首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract. The first 10 yr of old-field successional dynamics on the Argentine Inland Pampa were studied on a series of adjacent plots established consecutively between 1978 and 1989. We examined differences in species abundance patterns among plots in order to detect the spatial and temporal variability of succession. Perennial grasses steadily increased in cover and replaced the dominant annual species after 5 yr. Pioneer dicots persisted in older seral stages with 20 — 23 species/plot. Overall, exotic species (mostly the grasses Lolium multiflorum and Cynodon dactylon) contributed much to the plant cover in these communities. Native grasses comprised 45 % of total cover at years 7 — 10 of succession, but occurred with less than 7 species/plot. Substantial variation was found in the successional pathway, which reflected the particular sequence from annual forbs to short-lived and perennial grasses in the various plots. The course of succession was apparently influenced by a 2-yr period of unusually high rainfall. Deyeuxia viridiflavescens, a native perennial grass virtually absent before the wet period, spread over the study area and dominated seral communities for 3 yr, irrespective of plot age. Climatic conditions thus affected the successional turnover of life forms by increasing the rate of colonization by perennial grasses. We further point out the constraints imposed on secondary succession by the life histories of ‘available’ species.  相似文献   

2.
Four hypotheses were tested using long-term observations of vegetation development (12 years) and present-day seed bank data in a sandy grassland area overgrazed by domestic geese: i) Gap regeneration is crucial in maintaining species richness; thus, closed vegetation of the lower sites prevents continuous establishment of short-lived species. ii) Short-lived, early successional species comprise most of the seed banks and late successional perennials have at most sparse seed banks. iii) Composition of seed banks is more similar to pioneer vegetation than to later successional stages. iv) The similarity is higher between vegetation and seed banks in the upper-positioned plots than in the closed, lower-positioned ones. Two sites, located in the upper part of dune slopes, and another two, positioned on the lower part, were studied. In each site five 2?×?2 m permanent plots were surveyed between 1991 and 2002. Percentage cover was estimated three times a year. In the last study year, soil seed banks were sampled. Two vertical segments (0–5, 5–10 cm) were separately analyzed. The seedling emergence method was applied on concentrated samples. We found that the vegetation developed from open, annual dominated weedy assemblages to grasslands dominated by perennial graminoids. In the lower-positioned sites perennial clonal grasses (Cynodon dactylon, Poa angustifolia and P. pratensis) formed more closed vegetation, which was accompanied by lower species richness compared to the upper-positioned sites. Seed density varied between 10,300 and 40,900 seeds/m2. Significantly higher seed densities were found in upper sites than in the lower ones. Annuals and short-lived perennial dicots comprised most of the seed bank. The dominant perennial graminoids also built up dense seed banks. We found a low to medium similarity between vegetation and the seed bank; similarity was the highest with the vegetation of the 1994–1998 period. In the upper sites the similarity between seed bank and the vegetation of the last studied years was also high. The vertical position had a significant effect on regeneration after overgrazing. The large cover of grasses in lower sites decreased species richness and it also decreased the seed density preventing the seed bank formation of annuals and short-lived perennials. Here, further management practices are needed to increase the species richness.  相似文献   

3.
Species richness, composition and abundance of the bryophyte diaspore bank of Central European temperate mixed forests were compared with the forest-floor bryophyte assemblage. The impact of environmental variables and anthropogenic disturbances, including tree species composition, stand structure, microclimate, light conditions, soil and litter properties, management history, and landscape properties, potentially influencing bryophyte diaspore bank assemblages were explored. Thirty-four, 70–100 years old mixed stands with differing tree species composition were examined in the ?rség National Park, Western Hungary. The diaspore bank was studied by soil collection and cultivation, and data were analysed by multivariate methods. Contrary to the forest-floor bryophyte assemblage, where substrate availability, tree species composition and stand structure were the most influential environmental variables, the composition and abundance of the diaspore bank was mainly affected by site conditions (microclimate, litter and soil properties). Species richness of the bryophyte diaspore bank was lower than that of the forest-floor bryophyte assemblage. Short-lived mosses (colonists, short-lived shuttles) were dominant in the diaspore bank, as opposed to the forest-floor bryophyte community, where perennial mosses dominated. In the studied forests, the importance of the bryophyte diaspore bank was relatively low in the regeneration and maintenance of the forest-floor bryophyte vegetation.  相似文献   

