Thus, these results indicate that upon transformation, the hprt gene on the inactive Chinese hamster X chromosome is rendered more susceptible to action by 5azaCR, consistent with a generalized DNA demethylation associated with the transformation event or with an increase in the instability of an underlying primary mechanism of X inactivation.  相似文献   

11.
V Jackson 《Biochemistry》1987,26(8):2315-2325
We have developed procedures to study histone-histone interactions during the deposition of histones in replicating cells. Cells are labeled for 60 min with dense amino acids, and subsequently, the histones within the nucleosomes are cross-linked into an octameric complex with formaldehyde. These complexes are sedimented to equilibrium in density gradients and octamer and dioctamer complexes separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With reversal of the cross-link, the distribution of the individual density-labeled histones in the octamer is determined. Newly synthesized H3 and H4 deposit as a tetramer and are associated with old H2A and H2B. Newly synthesized H2A and H2B deposit as a dimer associated with old H2A, H2B, H3, and H4. The significance of these results with respect to the dynamics of histone interactions in the nucleus is discussed. Control experiments are presented to test for artifactual formation of these complexes during preparative procedures. In addition, reconstitution experiments were performed to demonstrate that the composition of these octameric complexes can be determined from their distribution on density gradients.  相似文献   

12.
13.
What genomic landmarks render most genes silent while leaving others expressed on the inactive X chromosome in mammalian females? To date, signals determining expression status of genes on the inactive X remain enigmatic despite the availability of complete genomic sequences. Long interspersed repeats (L1s), particularly abundant on the X, are hypothesized to spread the inactivation signal and are enriched in the vicinity of inactive genes. However, both L1s and inactive genes are also more prevalent in ancient evolutionary strata. Did L1s accumulate there because of their role in inactivation or simply because they spent more time on the rarely recombining X? Here we utilize an experimentally derived inactivation profile of the entire human X chromosome to uncover sequences important for its inactivation, and to predict expression status of individual genes. Focusing on Xp22, where both inactive and active genes reside within evolutionarily young strata, we compare neighborhoods of genes with different inactivation states to identify enriched oligomers. Occurrences of such oligomers are then used as features to train a linear discriminant analysis classifier. Remarkably, expression status is correctly predicted for 84% and 91% of active and inactive genes, respectively, on the entire X, suggesting that oligomers enriched in Xp22 capture most of the genomic signal determining inactivation. To our surprise, the majority of oligomers associated with inactivated genes fall within L1 elements, even though L1 frequency in Xp22 is low. Moreover, these oligomers are enriched in parts of L1 sequences that are usually underrepresented in the genome. Thus, our results strongly support the role of L1s in X inactivation, yet indicate that a chromatin microenvironment composed of multiple genomic sequence elements determines expression status of X chromosome genes.  相似文献   

14.
15.
Summary The correlations of abnormal X chromosome constitutions and the resulting phenotypes in the human female are reviewed. The following hypotheses put forward to explain these correlations are discussed in detail: (1) The damage is done before X inactivation; (2) An effect is exerted between reactivation of the X chromosome(s) and meiosis in oocytes; (3) A recessive gene(s) in hemizygous condition might be expressed in the cases in which the same X is active in all cells; (4) A change in the number of presumed active regions on the inactive X chromosomes might have an effect; (5) A position effect, in that the region Xq13-q27 has to be intact in both X chromosomes to allow normal development, may be responsible; (6) An effect during the period when cells with different inactivation patterns compete is a probability; (7) The original X inactivation may be neither regular nor random.The conclusion reached is that the phenotypic effects of a specific X chromosome aberration may be simultaneously exerted through different pathways (Tables 1 and 2). Hypotheses (2), (4), (5), and (6) are considered probable. Hypothesis (3) has been discarded, and there is very little evidence for hypotheses (1) and (7).  相似文献   

16.
17.
The inactive X chromosome (Xi) forms a heterochromatic structure in the nucleus that is known to have several modifications to specific histones involving acetylation or methylation. Using three different antibodies in four different cell lines, we demonstrate that the Xi in human and mouse cells is highly enriched in ubiquitinated protein(s), much of which is polyubiquitinated. This ubiquitination appears specific for the Xi as it was not observed for centromeres or other regions of heterochromatin. Results using an antibody specific to ubiquitinated H2A provide a clear link between H2A ubiquitination and gene repression, as visualized across an entire inactive chromosome. Interestingly, the ubiquitination of the chromosome persists into mitosis and can be seen in a reproducible banded pattern. This pattern matches that of Xist RNA which forms bands as it detaches from the mitotic X chromosome. Both ubiquitination and Xist RNA appear enriched in gene dense regions and depleted in gene poor bands, but do not correlate with L1 LINE elements which have been suggested as key to X-inactivation. These results provide evidence that ubiquitination along with Xist RNA plays an important role in the formation of facultative heterochromatin during X-inactivation.  相似文献   

