首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biological N2 fixation can fulfil the N demand of legumes but may cost as much as 14% of current photosynthate. This photosynthate (C) sink strength would result in loss of productivity if rates of photosynthesis did not increase to compensate for the costs. We measured rates of leaf photosynthesis, concentrations of N, ureides and protein in leaves of two soybean cultivars ( Glycine max [L.] Merrill) differing in potential shoot biomass production, either associated with Bradyrhizobium japonicum strains, or amended with nitrate. Our results show that the C costs of biological N2 fixation can be compensated by increased photosynthesis. Nodulated plants shifted N metabolism towards ureide accumulation at the start of the reproductive stage, at which time leaf N concentration of nodulated plants was greater than that of N-fertilized plants. The C sink strength of N2 fixation increased photosynthetic N use efficiency at the beginning of plant development. At later stages, although average protein concentrations were similar between the groups of plants, maximum leaf protein of nodulated plants occurred a few days later than in N-fertilized plants. The chlorophyll content of nodulated plants remained high until the pod-filling stage, whereas the chlorophyll content of N-fertilized plants started to decrease as early as the flowering stage. These results suggest that, due to higher C sink strength and efficient N2 fixation, nodulated plants achieve higher rates of photosynthesis and have delayed leaf senescence.  相似文献   

2.
Carbon and nitrogen metabolism in barley plants exposed to UV-B radiation   总被引:9,自引:0,他引:9  
The effect of UV-B radiation on FW, leaf and stem length, photosynthetic O2 evolution, levels of carbohydrates and nitrates, and extractable activities of some of the enzymes involved in C and N metabolism was evaluated in barley ( Hordeum vulgare L. cv. Express) seedlings during the 9 days following transfer to an UV-B enriched environment. The results show that under our experimental conditions UV-B radiation scarcely affects the photosynthetic competence of barley leaves, expressed as RuBP carboxylase (EC 4.1.1.39) activity, O2 evolution rate and chlorophyll content. Nevertheless, this treatment induced significant alterations of the enzyme activity of nitrate reductase (EC 1.6.6.1) and glutamine synthetase (EC 6.3.1.2), although only after a few days of treatment. The effects were not confined to the exposed tissue, but were detectable also at the root level. In fact, nitrate reductase decreased in response to UV-B in both leaf and root tissue, whereas glutamine synthetase was affected only in the root. In contrast, nitrate content was not influenced by the treatment, neither in root nor in leaf tissue, whilst leaf sucrose diminished in exposed plants only on the last day of treatment.  相似文献   

3.
在CO2浓度分别为当今CO2浓度(360 μL/L)和加富浓度(5 000 μL/L)条件下,研究了UV-B胁迫对亚心形扁藻(Platymonas subcordiformis(Wille)Hazen)的光合作用、膜脂过氧化和抗氧化酶活性的影响.实验结果表明:(1)UV-B单独作用下,亚心形扁藻的干重、光合速率、叶绿素a(Chl a)和类胡萝卜素(Car.)含量显著降低,CO2加富单独作用下,亚心形扁藻的干重和光合速率显著升高,叶绿素a和类胡萝卜素含量与对照相比没有显著变化,而UV-B与CO2共同作用则使亚心形扁藻的干重和光合速率与对照相比没有显著变化,叶绿素a和类胡萝卜素含量显著降低.(2)UV-B单独作用和CO2加富单独作用都使可溶性蛋白含量显著降低,UV-B与CO2共同作用下的可溶性蛋白含量比UV-B单独作用的要高.高CO2对藻的可溶性蛋白含量的变化在很大程度上归因于Rubisco蛋白的降低.(3)UV-B单独作用下,O-.2产生速率、H2O2含量和MDA含量显著升高,而CO2加富单独作用下,O-.2产生速率、H2O2含量和MDA含量显著降低,与UV-B单独作用相比,UV-B与CO2共同作用使O-.2产生速率、H2O2含量和MDA含量显著降低.说明CO2加富可以减少活性氧对亚心形扁藻的氧化胁迫,同时减少UV-B对亚心形扁藻的膜脂过氧化伤害.(4)UV-B单独作用下,SOD、POD、CAT、GR和GPx活性显著升高,高CO2单独作用使SOD、POD和GR活性显著降低,而CAT和GPx活性与对照相比稍有所降低,但降低不明显,而UV-B与CO2共同作用则使SOD、POD、CAT、GR和GPx活性比UV-B单独作用少得多.结果表明,高CO2对UV-B胁迫所造成的氧化胁迫具有一定的改善作用,因此CO2浓度升高可能对增强海洋微藻的抗逆能力有利.  相似文献   