4.
Several reports have referred to the possible perennial character of holoparasitic Cuscuta species, but the frequency and ecological importance of perennation have not been studied yet. We determined that Cuscuta epithymum is capable of overwintering vegetatively, especially on its most common perennial host Calluna vulgaris. To examine the impact of successional stages on the capability of C. epithymum to perennate vegetatively, ten C. epithymum populations in Calluna-dominated sites in a successional gradient were studied. Although the number of overwintering haustoria varied between different populations, on average 85% of each C. epithymum population was the result of resprouting haustoria. Thus, the pseudoannual growth habit is an important, but overlooked life-strategy for long-term survival of this species. Furthermore, the stage of heath succession significantly determined the overwintering probabilities of C. epithymum and therefore strongly influenced its annual growth. Most sprouted haustoria were found in 1- or 2-year-old vegetation followed by a gradual decline at older successional stages. The parasite was more likely to overwinter on unlignified (and nutritious) than on lignified parts of C. vulgaris. The number of sprouted haustoria positively affects C. epithymum population size and thus flower abundance. Hence, vegetative perennation and subsequent increased flowering success are two aspects that may increase the chance for these populations to cope with environmental influences and survive in the long run.  相似文献   

5.
Permanent plots were created in different seasons (autumn and spring) and filled with two substrates: nutrient-rich topsoil and nutrient-poor ruderal soil (n = 5 for each treatment). My objectives were to assess the influence of starting season on initial species composition, whether differences at the start cause divergent or convergent pathways of succession and which mechanisms are operating during vegetation development. Mean species richness (number of species per plot) and mean total cover of herb layer differed significantly between substrates and changed significantly during 10 year succession, but there were no significant differences with respect to starting season. However, seasonal as well as substrate effects were evident for particular dominant species and for the pattern of successional sequences. When succession on topsoil plots started in spring, first summer annuals dominated, then monocarpic and polycarpic perennial herbs, then herbaceous perennials together with woody perennials, and at the end of the decade woody perennials. When succession started in autumn, polycarpic perennial herbs dominated from the beginning, and then were replaced by woody perennials in the second half of the decade. On ruderal soil, there was a less rapid but continuous increase of polycarpic perennial herbs and woody species, both on spring and on autumn plots, whereas short-lived plants were more abundant in the first years and then decreased. Species turnover was very high from the first to the second year for all treatments (except topsoil plots starting in autumn), but slowed down during succession. Priority effects due to starting season caused high dissimilarity at the start on the nutrient-rich substrate, but convergent succession towards the end of the first decade. The main mechanisms during early succession on the nutrient-rich topsoil were tolerance based on different life-history traits and inhibition due to reduced light availability. There was no evidence for obligate facilitation. However, an indirect facilitative effect by annuals, which slowed the development of herbaceous perennials down, and thus facilitated growth of woody species, could be seen on topsoil when succession started in spring.  相似文献   

6.
We investigated spontaneous vegetation succession and the relationship between time and vegetation patterns in several abandoned quarries of the Botticino extraction basin (Lombardy, Italy) and then assigned plant assemblages to a predetermined theoretical successional phase using an original procedure. To recognise and validate the gradient due to time, an ordination approach of vegetation plots linked to constant variables and time since last mining Canonical Correspondence Analysis was conducted first. Then, to determine the durations of the vegetation succession phases and trends between the colonisers and late successional species, we used an original six-step procedure based primarily on the regression curve of the percent relative abundance of life forms (RALFs) over time. The results demonstrated that time is the primary factor that significantly affects life form turnover during succession. Vegetation establishment and development in the “pioneer phase” (0–6 years) were affected by abiotic filters, which determined the dominance of a few ruderal and annual/alien species, mostly therophytes. The successive phases were characterised by an increasing presence of perennial species (mostly phanerophytes) with a consequent influence of biotic filters. The RALF procedure may be applied to other environments to investigate the time trends of plant communities during successions.  相似文献   

