首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oil sands mining is a major disturbance to boreal landscapes in north-eastern Alberta, Canada. Freshwater peatlands dominate the landscape prior to mining, but the post-mining reclamation landscape will have wetlands that span a salinity gradient. Little is known about the native vegetation communities in subsaline and saline marshes in the boreal region, yet these communities offer the best potential for reclamation of wetlands after oil sands mining. The overall intent of this study is to provide information on natural wetland communities along a gradient of salinities that can be used to enhance oil sands wetland reclamation. Our specific study objectives were to: (1) characterize environmental conditions of industrial and natural wetlands, (2) characterize vegetation communities (composition and diversity) in these wetlands, (3) and explore how vegetation communities (composition and diversity) may be influenced by environmental conditions. We surveyed vegetation communities and environmental variables in 25 natural boreal wetlands along a salinity gradient and in 10 industrial marshes in the oil sands mining region. We observed an electrical conductivity (EC) range of 0.5-28 mS cm−1 in the wetlands, indicating that salinity similar to or higher than anticipated for oil sands reclamation is naturally present in some boreal wetlands. We observed low species richness in both industrial and natural wetlands. There were 101 plant species observed in all the wetlands, with 82 species recorded in the natural wetlands and 44 species in industrial wetlands. At the plot level, richness decreased with increasing EC and pH, but increased with soil organic matter. Using Cluster Analysis and indicator species analysis we defined 16 distinct vegetation community types, each dominated by one or two species of graminoid vegetation. In general these communities resembled those of boreal or prairie marshes. Electrical conductivity, pH, and water depth were important factors correlating with community composition of the wetlands, however peat depth and soil organic content did not differ among community types. Not all community types were present in industrial wetlands, indicating that these communities may need to be planted to enhance overall diversity in future reclaimed oil sands wetlands.  相似文献   

2.
3.
曾志华  杨民和  佘晨兴  仝川 《生态学报》2014,34(10):2674-2681
为认识盐度对河口潮汐沼泽湿地土壤产甲烷菌的影响,应用PCR-RFLP技术及测序分析对闽江河口区淡水-半咸水盐度梯度上分布的4个短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构进行研究。闽江河口区短叶茳芏潮汐沼泽湿地土壤产甲烷菌群落结构受盐度影响明显,位于下洋洲和塔礁洲的短叶茳芏潮汐淡水沼泽湿地土壤产甲烷菌的香农-威纳多样性指数值分别为2.81和2.65,位于蝙蝠洲和鳝鱼滩的短叶茳芏潮汐半咸水沼泽湿地土壤产甲烷菌香农-威纳多样性指数值分别仅为2.33和2.27。系统发育分析表明:短叶茳芏沼泽湿地土壤产甲烷菌类群主要有甲烷杆菌目(Methanobacteriales),包括Methanobacterium、Methanobrevibacter和Methanobacteriaceae;甲烷微菌目(Methanomicrobiales),主要有Methanoregula,以及甲烷八叠球菌目(Methanosarcinales),主要有Methanosarcina和Methanococcoides。闽江河口区短叶茳芏潮汐淡水沼泽湿地土壤主要的优势产甲烷菌有Methanoregula、Methanosarcina和Methanobacterium,而短叶茳芏潮汐半咸水沼泽湿地土壤主要的优势产甲烷菌则转化为仅以Methanoregula为主。  相似文献   

4.
Flooding regime changes resulting from natural and human activity have been projected to affect wetland plant community structures and functions. It is therefore important to conduct investigations across a range of flooding gradients to assess the impact of flooding depth on wetland vegetation. We conducted this study to identify the pattern of plant height, species richness and aboveground biomass variation along the flooding gradient in floodplain wetlands located in Northeast China. We found that the response of dominant species height to the flooding gradient depends on specific species, i.e., a quadratic response for Carex lasiocarpa, a negative correlation for Calamagrostis angustifolia, and no response for Carex appendiculata. Species richness showed an intermediate effect along the vegetation zone from marsh to wet meadow while aboveground biomass increased. When the communities were analysed separately, only the water table depth had significant impact on species richness for two Carex communities and no variable for C. angustifolia community, while height of dominant species influenced aboveground biomass. When the three above-mentioned communities were grouped together, variations in species richness were mainly determined by community type, water table depth and community mean height, while variations in aboveground biomass were driven by community type and the height of dominant species. These findings indicate that if habitat drying of these herbaceous wetlands in this region continues, then two Carex marshes would be replaced gradually by C. angustifolia wet meadow in the near future. This will lead to a reduction in biodiversity and an increase in productivity and carbon budget. Meanwhile, functional traits must be considered, and should be a focus of attention in future studies on the species diversity and ecosystem function in this region.  相似文献   

