首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study of secretory vesicle dynamics is a continuing challenge. Classically it was studied using biochemical techniques, such as subcellular fractionation and immunoprecipitation, combined with time-consuming electron microscopy studies. The recent development of confocal microscopy, giving in-focus optical section images throughout the thickness of a fluorescently labeled sample, allows scientists to study the key events in the secretory cycle at the level of light microscopy. This study demonstrates the use of specific antibodies against marker proteins of two different secretory vesicles (synaptic vesicles and large dense-cored vesicles) to follow their exo-endocytosis dynamics in peripheral adrenergic neurons. Only in recent years has insight grown regarding the presence of both exocytosis pathways in the same neuron. Confocal microscopy is a suitable technique to study aspects of exocytosis, endocytosis, and intracellular sorting and as such improves our knowledge on the interaction between both secretory pathways.  相似文献   

2.
Secretory vesicles are neutrophil intracellular storage granules formed by endocytosis. Understanding the functional consequences of secretory vesicle exocytosis requires knowledge of their membrane proteins. The current study was designed to use proteomic technologies to develop a more complete catalog of secretory vesicle membrane proteins and to compare the proteomes of secretory vesicle and plasma membranes. A total of 1118 proteins were identified, 573 (51%) were present only in plasma membrane-enriched fractions, 418 (37%) only in secretory vesicle-enriched membrane fractions, and 127 (11%) in both fractions. Gene Ontology categorized 373 of these proteins as integral membrane proteins. Proteins typically associated with other intracellular organelles, including nuclei, mitochondria, and ribosomes, were identified in both membrane fractions. Ingenuity Pathway Knowledge Base analysis determined that the majority of canonical and functional pathways were significantly associated with proteins from both plasma membrane-enriched and secretory vesicle-enriched fractions. There were, however, some canonical signaling pathways that involved proteins only from plasma membranes or secretory vesicles. In conclusion, a number of proteins were identified that may elucidate mechanisms and functional consequences of secretory vesicle exocytosis. The small number of common proteins suggests that the hypothesis that secretory vesicles are formed from plasma membranes by endocytosis requires more critical evaluation.  相似文献   

3.
Exocytosis, the fusion of secretory vesicles with the plasma membrane to allow release of the contents of the vesicles into the extracellular environment, and endocytosis, the internalization of these vesicles to allow another round of secretion, are coupled. It is, however, uncertain whether exocytosis and endocytosis are tightly coupled, such that secretory vesicles fuse only transiently with the plasma membrane before being internalized (the 'kiss-and-run' mechanism), or whether endocytosis occurs by an independent process following complete incorporation of the secretory vesicle into the plasma membrane. Here we investigate the fate of single secretory vesicles after fusion with the plasma membrane by measuring capacitance changes and transmitter release in rat chromaffin cells using the cell-attached patch-amperometry technique. We show that raised concentrations of extracellular calcium ions shift the preferred mode of exocytosis to the kiss-and-run mechanism in a calcium-concentration-dependent manner. We propose that, during secretion of neurotransmitters at synapses, the mode of exocytosis is modulated by calcium to attain optimal conditions for coupled exocytosis and endocytosis according to synaptic activity.  相似文献   

4.
Earlier studies using electron microscopy demonstrate that there is no loss of secretory vesicles following exocytosis. Depletion however, of vesicular contents resulting in the formation of empty or partially empty vesicles is seen in electron micrographs, post exocytosis, in a variety of cells. Our studies using atomic force microscopy (AFM) reveal that following stimulation of secretion, live pancreatic acinar cells having 100-180 nm in diameter fusion pores located at the apical plasma membrane, dilate only 25-35% during exocytosis. Since secretory vesicles in pancreatic acinar cells range in size from 200 nm to 1200 nm in diameter, their total incorporation at the fusion pore, would distend the structure much more then what is observed. These earlier results prompted the current study to determine secretory vesicle dynamics in live pancreatic acinar cells following exocytosis. AFM studies on live acinar cells reveal no loss of secretory vesicle number following exocytosis. Parallel studies using electron microscopy, further confirmed our AFM results. These studies demonstrate that following stimulation of secretion, membrane-bound secretory vesicles transiently dock and fuse to release vesicular contents.  相似文献   