4.
This work reports on the significance of UV-B absorbing compounds and DNA photorepair in protecting bean plants from UV-B radiation under nitrogen restriction. Bean plants grown in sterile vermiculite and irrigated periodically with a nutrient solution containing 12 or 1 mM of nitrate were irradiated with 22 μW cm−2 of UV-B, 4 h daily during 10 days after the first trifoliate leaf was developed. This intensity was equivalent to 3.2 kJ m−2 per day, approximately. PAR fluence rate was 350 ± 50 μmol quanta m−2 s−1. Control plants did not receive UV-B irradiation. Leaf expansion was negatively affected by both nitrate restriction and UV-B irradiation. This decrease was paralleled by a significant increase in starch, which was exacerbated by the combined action of both factors. Combined action of low nitrogen and UV-B also negatively affected the CO2 assimilation rate and the stomatal conductance. Formation of UV-B absorbing compounds was significantly increased by both UV-B irradiation and nitrogen restriction and this increase was exacerbated by the combination of both factors. No significant increase in dimer formation was detected in irradiated plants at the UV-B dose used. Significant dimer formation was only obtained by using very high UV-B intensities. This suggests that under an irradiation level of 22 μW cm−2 of UV-B, which is close to natural conditions, protective mechanisms such as pigment screening and DNA photorepair were probably sufficient to prevent any dimer formation in leaves.  相似文献   

5.
生长在高CO2浓度(700±5μl·L-1)1周的香蕉叶片,其光合速率(Pn,μmol·m-2·s-1)为5.14±0.32,较生长在大气CO2浓度(356±301μl·L-1)的高22.1%,而生长在较高CO2浓度下8周,叶片Pn较生长在大气CO2浓度的低18.1%,表现香蕉叶片对较长期高CO2浓度的驯化和光合作用抑制.生长在高CO2浓度的香蕉叶片有较低光下呼吸速率(Rd),而不包括光下呼吸的CO2补偿点则变幅较小.最大羧化速率(Vcmax)和电子传递速率(J)分别较生长在大气CO2浓度的低30.5%和14.8%,根据气体交换速率计算的表观量子产率(α,mol CO2·mol-1光量子),生长在较高CO2浓度下8周的叶片为0.014±0.01,而生长在大气CO2浓度下的为0.025±0.005.较高CO2浓度下叶片的表观量子产率降低44%.光能转换效率electrons·quanta-1)亦从0.203降低至0.136.生长在较高CO2浓度下香蕉叶片的叶氮在Rubicos分配系数(PR)、叶氮在生物力能学组分分配系数(PB)和叶氮在光捕组分的分配系数(PL)均较生长在大气CO2浓度低,表明在高CO2浓度下较长期生长(8周)的香蕉叶片多个光合过程受抑制,光合活性明显降低.  相似文献   

6.
烟草形态和光合生理对减弱UV-B辐射的响应   总被引:4,自引:0,他引:4  
在云南较高海拔烟区,通过大棚覆膜减弱UV-B辐射,研究了烟草品种K326生理成熟期、工艺成熟期和生理成熟向工艺成熟的过渡期形态和光合生理对减弱UV-B辐射(T1 75.74%、T2 70.08%、T3 30.39%)的响应.结果表明: 减弱UV-B辐射显著增加了K326的茎高和节间距,在T2下茎高和节间距较大;与自然环境处理(CK)相比,T1和T2降低了K326的净光合速率、同化能力、水分利用率、内在水分利用率、光合色素和类黄酮含量及比叶重等,但T1各指标大于T2.影响T1和T2净光合速率的因素有气孔因素和非气孔因素,以非气孔因素为主,气孔调节能力较低导致的蒸腾速率增大是造成两处理水分利用率较低的主要原因.T3处理在生理成熟期和过渡期对净光合速率、同化能力、水分利用率、内在水分利用率和光合色素均有一定的促进作用,而比叶重和类黄酮则处于最低水平,工艺成熟期的光合色素降解也较其他处理快.  相似文献   