7.
Abstract. In this study, we examined the colonization of unvegetated, dry slopes in the lignite‐mining area of Goitsche, Germany. The plots, characterized by different habitat conditions, were studied from 1994–2000. The vegetation development on treated plots was compared to untreated plots showing spontaneous succession. For initial treatments we used fresh plant clippings from a species‐rich sandy grassland (Armerion elongatae) mowed at the end of July. Soil seed bank samples, taken at the beginning of the experiments and cultivated for 18 months, confirmed that the vegetation development on the slopes started with primary succession. Because seed rain is considered to be an important factor in primary succession, we also studied the diaspore input during the first year. The hospitable Quaternary substrate of Site I (pH = 4.1–4.7, 92 % sand) supports fast vegetation development on treated and untreated plots. On treated plots, we have identified plant assemblages similar to initial stages of the Armerion elongatae community. On control plots, Coryne‐phorion communities have established spontaneously. At Site II (mixed Quaternary and Tertiary substrate, pH = 3.0–3.5,40 % sand) the total cover and number of psammophytic species was low. Treated plots showed development towards ruderal sandy grassland, but the establishment of Calamagrostis epigejos would eventually lead to monodominant stands. Untreated control plots showed basically the same pattern, however the development was slower. At Site III (pH = 1.8–2.8, 34 % sand), the hostile Tertiary substrate impeded the succession on both treated and untreated plots because low pH and therefore high amounts of Al3+ produced elemental toxicity to plants. The application of plant clippings accelerated the vegetation development in sites with a pH exceeding 3. On plots with the initial treatment, vegetation cover and total number of species were higher than on untreated plots. The application of fresh plant clippings from areas with similar habitat conditions appears to be a viable alternative to traditional restoration methods.  相似文献   

8.
Plant–plant interactions change through succession from facilitative to competitive. At early stages of succession, early‐colonizing plants can increase the survival and reproductive output of other plants by ameliorating disturbance and stressful conditions. At later stages of succession, plant interactions are more competitive as plants put more energy toward growth and reproduction. In northern temperate rainforests, gap dynamics result in tree falls that facilitate tree regeneration (nurse logs) and bryophyte succession. How bryophyte‐tree seedling interactions vary through log succession remains unclear. We examined the relationships of tree seedlings, bryophyte community composition, bryophyte depth, and percent canopy cover in 166 1.0 m2 plots on nurse logs and the forest floor in the Hoh rainforest in Washington, USA, to test the hypothesis that bryophyte‐tree seedling interactions change from facilitative to competitive as the log decays. Tree seedling density was highest on young logs with early‐colonizing bryophyte species (e.g., Rhizomnium glabrescens) and lowest on decayed logs with Hylocomium splendens, a long‐lived moss that reaches depths >20 cm. As a result, bryophyte depth increased with nurse log decay and was negatively associated with tree seedling density. Tree seedling density was 4.6× higher on nurse logs than on the forest floor, which was likely due to competitive exclusion by forest floor plants, such as H. splendens. Nurse logs had 17 species of bryophytes while the forest floor had six, indicating that nurse logs contribute to maintaining bryophyte diversity. Nurse logs enable both tree seedlings and smaller bryophyte species to avoid competition with forest floor plants, including the dominant bryophyte, H. splendens. H. splendens is likely a widespread driver of plant community structure given its dominance in northern temperate forests. Our findings indicate that plant–plant interactions shift with succession on nurse logs from facilitative to competitive and, thus, influence forest community structure and dynamics.  相似文献   

9.
Abstract Invasion by Mediterranean annual grasses, such as Avena L. spp. and Bronms L. spp, is one of the major threats to temperate perennial grassland. This study investigated the effects of annual grasses and their litter on the species composition of a grassland near Burra, South Australia. The placement of annual grass litter on soil samples in the glasshouse decreased the establishment or growth of several exotic annual dicots. In the field the addition of annual grass litter slightly decreased the frequency of Danthonia Lam. & DC. tussocks. Furthermore, litter strongly reduced the species richness from 13 species in plots with no litter to nine species in plots with the highest litter level, mainly by decreasing the frequency of common exotic dicots. Native dicot frequency similarly appeared to be decreased by litter addition. In addition to the negative effects of their litter, annual grasses also directly competed with perennial grasses. The magnitude of the competitive effect varied systematically along a slope, suggesting that other factors such as soil properties may control competitive inter actions. The biomass of annual grasses also tended to increase with the addition of their own litter. This combination of positive and negative feedback mechanisms suggests that brief periods favourable for annual grasses, either through management changes or environmental conditions, can lead to persistent changes in the species composition of the system.  相似文献   

