首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Reagents which can promote the proliferation, adhesion and migration of cultured corneal endothelial cells (CECs) will be helpful for the treatment of reduced visual acuity due to CECs deficiency. The objectives of this study were to investigate the potential use of an inhibitor of Rho-associated protein kinase (ROCK), Y-27632, to cultured bovine corneal endothelial cells (B-CECs) and evaluated its effects on the proliferation, adhesion and migration of B-CECs. The proliferation of cultured B-CECs was moderately enhanced by 10 μM Y-27632. Y-27632 induced fibroblast-like morphological changes in the cultured B-CECs and normal cell morphology could recover after Y-27632 removal. In addition, Y-27632 was found to significantly enhance the adhesion and migration of B-CECs. Furthermore, the hanging drop aggregation assay showed that Y-27632 promoted B-CECs to form cellular networks and sheets, which proliferated along the liquid–air interface and migrated to the surface of the lid of dish. Our study demonstrated that Y-27632 is a potentially powerful reagent which can enhance the proliferation of cultured B-CECs. Y-27632 will be useful in CEC injection therapy and topical application for CEC deficiency.  相似文献   

2.
Transplantation of ex vivo cultured limbal epithelial cells is proven effective in restoring limbal stem cell deficiency. The present study aimed to investigate the promoting effect of Y-27632 on limbal epithelial cell proliferation. Limbal explants isolated from human donor eyes were expanded three weeks on culture dishes and outgrowth of epithelial cells was subsequently subcultured for in vitro experiments. In the presence of Y-27632, the ex vivo limbal outgrowth was accelerated, particularly the cells with epithelial cell-like morphology. Y-27632 dose-dependently promoted the proliferation of in vitro cultured human limbal epithelial cells as examined by phase contrast microscopy and luminescent cell-viability assay 30 hours after the treatment. The colony forming efficacy determined 7 days after the treatment was enhanced by Y-27632 also in a dose-dependent manner. The number of p63- or Ki67-positive cells was dose-dependently increased in Y-27632-treated cultures as detected by immunofluorescent staining and western blotanalysis. Cell cycle analysis by flow cytometric method revealed an increase in S-phase proliferating cells. The epithelial woundclosure rate was shown to be faster in experimental group received topical treatment withY-27632 than the sham control using a rat corneal wounding model. These resultsdemonstrate that Y-27632 can promote both the ex vivo and in vitro proliferation oflimbal epithelial cell proliferation. The in vivo enhanced epithelial wound healingfurther implies that the Y-27632 may act as a new strategy for treating limbal stem cell deficiency.  相似文献   

3.
The Rho-kinase inhibitor, Y-27632, inhibited in vitro chemotactic migration to bone marrow fibroblast conditioned media and metastatic growth in immune-compromised mice of highly invasive human prostatic cancer (PC3) cells. Y-27632 also reduced myosin light chain phosphorylation and markedly altered the morphology of cells that developed numerous processes containing microtubules. A strikingly different, rounded phenotype was induced by an inhibitor of myosin light chain kinase, ML9. The M(110-130) subunit of the myosin phosphatase that is regulated by Rho-kinase was present in PC3 cells that contained significantly more RhoA than the less invasive, LNCaP cells. Y-27632 also inhibited angiogenesis as measured by endothelial cell tube formation on Matrigel. We conclude that invasiveness of human prostate cancer is facilitated by the Rho/Rho-kinase pathway, and exploration of selective Rho-kinase inhibitors for limiting invasive progress of prostate cancer is warranted.  相似文献   

4.

Background

Due to the inherent sensitivity of human embryonic stem cells (hESCs) to manipulations, the recovery and survival of hESCs after fluorescence-activated cell sorting (FACS) can be low. Additionally, a well characterized and robust methodology for performing FACS on hESCs using multiple-cell surface markers has not been described. The p160-Rho-associated coiled kinase (ROCK) inhibitor, Y-27632, previously has been identified as enhancing survival of hESCs upon single-cell dissociation, as well as enhancing recovery from cryopreservation. Here we examined the application of Y-27632 to hESCs after FACS to improve survival in both feeder-dependent and feeder-independent growth conditions.