7.
在不同CO2(400和2000 ppm)和磷浓度下(0.088—0.350 mmol/L)培养葛仙米(拟球状念珠藻, Nostoc sphaeroides Kutzing), 研究CO2和磷对葛仙米相对生长速率、色素含量、光系统Ⅱ光化学活性和光合速率等的影响。结果显示CO2或磷浓度对葛仙米的相对生长速率、球体粒径和数量、光饱和光合速率、呼吸速率和光合效率均有显著影响, 且两者对球体粒径和数量、叶绿素a含量、呼吸速率和光合效率存在明显交互作用。高CO2浓度培养明显提高磷对球体粒径和数量和光合效率的效应, 同时降低高磷浓度对叶绿素a合成的抑制作用, 但两者对相对生长速率、藻胆蛋白含量、光饱和光合速率、Fv/Fm和Yield的交互作用均不显著。以上研究结果表明高CO2浓度或磷浓度增加促进葛仙米生长主要是通过提高光合速率和光合效率来实现; 两者交互作用表明高CO2浓度可能通过提升磷的利用效率, 降低高磷浓度对叶绿素a合成的抑制, 提高光合效率, 使球体明显增大。  相似文献   

8.
Single leaf photosynthetic rates and various leaf components of potato ( Solanum tuberosum L.) were studied 1–3 days after reciprocally transferring plants between the ambient and elevated growth CO2 treatments. Plants were raised from individual tuber sections in controlled environment chambers at either ambient (36 Pa) or elevated (72 Pa) CO2. One half of the plants in each growth CO2 treatment were transferred to the opposite CO2 treatment 34 days after sowing (DAS). Net photosynthesis (Pn) rates and various leaf components were then measured 34, 35 and 37 DAS at both 36 and 72 Pa CO2. Three-day means of single leaf Pn rates, leaf starch, glucose, initial and total Rubisco activity, Rubisco protein, chlorophyll ( a + b ), chlorophyll ( a/b ), α -amino N, and nitrate levels differed significantly in the continuous ambient and elevated CO2 treatments. Acclimation of single leaf Pn rates was partially to completely reversed 3 days after elevated CO2-grown plants were shifted to ambient CO2, whereas there was little evidence of photosynthetic acclimation 3 days after ambient CO2-grown plants were shifted to elevated CO2. In a four-way comparison of the 36, 72, 36 to 72 (shifted up) and 72 to 36 (shifted down) Pa CO2 treatments 37 DAS, leaf starch, soluble carbohydrates, Rubisco protein and nitrate were the only photosynthetic factors that differed significantly. Simple and multiple regression analyses suggested that negative changes of Pn in response to growth CO2 treatment were most closely correlated with increased leaf starch levels.  相似文献   

9.
通过人为控制CO2浓度(700、400 μmol·mol-1)和氮素水平(120 kg N·hm-2),研究了CO2浓度增加和氮沉降及其交互作用对北界(辽宁庄河)栓皮栎幼苗生理生态特征的影响.结果表明: CO2浓度升高使栓皮栎幼苗叶片的形态、光合色素含量和氮含量有减小的趋势,暗呼吸速率较对照降低63.3%,可溶性糖增加2.6%.氮沉降对栓皮栎叶片的形态和光合色素含量有明显的促进作用,叶N含量增加而K含量降低,N/K值增加26.7%.CO2和N交互作用对幼苗叶形态和光合作用有明显的促进作用,叶片最大净光合速率和光饱和点分别是对照的1.4倍和2.6倍,暗呼吸速率和光补偿点分别降低65.9%和50.0%.CO2浓度升高和N沉降均对栓皮栎幼苗生长有一定的促进作用,可能导致栓皮栎分布界线北移.  相似文献   