10.
We studied the relative importance of local habitat conditions and landscape structure for species richness of vascular plants, bryophytes and lichens in dry grasslands on the Baltic island of Öland (Sweden). In addition, we tested whether relationships between species richness and vegetation cover indicate that competition within and between the studied taxonomic groups is important. We recorded species numbers of vascular plants, bryophytes and lichens in 4 m2 plots (n=452), distributed over dry grassland patches differing in size and degree of isolation. Structural and environmental data were collected for each plot. We tested effects of local environmental conditions, landscape structure and vegetation cover on species richness using generalized linear mixed models. Different environmental variables explained species richness of vascular plants, bryophytes and lichens. Environmental effects, particularly soil pH, were more important than landscape structure. Interaction effects of soil pH with other environmental variables were significant in vascular plants. Plot heterogeneity enhanced species richness. Size and degree of isolation of dry grassland patches significantly affected bryophyte and lichen species richness, but not that of vascular plants. We observed negative relationships between bryophyte and lichen species richness and the cover of vascular plants. To conclude, effects of single environmental variables on species richness depend both on the taxonomic group and on the combination of environmental factors on a whole. Dispersal limitation in bryophytes and lichens confined to dry grasslands may be more common than is often assumed. Our study further suggests that competition between vascular plants and cryptogams is rather asymmetric.  相似文献   

11.
《Journal of bryology》2013,35(2):243-255
Abstract

Bryophyte species fertility and life strategy composition on different substrates were examined along an altitudinal gradient incorporating lauriphyll forest, Erica-Myrica woodland and Pinus canariensis forest at EI Canal y Los Tiles (La Palma, Canary Islands). One hundred and forty quadrats (each 625 cm2) were sampled along this gradient and 86 bryophyte species were recorded. The relationship of life strategy to environmental factors was explained using canonical correspondence analysis. The perennial life strategy is best represented in the more humid forests, but at higher elevations the colonist category is the most abundant. Colonists, short-lived shuttle and long-lived shuttle categories mainly occur on rocks in the driest forest. In the more humid forest, long-lived shuttle and short-lived shuttle categories are prominent on trees and the colonist category on soil. The perennial category is prominent on shady soils in the driest forest. In the more humid areas its abundance is similar on all substrates. Humidity conditions, substrate dynamics and vegetation disturbance seem to be the main factors influencing life strategy composition in the area studied. The lowest percentage of fertile species was found in the perennial life strategy category. The others have similar fertility (approximately 70%). The types of breeding systems, climatic conditions and rarity seem to have a great influence in the fertility of the species.  相似文献   

12.
《Mammalian Biology》2008,73(6):423-429
The Cabrera vole (Microtus cabrerae) is an Iberian endemism considered threatened both in Portugal and Spain. This vole is often referred to as a tall perennial grassland community specialist. However, a recent study revealed that the Cabrera vole exploits a wide variety of grasslands in south Portugal. The major aim of the present study was to test the palatability of 21 plant species of this region occurring within or outside typical perennial grassland colonies in order to assess vole's food preferences. Results showed a major consumption of monocotyledons and annual plants (such as Festuca ampla, Agrostis castellana, Brachypodium distachyon, B. phoenicoides and Vulpia geniculata), but no relationship was found between diet selection and perennial grassland plant communities. The preference of voles for annual species, occurring more abundantly outside the colonies, raises the hypothesis that the establishment of a colony might be determined by plant species abundance and persistence over the year, rather than by their palatability. This seems to be particularly evident in this region, where summer meteorological conditions make vegetation unavailable outside the colonies.  相似文献   

13.
Abstract. Closed canopy vegetation often prevents the colonization of plant species. Therefore the majority of plant species are expected to appear at the initial phase of post‐agricultural succession in mesic forest environment with moderate levels of resources. This hypothesis was tested with data from the Buell‐Small Successional Study, NJ, USA, one of the longest continuous fine‐scale studies of old‐field succession. The study started in 1958, including old fields with different agricultural histories, landscape contexts, and times of abandonment. In each year of the study, the cover values of plant species were recorded in 48 permanent plots of 1 m2 in each field. We analysed the temporal patterns of colonization at plot scale and related these to precipitation data and other community characteristics. The number of colonizing species decreased significantly after ca. 5 yr, coinciding with the development of a continuous canopy of perennial species. However, species turnover remained high throughout the whole successional sequence. The most remarkable phenomenon is the high inter‐annual variation of all studied characteristics. We found considerable temporal collapses of vegetation cover that were synchronized among fields despite their different developmental stages and distinctive species compositions. Declines of total cover were correlated with drought events. These events were associated with peaks of local species extinctions and were followed by increased colonization rates. The transitions of major successional stages were often connected to these events. We suggest that plant colonization windows opened by extreme weather events during succession offer optimum periods for intervention in restoration practice.  相似文献   