Methodology/Principal Findings

HESCs were sorted using markers for SSEA-3, TRA-1-81, and SSEA-1. Cells were plated after sorting for 24 hours in either the presence or the absence of Y-27632. In both feeder-dependent and feeder-independent conditions, cell survival was greater when Y-27632 was applied to the hESCs after sort. Specifically, treatment of cells with Y-27632 improved post-sort recovery up to four fold. To determine the long-term effects of sorting with and without the application of Y-27632, hESCs were further analyzed. Specifically, hESCs sorted with and without the addition of Y-27632 retained normal morphology, expressed hESC-specific markers as measured by immunocytochemistry and flow cytometry, and maintained a stable karyotype. In addition, the hESCs could differentiate into three germ layers in vitro and in vivo in both feeder-dependent and feeder-independent growth conditions.

Conclusions/Significance

The application of Y-27632 to hESCs after cell sorting improves cell recovery with no observed effect on pluripotency, and enables the consistent recovery of hESCs by FACS using multiple surface markers. This improved methodology for cell sorting of hESCs will aid many applications such as removal of hESCs from secondary cell types, identification and isolation of stem cell subpopulations, and generation of single cell clones. Finally, these results demonstrate an additional application of ROCK inhibition to hESC research.  相似文献   

5.
《Cryobiology》2012,64(3):298-305
Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus, hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks, however, conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology, retained a normal karyotype, and expressed characteristic hESC markers (OCT4, SSEA3, SSEA4 and TRA-1-60). Moreover, the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus, the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.  相似文献   

6.
探究Rho激酶抑制剂Y-27632对间充质干细胞(mesenchymal stem cells,MSCs)C3H10T1/2增殖和成脂分化的影响.实验分为对照组、成脂诱导组和Y-27632处理组(Y-27632+成脂诱导). 利用MTT检测细胞增殖情况,油红O染色,异丙醇萃取法检测细胞成脂分化情况,半定量RT-PCR检测过氧化物酶体增殖物激活受体γ(peroxisome proliferator activiated receptor γ, PPARγ)和CCAAT增强子结合蛋白α (CCAAT enhancer binding protein α, C/EBPα)基因表达. 结果表明,Y-27632能够显著抑制C3H10T1/2细胞的增殖(P<0.05),并呈一定的浓度依赖性;高浓度Y-27632对C3H10T1/2细胞成脂分化具有显著抑制作用(P<0.05);半定量RT-PCR结果显示,成脂诱导处理组PPARγ和C/EBPα表达量在第3 d、5 d和7 d显著低于成脂诱导组(P<0.05). 综上所述,Y-27632能够抑制C3H10T1/2细胞增殖与成脂分化.  相似文献   

7.
By using a selective ROCK inhibitor Y-27632, the role of Rho-ROCK signaling in the function of hepatic stellate cells in culture was studied. Stellate cells maintained the "star-like" configuration of the quiescent stage in the presence of Y-27632, while the expression of smooth muscle alpha-actin and PDGF receptor beta was not affected by the agent. Serum-stimulated migration of the cells was significantly suppressed by Y-27632. The contraction of stellate cells induced by 5 nM endothelin-1 was attenuated by the agent in a dose-dependent manner. Formation of F-actin stress fibers and phosphorylation of myosin light chain was apparently reduced by Y-27632 even under the stimulation with endothelin-1. On the other hand, ex vivo liver perfusion experiment revealed that endothelin-1 (2 nM)-induced increase of portal vein constriction was almost completely inhibited by 20 microM Y-27632 with a concomitant improvement of hepatocyte degeneration. These results suggest that ROCK is one of the key regulators of stellate cell motility and that the clinical application of ROCK inhibitors such as Y-27632 should be considered in the reduction of portal hypertension in liver fibrosis and cirrhosis.  相似文献   