10.
《植物生态学报》2017,41(6):693
The biochemical model of photosynthesis proposed by Farquhar, von Caemmerer and Berry is a CO2 response model based on photosynthetic processes. It hypothesizes that leaf CO2 assimilation rate (A) of C3 plants is decided by the minimum of three biochemical processes: the carboxylation rate supported by ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), the ribulose-1,5-bisphosphate (RuBP) regeneration rate supported by electron transport and the triose-phosphate (TP) use rate. Fitting leaf CO2 assimilation rate versus intercellular CO2 concentration (A-Ci) curves with the modified FvCB model could provide several important biochemical parameters, including maximum Rubisco carboxylation rate, maximum rate of electron transport, TP use rate, day respiration rate and mesophyll conductance. The FvCB model has greatly improved our understanding and prediction of plant photosynthetic physiology and its response to environmental changes. In this review, we firstly described the FvCB model, and analysed the characteristics of this model: segmentation and overparameterization. We reviewed the estimation of biochemical parameters which by fitting A-Ci curves with the FvCB model. The biochemical parameters were estimated previously by segmenting subjectively and fitting each limitation state separately, whereas now by segmenting objectively and fitting all limitation simultaneously. In comparison to the previously conventional ordinary least squares (OLS), terativgorithms (eg. Genetic Algorithm, Simulated Annealing Algorithm) based on the modern computer technology are now in common use. However, to further improve the reliability and the precision of the parameters estimation, more studies about Rubisco kinetics parameters and their temperature dependence are needed. In the end, to obtain efficient photosynthetic data for biochemical parameters estimation, we integrated and modified methods concerning the measurement of A-Ci curves according to current knowledge about FvCB model fitting. We expect this review would advance our understanding and application of the FvCB model and A-Ci curves.  相似文献   

11.
通过人为控制CO2浓度(700、400 μmol·mol-1)和氮素水平(120 kg N·hm-2),研究了CO2浓度增加和氮沉降及其交互作用对北界(辽宁庄河)栓皮栎幼苗生理生态特征的影响.结果表明: CO2浓度升高使栓皮栎幼苗叶片的形态、光合色素含量和氮含量有减小的趋势,暗呼吸速率较对照降低63.3%,可溶性糖增加2.6%.氮沉降对栓皮栎叶片的形态和光合色素含量有明显的促进作用,叶N含量增加而K含量降低,N/K值增加26.7%.CO2和N交互作用对幼苗叶形态和光合作用有明显的促进作用,叶片最大净光合速率和光饱和点分别是对照的1.4倍和2.6倍,暗呼吸速率和光补偿点分别降低65.9%和50.0%.CO2浓度升高和N沉降均对栓皮栎幼苗生长有一定的促进作用,可能导致栓皮栎分布界线北移.  相似文献   

12.
采用开顶式气室盆栽培养小麦,设计2个大气CO2浓度(正常:400 μmol·mol-1;高:760 μmol·mol-1)、2个氮素水平(0和200 mg·kg-1土)的组合处理,通过测定小麦抽穗期旗叶氮素和叶绿素浓度、光合速率(Pn)-胞间CO2浓度(Ci)响应曲线及荧光动力学参数,来测算小麦叶片光合电子传递速率等,研究了高大气CO2浓度下施氮对小麦旗叶光合能量分配的影响.结果表明:与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,高氮处理的小麦叶片叶绿素a/b升高.施氮后小麦叶片PSⅡ最大光化学效率(Fv/Fm)、PSⅡ反应中心最大量子产额(Fv′/Fm′)、PSⅡ反应中心的开放比例(qp)和PSⅡ反应中心实际光化学效率(ΦPSⅡ)在大气CO2浓度升高后无明显变化,虽然叶片非光化学猝灭系数(NPQ)显著降低,但PSⅡ总电子传递速率(JF)无明显增加;不施氮处理的Fv′/Fm′、ΦPSⅡ和NPQ在高大气CO2浓度下显著降低,尽管Fv/Fm和qP无明显变化,JF仍显著下降.施氮后小麦叶片JF增加,参与光化学反应的非环式电子流传递速率(JC)明显升高.大气CO2浓度升高使参与光呼吸的非环式电子流传递速率(J0)、Rubisco氧化速率(V0)、光合电子的光呼吸/光化学传递速率比(J0/JC)和Rubisco氧化/羧化比(V0/VC)降低,但使JC和Rubisco羧化速率(VC)增加.因此,高大气CO2浓度下小麦叶片氮浓度和叶绿素浓度降低,而增施氮素使通过PSⅡ反应中心的电子流速率显著增加,促进了光合电子流向光化学方向的传递,使更多的电子进入Rubisco羧化过程,Pn显著升高.  相似文献   