18.
One of several features acquired by chromatin of the inactive X chromosome (Xi) is enrichment for the core histone H2A variant macroH2A within a distinct nuclear structure referred to as a macrochromatin body (MCB). In addition to localizing to the MCB, macroH2A accumulates at a perinuclear structure centered at the centrosome. To better understand the association of macroH2A1 with the centrosome and the formation of an MCB, we investigated the distribution of macroH2A1 throughout the somatic cell cycle. Unlike Xi-specific RNA, which associates with the Xi throughout interphase, the appearance of an MCB is predominantly a feature of S phase. Although the MCB dissipates during late S phase and G2 before reforming in late G1, macroH2A1 remains associated during mitosis with specific regions of the Xi, including at the X inactivation center. This association yields a distinct macroH2A banding pattern that overlaps with the site of histone H3 lysine-4 methylation centered at the DXZ4 locus in Xq24. The centrosomal pool of macroH2A1 accumulates in the presence of an inhibitor of the 20S proteasome. Therefore, targeting of macroH2A1 to the centrosome is likely part of a degradation pathway, a mechanism common to a variety of other chromatin proteins.  相似文献   

19.
The mouse embryonal carcinoma cell line MC12 carries two X chromosomes, one of which replicates late in S phase and shares properties with the normal inactive X chromosome and, therefore, is considered to be inactivated. Since the hypoxanthine phosphoribosyl transferase (HPRT) gene on the active X chromosome is mutated (HPRT(NDASH;)), MC12 cells lack HPRT activity. After subjecting MC12 cells to selection in HAT medium, however, a number of HAT-resistant clones (HAT(R)) appeared. The high frequency of HAT resistance (3.18 x 10(-4)) suggested reactivation of HPRT(PLUS;) on the inactive X chromosome rather than reversion of HPRT(NDASH;). Consistent with this view, cytological analyses showed that the reactivation occurred over the length of the inactive X chromosome in 11 of 20 HAT(R) clones isolated. The remaining nine clones retained a normal heterochromatic inactive X chromosome. The spontaneous reactivation rate of the HPRT(PLUS;) on the inactive X chromosome was relatively high (1.34 x 10(-6)) and comparable to that observed for XIST-deleted somatic cells (Csankovszki et al., 2001), suggesting that the inactivated state is poorly maintained in MC12 cells.  相似文献   

20.
Karni RJ  Wangh LJ  Sanchez JA 《Chromosoma》2001,110(4):267-274
The nuclei of human neutrophils typically consist of a linear array of three or four lobes joined by DNA-containing filaments. Terminal lobes are connected to internal lobes via a single filament, while internal lobes have two filaments, each to an adjacent lobe. Some lobes also have appendages of various shapes and sizes. In particular, up to 17% of neutrophil nuclei of healthy women exhibit a drumstick-shaped appendage that contains the inactive X chromosome. This report provides a detailed analysis of the relationship between nuclear morphology and the location of the X and Y chromosomes in human neutrophils. Fluorescent in situ hybridization analysis revealed that the X and the Y chromosomes of male neutrophil nuclei are randomly distributed among nuclear lobes. Similarly, in female neutrophil nuclei with a drumstick appendage, the active X chromosome is also randomly distributed among lobes. In contrast, the inactive X chromosome is preferentially located in a terminal lobe in over 90% nuclei with drumsticks. Within the terminal lobe of nuclei with drumsticks, the inactive X chromosome lies distal to the point of filament attachment in 80% of the nuclei. The inactive X chromosome also exhibits a specific orientation within the drumstick appendage, with over 95% of nuclei having the X centromere located toward the tip of the appendage. Female nuclei without a drumstick appendage also have one of the X chromosomes (presumably the inactive chromosome) preferentially situated in a terminal lobe. Nonrandom distribution of the inactive X chromosome is discussed in the context of a model that considers chromosomes as determinants of neutrophil nuclear morphology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号