8.
Human embryonic stem cells (hESCs) can be maintained as undifferentiated cells in vitro and induced to differentiate into a variety of somatic cell types. Thus, hESCs provide a source of differentiated cell types that could be used to replace diseased cells of a tissue. The efficient cryopreservation of hESCs is important for establishing effective stem cell banks, however, conventional slow freezing methods usually lead to low rates of recovery after thawing cells and their replating in culture. We have established a method for recovering cryopreserved hESCs using pinacidil and compared it to a method that employs the ROCK inhibitor Y-27632. We show that pinacidil is similar to Y-27632 in promoting survival of hESCs after cryopreservation. The cells exhibited normal hESC morphology, retained a normal karyotype, and expressed characteristic hESC markers (OCT4, SSEA3, SSEA4 and TRA-1-60). Moreover, the cells retained the capacity to differentiate into derivatives of all three embryonic germ layers as demonstrated by differentiation through embryoid body formation. Pinacidil has been used for many years as a vasodilator drug to treat hypertension and its manufacture and traceability are well defined. It is also considerably cheaper than Y-27632. Thus, the use of pinacidil offers an efficient method for recovery of cryopreserved dissociated human ES cells.  相似文献   

9.
We have previously shown that Rho small GTPase is required for modulating both cell migration and proliferation through cytoskeleton reorganization and focal adhesion formation in response to wounding. In the present study, we investigated the role of Rho kinases (ROCKs), major effectors of Rho GTPase, in mediating corneal epithelial wound healing. Both ROCK 1 and 2 were expressed and activated in THCE cells, an SV40-immortalized human corneal epithelial cell (HCEC) line, in response to wounding, lysophosphatidic acid, and heparin-binding EGF-like growth factor (HB-EGF) stimulations. The ROCK inhibitor Y-27632 efficiently antagonized ROCK activities without affecting Rho activation in wounded HCECs. Y-27632 promoted basal and HB-EGF-enhanced scratch wound healing and enhanced cell migration and adhesion to matrices, while retarded HB-EGF induced cell proliferation. E-cadherin- and beta-catenin-mediated cell-cell junction and actin cytoskeleton organization were disrupted by Y-27632. Y-27632 impaired the formation and maintenance of tight junction barriers indicated by decreased trans-epithelial resistance and disrupted occludin staining. We conclude that ROCK activities enhance cell proliferation, promote epithelial differentiation, but negatively modulate cell migration and cell adhesion and therefore play a role in regulating corneal epithelial wound healing.  相似文献   

10.
Retinal pigment epithelium (RPE) cells is the outermost layer of the retina and RPE dysfunction is a key factor in the disease pathogenesis of age-related macular degeneration (AMD). Transplantation therapy using induced pluripotent stem cell (iPSC)-derived RPEs has recently received much attention as a treatment for AMD. Preserving these cells under the best possible conditions is important, and preservation methods using Y-27632 have been reported. Rho-associated coiled-coil containing kinase (ROCK) inhibitors are known to inhibit cell death, emerging as important drug candidates for stem cell differentiation and regenerative medicine. However, it has recently been shown that ROCK inhibitors may have a vasodilatory effect on human retinal arterioles, a side effect that should ideally be avoided in RPE transplantation. Although ROCK inhibitors hold great potential, optimizing efficacy while minimizing adverse reactions is critical for translation into a clinical treatment. We examined the effect of transient exposure of RPE cells to ROCK inhibitor Y-27632 to determine whether the extracellular presence of the drug is necessary for ongoing Rho/ROCK downregulation. Human RPE cells were subcultured as a suspension for 4 h in drug-free medium following exposure to Y-27632 for 2 h. A Y-27632 concentration of >10 μM improved cell survival beyond 4 h and cell proliferation in recovery culture medium. ROCK2 expression levels were specifically downregulated by Y-27632 in the Rho/ROCK signaling pathway. In conclusion, we demonstrated that the effect of Y-27632 is not dependent on its extracellular availability and can last beyond the 2 h of exposure. The lasting Rho/ROCK signaling pathway downregulation by Y-27632 suggests that RPE cell transplantation with ROCK inhibitor-free media is possible, which can minimize side effects to host tissue and have wider implications for transplantation methods requiring ROCK inhibition.  相似文献   