13.
LIMITATIONS OF PHOTOSYNTHESIS IN DIFFERENT REGIONS OF THE ZEA MAYS LEAF   总被引:3,自引:0,他引:3  
The progressive development of the photosynthetic apparatus occurring along the length of the Zea mays leaf offers a convenient system with which to examine the limitations to photosynthetic CO2 assimilation during biogenesis of a C4 leaf. Changes in light-induced O2 evolution and CO2 assimilation, chlorophyll content, activity of PEP-carboxylase, NADP-malic enzyme and the 'R5P system' (consisting of d -ribose-5-phosphate-keto isomerase, ATP- d -ribulose-5 phosphate 1-phosphotransferase and d -ribulose-1,5-bisphosphate carboxylase) and fluorescence emission characteristics were examined along the length of the second leaf of 7-day-old plants grown under a diurnal light regime. The results suggest that the major limitation to CO2 assimilation in the leaf sheath lies within the chlorenchyma and is either energy supply for carboxylation or the capacity of key photosynthetic enzymes. In the leaf blade stomatal resistance to CO2 diffusion constitutes a major fraction of the total leaf resistance to CO2 assimilation implicating the stoma as the major limiting factor to photosynthetic CO2 assimilation.  相似文献   

14.
Response of nitrogen metabolism to boron toxicity in tomato plants   总被引:1,自引:0,他引:1  
Boron (B) toxicity has become important in areas close to the Mediterranean Sea where intensive agriculture has been developed. The objective of this research was to study the effects of B toxicity (0.5 m m and 2.0 m m B) on nitrogen (N) assimilation of two tomato cultivars that are often used in these areas. Leaf biomass, relative leaf growth rate (RGRL), concentration of B, nitrate (NO3), ammonium (NH4+), organic N, amino acids and soluble proteins, as well as nitrate reductase (NR), nitrite reductase (NiR), glutamine synthase (GS), glutamate synthetase (GOGAT) and glutamate dehydrogenase (GDH) activities were analysed in leaves. Boron toxicity significantly decreased leaf biomass, RGRL, organic N, soluble proteins, and NR and NiR activities. The lowest NO3 and NH4+ concentration in leaves was recorded when plants were supplied with 2.0 m m B in the root medium. Total B, amino acids, activities of GS, GOGAT and GDH increased under B toxicity. Data from the present study prove that B toxicity causes inhibition of NO3 reduction and increases NH4+ assimilation in tomato plants.  相似文献   