5.
Neuroendocrine cells secrete hormones and polypeptides through a complex membrane trafficking process that involves the transport of specific organelles, called large dense core secretory granules, from the Golgi apparatus to specialised sites at the plasma membrane where these vesicles are successively exocytosed and recaptured by endocytosis through tightly coupled reactions. The minimal machinery required for exocytosis has been defined as SNARE proteins associated with few accessory proteins. On the other side, clathrin and dynamin constitute major components of some of the most important endocytotic pathways. Although many protein contributors of both exocytosis and endocytosis are now identified, their actual interplay is not well resolved. Furthermore, the necessary tight coupling of exocytosis and compensatory endocytosis to maintain membrane homeostasis in neuroendocrine cells is far from being understood. In this review, we focus on the more recently identified role of lipids in these important processes that are above all membrane remodelling events.  相似文献   

6.
Egress of newly assembled herpesvirus particles from infected cells is a highly dynamic process involving the host secretory pathway working in concert with viral components. To elucidate the location, dynamics, and molecular mechanisms of alpha herpesvirus egress, we developed a live-cell fluorescence microscopy method to visualize the final transport and exocytosis of pseudorabies virus (PRV) particles in non-polarized epithelial cells. This method is based on total internal reflection fluorescence (TIRF) microscopy to selectively image fluorescent virus particles near the plasma membrane, and takes advantage of a virus-encoded pH-sensitive probe to visualize the precise moment and location of particle exocytosis. We performed single-particle tracking and mean squared displacement analysis to characterize particle motion, and imaged a panel of cellular proteins to identify those spatially and dynamically associated with viral exocytosis. Based on our data, individual virus particles travel to the plasma membrane inside small, acidified secretory vesicles. Rab GTPases, Rab6a, Rab8a, and Rab11a, key regulators of the plasma membrane-directed secretory pathway, are present on the virus secretory vesicle. These vesicles undergo fast, directional transport directly to the site of exocytosis, which is most frequently near patches of LL5β, part of a complex that anchors microtubules to the plasma membrane. Vesicles are tightly docked at the site of exocytosis for several seconds, and membrane fusion occurs, displacing the virion a small distance across the plasma membrane. After exocytosis, particles remain tightly confined on the outer cell surface. Based on recent reports in the cell biological and alpha herpesvirus literature, combined with our spatial and dynamic data on viral egress, we propose an integrated model that links together the intracellular transport pathways and exocytosis mechanisms that mediate alpha herpesvirus egress.  相似文献   

7.
Rapid Endocytosis and Vesicle Recycling in Neuroendocrine Cells   总被引:1,自引:0,他引:1  
Endocytosis is a crucial process for neuroendocrine cells that ensures membrane homeostasis, vesicle recycling, and hormone release reliability. Different endocytic mechanisms have been described in chromaffin cells, such as clathrin-dependent slow endocytosis and clathrin-independent rapid endocytosis. Rapid endocytosis, classically measured in terms of a fast decrease in membrane capacitance, exhibits two different forms, “rapid compensatory endocytosis” and “excess retrieval.” While excess retrieval seems to be associated with formation of long-lasting endosomes, rapid compensatory endocytosis is well correlated with exocytotic activity, and it is regarded as a mechanism associated to rapid vesicle recycling during normal secretory activity. It has been suggested that rapid compensatory endocytosis may be related to the prevalence of a transient fusion mode of exo-endocytosis. In the latter mode, the fusion pore, a nanometric-sized channel formed at the onset of exocytosis, remains open for a few hundred milliseconds and later abruptly closes, releasing a small amount of transmitters. By this mechanism, endocrine cell selectively releases low molecular weight transmitters, and rapidly recycles the secretory vesicles. In this article, we discuss the cellular and molecular mechanisms that define the different forms of exocytosis and endocytosis and their impact on vesicle recycling pathways.  相似文献   