14.
Dry grasslands are among the most threatened plant communities of Central Europe. We explore the time scale of spontaneous regeneration of dry grasslands on abandoned fields in an area of Central Europe, where also ancient grassland communities occur (Saxony-Anhalt, Germany). On three permanent plots with shallow soils we monitored during 10 years change of species composition and analysed whether spontaneous succession leads to assemblages similar to the ancient dry grassland communities in the direct surroundings. We found that dry grassland species are able to invade the permanent plots and during the 10 years of succession the number of dry grassland species increased. But even after 10 years there was a clear difference between ancient dry grassland communities and the assemblages on the permanent plots. Our findings suggest two important conclusions: First, spontaneous succession on abandoned fields is a cheap possibility for the conservation of some dry grassland species, at least on shallow soils. Second, the time scale of the regeneration process, however, is rather long. Hence, conservation of remnants of ancient grassland communities needs special attention.  相似文献   

15.
R.Z. Wang 《Photosynthetica》2004,42(2):511-519
Photosynthetic pathways (C3, C4, and CAM) and morphological functional types (e.g. shrubs, high perennial grasses, short perennial graminaceous plants, annual grasses, annual forbs, perennial forbs, halophytes, and hydrophytes) were identified for the species from salinity grasslands in Northeastern China, using the data from both stable carbon isotope ratios (δ13C) and from the references published between 1993 and 2002. 150 species, in 99 genera and 37 families, were found with C3 photosynthesis, and most of these species are dominants [e.g. Leymus chinensis (Trin.) Tzvel., Calamagrostis epigeios (L.), Suaeda corniculata (C.A. Mey.) Bunge]. 40 species in 25 genera and 8 families were identified with C4 photosynthesis [e.g. Chloris virgata Sw., Aeluropus littoralis (Gouan) Parlat] and 1 species with CAM photosynthesis. Gramineae is the leading family with C4 photosynthesis (27 species), Chenopodiaceae ranks the second (5 species). The significant increase of C4 proportions with intense salinity suggested this type plant is remarkable response to the grassland salinization in the region. 191 species were classified into eight morphological functional types and the changes of most of these types (e.g. PEF, HAL, and HPG) were consistent with habitats and vegetation dynamics in the saline grassland. My findings suggest that the photosynthetic pathways, combined with morphological functional types, are efficient means for studying the linkage between species and ecosystems in this type of saline grassland in Northeastern China.  相似文献   

16.
Populations of the rare annual forb Amsinckia grandiflora may be declining because of competitive suppression by exotic annual grasses, and may perform better in a matrix of native perennial bunchgrasses. We conducted a field competition experiment in which Amsinckia seedlings were transplanted into forty 0.64‐m2 experimental plots of exotic annual grassland or restored perennial grassland. The perennial grassland plots were restored using mature 3 cm‐diameter plants of the native perennial bunchgrass Poa secunda planted in three densities. The exotic annual grassland plots were established in four densities through manual removal of existing plants. Both grass types reduced soil water potential with increasing biomass, but this reduction was not significantly different between grass types. Both grass types significantly reduced the production of Amsinckia inflorescences. At low and intermediate densities (dry biomass per unit area of 20–80 g/m2), the exotic annual grasses reduced Amsinckia inflorescence number to a greater extent than did Poa, although at high densities (>90 g/m2) both grass types reduced the number of Amsinckia inflorescences to the same extent. The response of Amsinckia inflorescence number to Poa biomass was linear, whereas the same response to the annual grass biomass is logarithmic, and appeared to be related to graminoid cover. This may be because of the different growth forms exhibited by the two grass types. Results of this research suggest that restored native perennial grasslands at intermediate densities have a high habitat value for the potential establishment of the native annual A. grandiflora.  相似文献   

17.
The bryophyte vegetation of upland limestone grassland at Buxton in the southern Pennine Hills (UK) was studied following seven years' continuous simulated climate change treatments. The experimental design involved two temperature regimes (ambient, winter warming by 3°C) in factorial combination with three moisture regimes (normal, summer drought, supplemented summer rainfall) and with five replicate blocks. Percentage cover of the bryophytes was estimated visually using 15 randomly positioned quadrats (30 cm × 30 cm) within each of the 30 3 m × 3 m plots. Significant treatment effects were found but these were relatively modest. Total bryophyte cover and cover of Calliergonella cuspidata and Rhytidiadelphus squarrosus responded negatively to drought, whereas Fissidens dubius increased in the droughted plots. Campyliadelphus chrysophyllus increased with winter warming, while R. squarrosus, Lophocolea bidentata and species richness all decreased. The effects on the total bryophyte flora were further studied by canonical correspondence analysis, which yielded a first axis reflecting the combined effects of the moisture and temperature treatments. However, this analysis and a detrended correspondence analysis of the plot data also revealed that natural factors were more important causes of variation in the grassland community than the simulated climate treatments. It was concluded that dewfall may be an important source of moisture for grassland bryophytes and that this factor may have reduced the impact of the moisture treatments. The absence of some thermophilous species such as Homalothecium lutescens in the plots initially may also have reduced their scope for major vegetational change.  相似文献   