15.
Aims Rising atmospheric CO2 has been shown to increase aboveground net primary productivity (ANPP) in water-limited perennial grasslands, in part by reducing stomatal conductance and transpiration, thereby reducing depletion of soil moisture. However, the benefits of CO2 enrichment for ANPP will vary with soil type and may be reduced if water limitation is low. Little is known about CO2 effects on ANPP of Panicum virgatum, a perennial C4 tallgrass and potential bioenergy crop. We hypothesized that if water limitation is minimized, (i) CO2 enrichment would not increase P. virgatum ANPP because photosynthetic rates of this C4 grass would not increase and because decreased transpiration at elevated CO2 would provide little additional benefit in increased soil moisture and (ii) soil type will have little effect on P. virgatum CO2 responses because of high overall soil moisture.Methods Growth and leaf physiology of P. virgatum cv. 'Alamo' were studied as plants established for 4 years on silty clay and clay soils along a 250 to 500 μl l -1 gradient in atmospheric CO2 located in central Texas, USA. Plants were watered to replace evapotranspiration, fertilized with NO 3 NH 4 and P 2 O 5 and clipped to standard height during mid-season.Important findings ANPP increased through the third year of growth. Soil moisture (0–20 cm), ANPP, tiller numbers and leaf area index were 8–18% higher on the clay than on the silty clay soil. ANPP did not increase with CO2 except in the planting year. However, biomass removed with clipping strongly increased with CO2 in years 2 and 3, suggesting that CO2 enrichment increased the early- to mid-season growth of establishing P. virgatum but not later regrowth or that of fully established plants. Furthermore, CO2 enrichment differentially affected two components of ANPP in years 2 and 3, increasing tiller mass and reducing tiller numbers. This reallocation of resources in clipped P. virgatum suggested increased meristem limitation of productivity with CO2 enrichment. CO2 enrichment had little effect on photosynthesis but increasingly reduced stomatal conductance and transpiration as the plants established. As a result, water use efficiency became increasingly coupled to CO2 as leaf area increased during establishment. These results suggest that for well-watered and clipped P. virgatum, ANPP differed between soil types, was not affected by CO2 enrichment when fully established but interacted with clipping to alter allocation patterns during establishment. Soil type effects on ANPP-CO2 responses will likely become more apparent when water is more limiting.  相似文献   

16.
利用便携式光合气体分析系统(LI-6400),比较测定了高CO2浓度(FACE,free-airCO2enrichment)和普通空气CO2浓度下生长的水稻叶片的净光合速率、水分利用率、表观量子效率和RuBP羧化效率等光合参数.在各自生长CO2浓度(380vs580μmol·mol-1)下测定时,高CO2浓度(580μmol·mol-1)下生长的水稻叶片的净光合速率、碳同化的表观量子效率和水分利用率明显高于普通空气(380μmol·mol-1)下生长的水稻叶片.但是,随着FACE处理时间的延长,高CO2浓度对净光合速率的促进作用逐渐减小.在相同CO2浓度下测定时,FACE条件下生长的水稻叶片净光合速率和羧化效率明显比普通空气下生长的对照低.尽管高CO2浓度下生长的水稻叶片的气孔导度明显低于普通空气中生长的水稻叶片,但两者胞间CO2浓度差异不显著,因此高CO2浓度下生长的水稻叶片光合下调似乎不是由气孔导度降低造成的.  相似文献   

17.
Nitrogenase (N2ase; EC 1.18.6.1) activity (H2 evolution) and root respiration (CO2 evolution) were measured under either N2:O2 or Ar:O2 gas mixtures in intact nodulated roots from white clover ( Trifolium repens L.) plants grown either as spaced or as dense stands. The short-term nitrate (5 m M ) inhibition of N2-fixation was promoted by competition for light between clover shoots, which reduced CO2 net assimilation rate. Oxygen-diffusion permeability of the nodule declined during nitrate treatment but after nitrate removal from the liquid medium its recovery parallelled that of nitrogenase activity. Rhizosphere pO2 was increased from 20 to 80 kPa under N2:O2. A simple mono-exponential model, fitted to the nodule permeability response to pO2, indicated NO3 induced changes in minimum and maximum nodule O2-diffusion permeability. Peak H2 production rates at 80 kPa O2 and in Ar:O2 were close to the pre-decline rates at 20 kPa O2. At the end of the nitrate treatment, this O2-induced recovery in nitrogenase activity reached 71 and 82%; for clover plants from spaced and dense stands, respectively. The respective roles of oxygen diffusion and phloem supply for the short-term inhibition of nitrogenase activity in nitrate-treated clovers are discussed.  相似文献   