8.
Multi-vesicular bodies in endocytosis and protoplasts are special cellular structures that are consid-ered to be originated from invagination of plasma membranes. However, the genesis and function of multi-vesicular bodies, the relationship with Golgi bodies and cell walls, and their secretory pathways remain controversial and ambiguous. Using a monoclonal antibody against an animal 58K protein, we have detected, by Western blotting and confocal microscopy, that a 58K-like protein is present in the calli of Arabidopsis thaliana and Hypericum perforatum. The results of immuno-electron microscopy showed that the 58K-like protein was located in the cisternae of Golgi bodies, secretory vesicles, multi-vesicular bodies, cell walls and vacuoles in callus of Arabidopsis thaliana, suggesting that the multi-vesicular bodies may be originated from Golgi bodies and function as a transporter carrying substances synthesized in Golgi bodies to cell walls and vacuoles. It seems that multi-vesicular bodies have a close relationship with the development of the cell wall and vacuole. The possible secretory pathways of multi-vesicular bodies might be in exocytosis, in which multi-vesicular bodies carry sub-stances to the cell wall for its construction, and in endocytosis, in which multi-vesicular bodies carry substances to the vacuole for its development, depending on what they carry and where the materials are transported. We hence propose that there is more than one pathway for the secretion of multi-vesicular bodies. In addition, our results provided a paradigm that a plant molecule, such as the 58k-like protein in callus of Arabidopsis thaliana, can be detected using a cross-reactive monoclonal antibody induced by an animal protein, and illustrate the existence of analog molecules in both animal and plant kingdoms.  相似文献   

9.
We measured capacitance changes in cell attached patches of human neutrophils using a high frequency lock-in method. With this technique the noise level is reduced to 0.025 fF such that capacitance steps of 0.1 fF are clearly detected corresponding to exo- and endocytosis of single 60 nm vesicles. It is thus possible to detect almost all known exocytotic and endocytotic processes including exocytosis of small neurotransmitter containing vesicles in most cell types as well as endocytosis of coated and uncoated pits. In neutrophils we demonstrate a stepwise capacitance decrease generated by 60-165 nm vesicles as expected for endocytosis of coated and non-coated pits. Following ionomycin stimulation a stepwise capacitance increase is observed consisting of 0.1-5 fF steps corresponding to the different granule types of human neutrophils from secretory vesicles to azurophil granules. The opening of individual fusion pores is resolved during exocytosis of 200 nm vesicles. The initial conductance has a mean value of 150 pS and can be as low as 35 pS which is similar to the conductance of many ion channels suggesting that the initial fusion pore is formed by a protein complex.  相似文献   

10.
Endocytosis was studied in the seminal vesicle secretory cells of castrated and control hamsters in order to investigate the effect of testosterone withdrawal in the endocytic activity of these cells. Horseradish peroxidase was injected into the glands lumen after removal of their contents, and tracer distribution was qualitatively studied, and the number of labeled endocytic vesicles quantitatively analyzed, following 5, 20, 40 and 60 min incubation. The following compartments are labeled both in castrate and control cells: 1), endocytic vesicles; 2), vacuoles with or without secretory material; 3), multivesicular bodies; 4), Golgi cisternae; 5), intercellular spaces; 6), sub-epithelial space. The pattern of labeling is lighter in castrate than in control cells and the labeling of Golgi cisternae, which correlates with a significant peak in the number of endocytic vesicles, is observed later in castrated animals than in controls: 40 min vs 20 min. Exocytosis, as evaluated through the fraction of secretory protein released in vitro, decreases following castration. Endocytosis performed in castrated, pilocarpine treated animals shows that the Golgi labeling, coinciding with numerous labeled endocytic vesicles, is advanced from 40 to 20 min after stimulation of exocytosis. The results show that, in the seminal vesicle secretory cells a) the endocytic pathway does not depend on testosterone; b) testosterone withdrawal decreases endocytosis and delays the kinetics of labeling and; c) endocytosis couples to exocytosis, probably so regulating the apical cell membrane area.  相似文献   