11.
Many key cellular functions, such as cell motility and cellular differentiation are mediated by Rho-associated protein kinases (ROCKs). Numerous studies have been conducted to examine the ROCK signal transduction pathways involved in these motile and contractile events with the aid of pharmacological inhibitors such as Y-27632. However the molecular mechanism of action of Y-27632 has not been fully defined. To assess the relative contribution of these Rho effectors to the effects of Y-27632, we compared the cytoskeletal phenotype, wound healing and neurite outgrowth in cells treated with Y-27632 or subjected to knockdown with ROCK-I, ROCK-II or PRK-2- specific siRNAs. Reduction of ROCK-I enhances the formation of thin actin-rich membrane extensions, a phenotype that closely resembles the effect of Y-27632. Knockdown of ROCK II or PRK-2, leads to the formation of disc-like extensions and thick actin bundles, respectively. The effect of ROCK-I knockdown also mimicked the effect of Y-27632 on wound closer rates. ROCK-I knockdown and Y-27632 enhanced wound closure rates, while ROCK-II and PRK-2 were not appreciably different from control cells. In neurite outgrowth assays, knockdown of ROCK-I, ROCK-II or PRK-2 enhances neurite lengths, however no individual knockdown stimulated neurite outgrowth as robustly as Y-27632. We conclude that several kinases contribute to the global effect of Y-27632 on cellular responses.  相似文献   

12.
The small GTP-binding protein Rho and its target Rho-associated kinase trigger an intracellular signaling cascade that controls actin cytoskeleton and plays an essential role in cell motility and adhesion. A specific Rho-associated kinase inhibitor, Y-27632, has been reported to inhibit cancer invasion. Clinically, disseminated tumor cells in the cerebrospinal fluid invade the intraparenchymal region, damaging the brain and nerves, resulting in fatal brain stem dysfunction, despite intrathecal chemotherapy. To expand therapeutic options for this devastating neoplastic meningitis, we evaluated the potential use of intrathecal Y-27632 administration by employing Walker 256 cells, a rat mammary cancer cell line. Y-27632 dose-dependently inhibited chemotactic and invasive activity of Walker 256 cells. Y-27632 also inhibited the phosphorylation level of regulatory myosin light chain in vitro, but the effect was temporary and was considerably diminished within 16 hours. Y-27632 induced striking morphologic changes in Walker 256 cells, as evidenced by decreased cell-matrix adhesion in culture dishes and three-dimensional collagen I gels, and slightly inhibited colony formation in soft agar. Nevertheless, this drug treatment did not affect Walker 256 cell growth rate. We were able to administer continuous delivery of this inhibitor using an osmotic pump and maintaining drug concentration of 10 mumol/L within the brain. Importantly, this concentration of Y-27632 showed minimal neurotoxicity both in vitro and in vivo. We found that an intrathecal therapy, combining 5-fluoro-2'-deoxyuridine with Y-27632, significantly increased the survival time of rats bearing meningeal carcinomatosis in comparison with animals treated with 5-fluoro-2'-deoxyuridine alone. Taken together, our findings indicate that continuous intrathecal administration of Y-27632 could be a promising therapeutic method when combined with chemotherapy for treating human neoplastic meningitis.  相似文献   

13.
Boon Chin Heng   《Tissue & cell》2009,41(5):376-380
Human bone marrow-derived mesenchymal stem cells (MSC) have previously been reported to be susceptible to cryopreservation-induced apoptosis. A significant fraction of MSC lose their viability during freeze-thawing, which represent a major technical barrier in attaining adequate viable cell numbers for optimal efficacy in transplantation therapy. Recently, it was reported that a Rho-associated kinase (ROCK) inhibitor Y-27632 could enhance the post-thaw viability and physiological function of cryopreserved human embryonic stem cells (hESC). Hence, this study attempted to investigate whether Y-27632 can exert a similar beneficial effect on the post-thaw viability of cryopreserved MSC. A concentration range of 1–100 μM Y-27632 was supplemented in both the cryopreservation medium (10% (v/v) dimethyl sulfoxide), as well as the post-thaw culture medium. The supplementation of Y-27632 had no significant effect on the immediate post-thaw viability, as assessed by trypan blue exclusion. However, 24 h after the frozen-thawed cell suspensions were re-plated on new cell culture dishes (with varying concentrations of Y-27632 within the post-thaw culture media); the MTT assay subsequently showed significant differences in the proportion of adherent viable cells over the concentration range of Y-27632 examined, with a peak at between 5 and 10 μM. At zero concentration of Y-27632, the proportion of viable adherent cells was 39.8 ± 0.9%; and this value peaked at 48.5 ± 1.7% with 5 μM Y-27632 and 48.4 ± 1.8% with 10 μM Y-27632, prior to decreasing to 36.0 ± 0.6% with 100 μM Y-27632. Additionally, it was observed that Y-27632 induced morphological changes in the frozen-thawed MSC. With increasing Y-27632 concentration, the cells displayed more extensive branching of cytoplasmic extensions that gave a ‘web-like’ appearance. This is consistent with previous reports of Y-27632 stimulating neuronal differentiation of MSC.  相似文献   

14.