18.
Aims Leaf traits of trees exposed to elevated [CO2] in association with other environmental factors are poorly understood in tropical and subtropical regions. Our goal was to investigate the impacts of elevated [CO2] and N fertilization on leaf traits in southern China.Methods Four tree species, Schima superba Gardn. et Champ. (S. superba), Ormosia pinnata (Lour.) Merr (O. pinnata), Castanopsis hystrix AC. DC. (C. hystrix) and Acmena acuminatissima (Blume) Merr. et Perry (A. acuminatissima) were studied in a factorial combination of atmospheric [CO2] (ambient at ~390 μmol mol ? 1 and elevated [CO2] at ~700 μmol mol-1) and N fertilization (ambient and ambient + 100 kg N ha-1 yr-1) in open-top chambers in southern China for 5 years. Leaf mass per unit leaf area (LMA), leaf nutrient concentration and photosynthesis (A sat) were measured.Important findings Results indicated that leaf traits and photosynthesis were affected differently by elevated [CO2] and N fertilization among species. Elevated [CO2] decreased LMA in all species, while N fertilization did not affect LMA. Leaf mass-based N concentration (N M) was significantly greater in O. pinnata and C. hystrix grown in elevated [CO2] but was lower in S. superba. Leaf mass-based P concentration (P M) was significantly greater in C. hystrix and A. acuminatissima exposed to elevated [CO2] but was lower in S. superba. N fertilization significantly increased P M in O. pinnata but decreased P M in S. superba. Photosynthetic stimulation in O. pinnata, C. hystrix and A. acuminatissima was sustained after 5 years of CO2 fumigation. N fertilization did not modify the effects of elevated [CO2] on photosynthesis. Leaf traits (N M, N A, P M, P A) and light-saturated photosynthesis were decreased from the upper to lower canopy. Canopy position did not alter the responses of leaf traits and photosynthesis to elevated [CO2]. Results suggest that photosynthetic stimulation by elevated [CO2] in native species in subtropical regions may be sustained in the long term.  相似文献   

19.
在卧龙自然保护区, 按海拔梯度选择了齿果酸模(Rumex dentatus)的4个分布地点(2350、2700、3150和3530 m), 对各研究地点的齿果酸模进行了叶片光合、扩散导度、叶片碳稳定同位素组成(δ13C)、氮素含量、光合氮利用效率(PNUE)、比叶面积(SLA))等参数的测量, 以期揭示该植物叶片氮素、氮素分配情况及其他生理生态参数随海拔的响应趋势, 进而明确氮素及其分配在齿果酸模响应和适应海拔梯度环境的生物学过程中的作用。结果表明: 随着海拔的升高, 齿果酸模的叶片单位面积氮含量(Narea)随之增加, 进而光合能力随之增加。随着海拔升高而增加的扩散导度也在一定程度上促进了这一趋势, 这可能是落叶草本植物对于高海拔低温所导致的叶寿命缩短的适应结果。沿着海拔梯度, 植物叶片氮素和扩散导度均通过羧化位点与外界CO2分压比(Pc/Pa)而间接影响叶片δ13C值, 且相比之下, 以氮素为基础的羧化能力对于Pc/Pa的作用更大些, 进而导致齿果酸模叶片δ13C随海拔增加; 随着海拔的升高, 齿果酸模叶片将更多的氮素用于防御性结构组织的建设, 这也是SLAPNUE降低的主要原因; 在光合系统内部, 随着海拔的升高, 植物光合组织增加了用于捕光系统氮素的比例, 使得植物可以更好地利用随海拔升高而增强的光照资源, 进而促进了光合能力的增加。可见, 氮素及其在叶片各系统间(尤其是在光合系统与非光合系统间)的分配方式是齿果酸模适应和响应海拔梯度环境的关键。  相似文献   

20.
大气CO2浓度升高对土壤氮素转化过程产生重要影响,研究其变化有助于更好地预测陆地生态系统的固碳潜力.氮同位素自然丰度作为生态系统氮素循环过程的综合指标能够有效地指示CO2浓度升高对土壤氮素转化过程的影响.本研究采用开顶箱CO2 熏蒸法研究连续10年的大气CO2 浓度升高对我国东北地区蒙古栎及其土壤和微生物生物量碳、氮同位素自然丰度的影响.结果表明: 大气CO2浓度升高改变了土壤氮循环过程,增加了土壤微生物和植物叶片δ15N;促进了富13C土壤有机碳分解,中和了贫13C植物光合碳输入的效果,导致土壤可溶性有机碳和微生物碳δ13C在CO2升高条件下没有发生显著变化.这些结果表明,CO2浓度升高很可能促进了土壤有机质矿化过程,并加剧了系统氮限制的状态.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号