11.
Endocytosis was studied in the seminal vesicle secretory cells of castrated and control hamsters in order to investigate the effect of testosterone withdrawal in the endocytic activity of these cells. Horseradish peroxidase was injected into the glands lumen after removal of their contents, and tracer distribution was qualitatively studied, and the number of labeled endocytic vesicles quantitatively analyzed, following 5, 20, 40 and 60 min incubation. The following compartments are labeled both in castrate and control cells: 1), endocytic vesicles; 2), vacuoles with or without secretory material; 3), multivesicular bodies; 4), Golgi cisternae; 5), intercellular spaces; 6), sub-epithelial space. The pattern of labeling is lighter in castrate than in control cells and the labeling of Golgi cisternae, which correlates with a significant peak in the number of endocytic vesicles, is observed later in castrated animals than in controls: 40 min vs 20 min. Exocytosis, as evaluated through the fraction of secretory protein released in vitro, decreases following castration. Endocytosis performed in castrated, pilocarpine treated animals shows that the Golgi labeling, coinciding with numerous labeled endocytic vesicles, is advanced from 40 to 20 min after stimulation of exocytosis. The results show that, in the seminal vesicle secretory cells a) the endocytic pathway does not depend on testosterone; b) testosterone withdrawal decreases endocytosis and delays the kinetics of labeling and; c) endocytosis couples to exocytosis, probably so regulating the apical cell membrane area.  相似文献   

12.
Llobet A  Beaumont V  Lagnado L 《Neuron》2003,40(6):1075-1086
We describe a new approach for making real-time measurements of exocytosis and endocytosis in neurons and neuroendocrine cells. The method utilizes interference reflection microscopy (IRM) to image surface membrane in close contact with a glass coverslip (the "footprint"). At the synaptic terminal of retinal bipolar cells, the footprint expands during exocytosis and retracts during endocytosis, paralleling changes in total surface area measured by capacitance. In chromaffin cells, IRM detects the fusion of individual granules as the appearance of bright spots within the footprint with spatial and temporal resolution similar to total internal reflection fluorescence microscopy. Advantages of IRM over capacitance are that it can monitor changes in surface area while cells are electrically active and it can be applied to mammalian neurons with relatively small synaptic terminals. IRM reveals that vesicles at the synapse of bipolar cells rapidly collapse into the surface membrane while secretory granules in chromaffin cells do not.  相似文献   

13.
The classical model of secretory vesicle recycling after exocytosis involves the retrieval of membrane (the omega figure) at a different site. An alternative model involves secretory vesicles transiently fusing with the plasma membrane (the 'kiss and run' mechanism) [1,2]. No continuous observation of the fate of a single secretory vesicle after exocytosis has been made to date. To study the dynamics of fusion immediately following exocytosis of insulin-containing vesicles, enhanced green fluorescent protein (EGFP) fused to the vesicle membrane protein phogrin [3] was delivered to the secretory vesicle membrane of INS-1 beta-cells using an adenoviral vector. The behaviour of the vesicle membrane during single exocytotic events was then examined using evanescent wave microscopy [4-6]. In unstimulated cells, secretory vesicles showed only slow Brownian movement. After a depolarizing pulse, most vesicles showed a small decrease in phogrin-EGFP fluorescence, and some moved laterally over the plasma membrane for approximately 1 microm. In contrast, secretory vesicles loaded with acridine orange all showed a transient (33-100 ms) increase in fluorescence intensity followed by rapid disappearance. Simultaneous observations of phogrin-EGFP and acridine orange indicated that the decrease in EGFP fluorescence occurred at the time of the acridine orange release, and that the lateral movement of EGFP-expressing vesicles occurred after this. Post-exocytotic retrieval of the vesicle membrane in INS-1 cells is thus slow, and can involve the movement of empty vesicles under the plasma membrane ('kiss and glide').  相似文献   

14.
Endocytosis in secretory cells   总被引:2,自引:0,他引:2  
Membranes of secretion granules inserted during exocytosis into the luminal plasma membranes of glandular cells are retrieved by endocytosis as revealed by electron dense tracers applied selectively to the apical cell surfaces. Two major pathways that endocytic vesicles may take are described: (1) a direct route to the Golgi complex (e.g. in parotid and exocrine pancreas) with later appearance of the tracer in the periphery of mature secretion granules; (2) an indirect route with lysosomes as a first station and the subsequent appearance of tracer in stacked Golgi cisternae. It is presumed that some of the retrieved membrane follows the same pathways and is reutilized in the secretory cycle.  相似文献   