Background

Recent clinical trials using c-kit+ human cardiac stem cells (CSCs) demonstrated promising results in increasing cardiac function and improving quality of life. However, CSC efficiency is low, likely due to limited cell survival and engraftment after transplantation. The Rho-associated protein kinase (ROCK) inhibitor, Y-27632, significantly increased cell survival rate, adhesion, and migration in numerous types of cells, including stem cells, suggesting a common feature of the ROCK-mediated apoptotic pathway that may also exist in human CSCs. In this study, we examine the hypothesis that pretreatment of human CSCs with Y-27632 protects cells from Doxorubicin (Dox) induced apoptosis.

Methods and Results

c-kit+ CSCs were cultured in CSC medium for 3–5 days followed by 48hr treatment with 0 to 10μM Y-27632 alone, 0 to 1.0μM Dox alone, or Y-27632 followed by Dox (48hrs). Cell viability, toxicity, proliferation, morphology, migration, Caspase-3 activity, expression levels of apoptotic-related key proteins and c-kit+ were examined. Results showed that 48hr treatment with Y-27632 alone did not result in great changes in c-kit+ expression, proliferation, Caspase-3 activity, or apoptosis; however cell viability was significantly increased and cell migration was promoted. These effects likely involve the ROCK/Actin pathways. In contrast, 48hr treatment with Dox alone dramatically increased Caspase-3 activity, resulting in cell death. Although Y-27632 alone did not affect the expression levels of apoptotic-related key factors (p-Akt, Akt, Bcl-2, Bcl-xl, Bax, cleaved Caspase-3, and Caspase-3) under basal conditions, it significantly inhibited the Dox-induced increase in cleaved Caspase-3 and reduced cell death under Dox treatment.

Conclusions

We conclude that preconditioning human CSCs with Y-27632 significantly reduces Dox-induced cell death and possibly involves the cleaved Caspase-3 and ROCK/Actin pathways. The beneficial effects of Y-27632 may be applied to stem cell-based therapy to increase cell survival rates after transplantation or to act as a cardiac protective agent for Dox-treated cancer patients.  相似文献   

15.
16.
Human keratinocytes are difficult to isolate and have a limited lifespan. Traditionally, immortalised keratinocyte cell lines are used in vitro due to their ability to bypass senescence and survive indefinitely. However these cells do not fully retain their ability to differentiate in vitro and they are unable to form a normal stratum corneum in organotypic culture. Here we aimed to generate a pool of phenotypically similar keratinocytes from human donors that could be used in monolayer culture, without a fibroblast feeder layer, and in 3D human skin equivalent models. Primary human neonatal epidermal keratinocytes (HEKn) were cultured in low calcium, (0.07mM) media, +/-10μM Y-27632 ROCK inhibitor (HEKn-CaY). mRNA and protein was extracted and expression of differentiation markers Keratin 14 (K14), Keratin 10 (K10) and Involucrin (Inv) assessed by qRT-PCR and Western blotting. The differentiation potential of the HEKn-CaY cultures was assessed by increasing calcium levels and removing the Y-27632 for 72hrs prior to assessment of K14, K10 and Inv. The ability of the HEKn-CaY, to form a stratified epithelium was assessed using a human skin equivalent (HSE) model in the absence of Y-27632. Increased proliferative capacity, expansion potential and lifespan of HEKn was observed with the combination of low calcium and 10μM ROCK inhibitor Y-27632. The removal of Y-27632 and the addition of high calcium to induce differentiation allowed the cells to behave as primary keratinocytes even after extended serial passaging. Prolonged lifespan HEK-CaYs were capable of forming an organised stratified epidermis in 3D HSE cultures, demonstrating their ability to fully stratify and retain their original, primary characteristics. In conclusion, the use of 0.07mM Calcium and 10μM Y-27632 in HEKn monocultures provides the opportunity to culture primary human keratinocytes without a cell feeder layer for extended periods of culture whilst retaining their ability to differentiate and form a stratified epithelium.  相似文献   