18.
Large boulder grazing refugia permitted comparison of saxicolous bryophyte and lichen assemblages with those boulder tops accessible to red deer (Cervus elaphus) on a sporting estate in northwest Scotland. Plant succession was predicted to occur unchecked by grazing on the tops of these large boulders with cascading effects on bryophytes and lichens—assuming boulders had been in place over the same time period. Fifty pairs of boulders (one ≥2 m and the other accessible to red deer) were selected at random from various locations below north-facing crags. Percentage cover of each bryophyte and lichen species was estimated from three randomly placed quadrats on each boulder top. Due consideration was given to the influence of island biogeography theory in subsequent model simplification. Mean shrub cover and height, leaf-litter, bryophyte cover and bryophyte species richness were significantly higher within quadrats on large boulder tops that naturally excluded red deer. Lichen cover and lichen species richness were significantly higher on boulder tops accessible to red deer. Lichen cover was in a significant negative relationship with bryophyte cover, shrub cover and litter cover. Bryophyte cover showed a significant positive relationship with shrub height but there was an optimum shrub cover. Natural exclusion of red deer from the tops of large boulders has facilitated plant succession. The results suggest that grazing arrests the lithosere on boulder tops accessible to red deer at an early plagioclimax favouring saxicolous lichens. The results are relevant to situations where red deer might be excluded from boulder fields that hold lichen assemblages of conservation value.  相似文献   

19.
Abstract. This paper reports on vegetation development on permanent experimental plots during five years of succession. Nine (1 m2) plots were filled with three typical substrates from man-made habitats of urban and industrial areas in the region of Berlin. The three substrates (a commercial ‘topsoil’, a ruderal ‘landfill’ soil and a sandy soil), differ in organic matter and nutrient contents. Relevés of species composition and percent cover of each species present were made monthly during the growing season from the start of vegetation development. This paper describes the different successional pathways on topsoil and ruderal soil and the colonization process on sandy soil. On topsoil, ruderal annuals are dominant in the first year and are replaced by short-lived perennials from the second year. Those species were replaced by long-lived perennial herbs (Ballota nigra or Urtica dioica) from the third year of succession onwards. On the ruderal land-fill soil the early successional stages are less sharp and the perennial Solidago canadensis is able to dominate within one year after the succession was initiated. On sandy soil there is still an ongoing colonization process, where pioneer tree species like Betula pendula and Populus nigra play a main role. The importance of ‘initial floristic composition’, the role of substrate for community structure and the peculiarities of successional sequences on anthropogenic soils in the context of primary and secondary successions are discussed.  相似文献   

20.
Grassland restoration on former croplands offers good opportunity to mitigate the loss of grassland biodiversity. Weed suppression can be another benefit, which becomes increasingly important because of the high recent rate of abandonment of arable lands in Central and Eastern Europe. Our aim was to evaluate the usefulness of sowing two low-diversity seed mixtures followed by annual mowing, a frequently used restoration technique, in weed suppression. We found that rapidly forming cover of sown grasses effectively suppressed short-lived weeds and their germination except in the first year. The detected dense seed bank of short-lived weeds points out the possibility and threat of later weed infestation. In the short run perennial weeds cannot be suppressed easily by sowing and annual mowing. We found that the effectiveness of seed sowing followed by mowing in weed suppression can be different on sites with different history or seed mixture. Rapidly establishing perennial weeds, such as Agropyron species were only detected in former alfalfa fields; Cirsium arvense was found in former cereal and sunflower fields but not in former alfalfa fields. We found that the rate of weed suppression and success was influenced by the seed mixtures used. In several alkali restorations the high proportion of perennial weeds was detected in year 3. In loess restorations, much lower scores were typical. This was likely caused by the different seed mixture used. The loess seed mixture contained seeds of a clonally spreading tall-grass, Bromus inermis, which could compete more effectively with clonally spreading weeds, than could short grass species with or without tussock forming. Our findings indicate that post-restoration management require carefully designed actions that are fine-tuned addressing specific threats at the site level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号