15.
The increased studies on urinary bladder umbrella cells as an important factor for maintaining the permeability barrier have suggested new pathways for the discoidal/fusiform endocytic vesicles which is one of the main features of the umbrella cells. The biological role of these vesicles was defined, for many years, as a membrane reservoir for the umbrella cell apical plasma membrane which are subject to an increased tension during the filling phase of the micturition cycle and, therefore, the vesicles are fused with the apical membrane. Upon voiding, the added membrane is reinserted via a non-clathrin or caveolin-dependant endocytosis thereby restoring the vesicle cytoplasmic pool. However, in the last decade, new evidence appeared indicating alternative pathways of the endocytic vesicles different than the cycling process of exocytosis/endocytosis. The purpose of this review is to analyze the molecular modulators, such as membrane lipids and proteins, in the permeability of endocytic vesicles, the sorting of endocytosed material to lysosomal degradation pathway and recycling of both membrane and fluid phases.  相似文献   

16.
Conventional and freeze-fracture electron microscopy, immuno-electron microscopy of ovarian cryosections and confocal immunofluorescence were used to analyze the ovarian distribution of the major protein classes being secreted by the follicle cells during the vitellogenic and choriogenic stages of Drosophila oogenesis. Our results clearly demonstrated that at vitellogenic stages the follicle cells co-secrete constitutively vitelline membrane and yolk proteins that are either sorted into distinct secretory vesicles or they are segregated in different parts of bipartite vesicles by differential condensation. Following their exocytosis only the vitelline membrane proteins are incorporated into the forming vitelline membrane. The yolk proteins (along with their hemolymph circulating counterparts) diffuse through gaps amongst the incomplete vitelline membrane and are internalized through endocytosis by the oocyte where they are finally stored into modified lysosomes referred to as alpha-yolk granules. The unexpected immunolocalization of vitelline membrane antigens in the associated body of the alpha-yolk granules may indicate that this structure is a transient repository for the proteins being internalized into the oocyte along with the yolk proteins. In the early choriogenic follicle cells the vitelline membrane and early chorion proteins were found to be co-secreted and to be evenly intermixed into the same secretory vesicles. These findings illuminate new details concerning the follicle cells secretory and oocyte endocytic pathways and provide for the first time evidence for condensation-mediated sorting of constitutively secreted proteins in Drosophila.  相似文献   

17.
Although pollen tube growth is a prerequisite for higher plant fertilization and seed production, the processes leading to pollen tube emission and elongation are crucial for understanding the basic mechanisms of tip growth. It was generally accepted that pollen tube elongation occurs by accumulation and fusion of Golgi-derived secretory vesicles (SVs) in the apical region, or clear zone, where they were thought to fuse with a restricted area of the apical plasma membrane (PM), defining the apical growth domain. Fusion of SVs at the tip reverses outside cell wall material and provides new segments of PM. However, electron microscopy studies have clearly shown that the PM incorporated at the tip greatly exceeds elongation and a mechanism of PM retrieval was already postulated in the mid-nineteenth century. Recent studies on endocytosis during pollen tube growth showed that different endocytic pathways occurred in distinct zones of the tube, including the apex, and led to a new hypothesis to explain vesicle accumulation at the tip; namely, that endocytic vesicles contribute substantially to V-shaped vesicle accumulation in addition to SVs and that exocytosis does not involve the entire apical domain. New insights suggested the intriguing hypothesis that modulation between exo- and endocytosis in the apex contributes to maintain PM polarity in terms of lipid/protein composition and showed distinct degradation pathways that could have different functions in the physiology of the cell. Pollen tube growth in vivo is closely regulated by interaction with style molecules. The study of endocytosis and membrane recycling in pollen tubes opens new perspectives to studying pollen tube-style interactions in vivo .  相似文献   