17.
目标:提供一种能够显著提高慢病毒稳定转染人多能干细胞的方法,并建立一种简便无损的转染细胞筛选方法.方法:在慢病毒转染人多能干细胞过程,分别比较添加与不添加Y-27632情况下细胞形态的动态变化规律,以及细胞不同形态下对慢病毒颗粒的摄入能力差异,优化建立高效的慢病毒转染方法.随后,设计并研制可视化的简便显微操作装置,探索...  相似文献   

18.
During liver fibrosis hepatic stellate cells become activated, transforming into proliferative myofibroblastic cells expressing type I collagen and alpha-smooth muscle actin. They become the major producers of the fibrotic neomatrix in injured liver. This study examines if activated stellate cells are a committed phenotype, or whether they can become deactivated by extracellular matrix. Stellate cells isolated from normal rat liver proliferated and expressed mRNA for activation markers, alpha-smooth muscle actin, type I procollagen and tissue inhibitor of metalloproteinases-1 following 5-7 day culture on plastic, but culture on Matrigel suppressed proliferation and mRNA expression. Activated stellate cells were recovered from plastic by trypsinisation and replated onto plastic, type I collagen films or Matrigel. Cells replated on plastic and type I collagen films proliferated and remained morphologically myofibroblastic, expressing alpha-smooth muscle actin and type I procollagen. However, activated cells replated on Matrigel showed <30% of the proliferative rate of these cells, and this was associated with reduced cellular expression of proliferating cell nuclear antigen and phosphorylation of mitogen-activated protein kinase in response to serum. Activated HSC replated on Matrigel for 3-7 days progressively reduced their expression of mRNA for type I procollagen and alpha-smooth muscle actin and both became undetectable after 7 days. We conclude that basement membrane-like matrix induces deactivation of stellate cells. Deactivation represents an important potential mechanism mediating recovery from liver fibrosis in vivo where type I collagen is removed from the liver and stellate cells might re-acquire contact with their normal basement membrane-like pericellular matrix.  相似文献   

19.
Chang KA  Kim JW  Kim JA  Lee SE  Lee S  Kim S  Suh WH  Kim HS  Kwon S  Kim SJ  Suh YH 《PloS one》2011,6(4):e18738
The use of non-chemical methods to differentiate stem cells has attracted researchers from multiple disciplines, including the engineering and the biomedical fields. No doubt, growth factor based methods are still the most dominant of achieving some level of proliferation and differentiation control--however, chemical based methods are still limited by the quality, source, and amount of the utilized reagents. Well-defined non-chemical methods to differentiate stem cells allow stem cell scientists to control stem cell biology by precisely administering the pre-defined parameters, whether they are structural cues, substrate stiffness, or in the form of current flow. We have developed a culture system that allows normal stem cell growth and the option of applying continuous and defined levels of electric current to alter the cell biology of growing cells. This biphasic current stimulator chip employing ITO electrodes generates both positive and negative currents in the same culture chamber without affecting surface chemistry. We found that biphasic electrical currents (BECs) significantly increased the proliferation of fetal neural stem cells (NSCs). Furthermore, BECs also promoted the differentiation of fetal NSCs into neuronal cells, as assessed using immunocytochemistry. Our results clearly show that BECs promote both the proliferation and neuronal differentiation of fetal NSCs. It may apply to the development of strategies that employ NSCs in the treatment of various neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases.  相似文献   

20.
A ROCK inhibitor permits survival of dissociated human embryonic stem cells   总被引:11,自引:0,他引:11  
Poor survival of human embryonic stem (hES) cells after cell dissociation is an obstacle to research, hindering manipulations such as subcloning. Here we show that application of a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, to hES cells markedly diminishes dissociation-induced apoptosis, increases cloning efficiency (from approximately 1% to approximately 27%) and facilitates subcloning after gene transfer. Furthermore, dissociated hES cells treated with Y-27632 are protected from apoptosis even in serum-free suspension (SFEB) culture and form floating aggregates. We demonstrate that the protective ability of Y-27632 enables SFEB-cultured hES cells to survive and differentiate into Bf1(+) cortical and basal telencephalic progenitors, as do SFEB-cultured mouse ES cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号