18.
Total internal reflection fluorescence microscopy (TIRFM) images the plasma membrane–cytosol interface and has allowed insights into the behavior of individual secretory granules before and during exocytosis. Much less is known about the dynamics of the other partner in exocytosis, the plasma membrane. In this study, we report the implementation of a TIRFM-based polarization technique to detect rapid submicrometer changes in plasma membrane topology as a result of exocytosis. A theoretical analysis of the technique is presented together with image simulations of predicted topologies of the postfusion granule membrane–plasma membrane complex. Experiments on diI-stained bovine adrenal chromaffin cells using polarized TIRFM demonstrate rapid and varied submicrometer changes in plasma membrane topology at sites of exocytosis that occur immediately upon fusion. We provide direct evidence for a persistent curvature in the exocytotic region that is altered by inhibition of dynamin guanosine triphosphatase activity and is temporally distinct from endocytosis measured by VMAT2-pHluorin.  相似文献   

19.
We used water-soluble styryl pyridinium dyes that fluoresce at the membrane-water interface to study vesicle traffic in endothelial cells. Cultured endothelial cells derived from bovine and human pulmonary microvessels were incubated in styryl probes, washed to remove dye from the plasmalemmal outer face, and observed by digital fluorescence microscopy. Vesicles that derived from plasmalemma by endocytosis were filled with the styryl dye. These vesicles were distributed throughout the cytosol as numerous particles of heterogeneous diameter and brightness. Vesicle formation was activated 2-fold following addition of extracellular albumin whereas a control protein, immunoglobulin G, had no effect. Dye uptake was abrogated by labeling at low temperatures and inhibitors of phosphoinositide-3-kinase (PI 3-kinase). Tyrosine kinase inhibitors (genistein and herbimycin A) prevented the albumin-induced vesicle formation. Cytochalasin B prevented vesicle redistribution indicating involvement of actin filaments in translocation of endosomes away from sites of vesicle formation. Styryl dye was lost from cells by exocytosis as evident by the disappearance of discrete fluorescent particles. N-ethylmaleimide and botulinum toxin types A and B caused cells to accumulate increased number of vesicles suggesting that exocytosis was regulated by NSF-dependent SNARE mechanism. The results suggest that phosphoinositide metabolism regulates endocytosis in endothelial cells and that extracellular albumin activates endocytosis by a mechanism involving tyrosine phosphorylation, whereas exocytosis is a distinct process regulated by the SNARE machinery. The results support the hypothesis that albumin regulates its internalization and release in vascular endothelial cells via activation of specific endocytic and exocytic pathways.  相似文献   

20.
The role of calcium in exocytosis and endocytosis in plant cells   总被引:6,自引:0,他引:6  
The role of calcium in the individual cellular events leading to exocytosis is considered. Both vesicle movement processes and vesicle fusion at the cell surface require calcium for completion of specific events in this pathway. Our knowledge of these events is incomplete. In particular the movement of secretory vesicles by the cytoskeleton in response to added calcium is a key event that is beyond our comprehension at present. At the whole cell level, it is shown that external calcium, at the appropriate concentration, is required to elicit secretion at optimal rates. In both plant and animal cells secretion appears to be dependent on, or is triggered by, a rise in the level of internal free calcium ions from about 10-7 to 10-6M or even higher. In these eukaryotes internal organelles take up calcium and maintain a low level of calcium in the cell, offsetting the inflow of calcium from the plasma membrane. In some systems the inflow is restricted to a certain part of the plasma membrane, which then acts as a focus for exocytosis and, thereby, establishes a cellular polarity. In plant tissues there appears to be a requirement for some circulation of calcium within the apoplast, to sustain secretion. Recent papers on endocytosis have confirmed its occurrence in plant cells and made significant advances in isolating and characterising the clathrin coats of the coated vesicles involved in the uptake. There is no evidence, at present, for a direct role for calcium in these events. Indirectly, calcium stimulates exocytosis, and hence the delivery of excess membrane to the cell surface, which may be retrieved by an increase in the rate of endocytosis. Quantitative comparisons of the membrane flow occurring in these pathways are not available. Several plant cellular systems have been employed to study secretion and some of these may prove to be superior model systems for the investigation of certain aspects of the control of exocytosis and endocytosis by calcium ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号