5.
《农业工程》2021,41(5):402-409
Coastal wetlands reclamation is facing the problem of salinization. Along with the alternation of ecosystem status, studying the following effect on soil properties becomes emergency. Here we reported the pH, salinity and elemental content (mainly metals) variation affected by the vegetation situations, water sources and geographic positions. The results showed that vegetation could lead the pH and salinity of seawater zones closer to that of freshwater zones in both spatial and time scales. Spartina alterniflora (SA) was the most efficient species among the investigated plants, causing decreases of 0.15–0.69 in pH and 2.250–3.821 in salinity. This result might be caused by the absorption of Ca and K from salt marshes by SA and Suaeda salsa (SS), due to the fact that the component content of calcium (all reduced to approximate one-third) and potassium (reduced in some samples) both decreased. Meanwhile, vegetation could improve soil in seawater zones in Fe content with no extra negative influences in elemental analysis. Thus, ecological engineered vegetation indicated great potential in alternating coastal salt marshes to favorable wetlands or farmlands with almost primitive ecosystem. The results might be significant for ecological engineering and agricultural management in future.  相似文献   

6.
Ecological indicators have gained increasing attention within the scientific community over the past 40 years. Several taxonomic groups have been used successfully as indicators including most prominently fish, invertebrates, plants, and birds because of their ability to indicate environmental changes. In the Laurentian Great Lakes region, there has been recent concern over the applicability of using indicators on a basin-wide scale due to species range restrictions and lake-based differences. The objective of this study was to determine the ability of the Index of Marsh Bird Community Integrity (IMBCI) to indicate land use disturbance surrounding coastal marshes of Georgian Bay and Lake Ontario. To meet this objective, we surveyed birds and vegetation at 14 marshes in Georgian Bay (low land use disturbance) and Lake Ontario (high land use disturbance). Even though Lake Ontario marshes were surrounded by significantly more altered land than Georgian Bay marshes, and had poorer water quality, we found significantly fewer birds in Georgian Bay marshes (mean = 8.2) compared to Lake Ontario (mean = 13.7) and no significant difference in IMBCI scores. This inconsistency could be due to vegetation differences affecting the strength of the index, because Georgian Bay wetlands had significantly more bulrush (Schoenoplectus spp.) and floating vegetation, while Lake Ontario wetland vegetation was taller and cattail-dominated (Typha spp.). These findings suggest that the IMBCI may not be useful on a basin-wide scale in the Great Lakes region in detecting human disturbance surrounding wetlands.  相似文献   

7.
Successional sequences from forested wetlands in the Middle Atrato River Basin were reconstructed using characterisation of present vegetation communities and palynological analysis. A 4.8 km transect, drawn across a river meander, and two 6 and 8 m deep sediment cores (San Martín and Villanueva) were collected in the floodplain within two different vegetation assemblages. Based on the floristic and environmental characteristics of the local vegetation communities, ecological changes spanning the last 4 ka (cal years BP) were analysed in San Martín and Villanueva cores. Present vegetation is dominated by four communities determined by flood tolerance and drainage conditions. We found Euterpe oleraceae, Mauritiella macroclada-Campnosperma panamensis and Oenocarpus bataua forests, and mixed forest and open vegetation in a gradient from poor to improved drainage conditions. Vegetation changes in the palynological record suggest that sedimentation and erosion processes on flood basins are due to changes in drainage conditions and to variable flooding levels.A wet period in the 4 to 2.7 ka interval is postulated, which might be related to sea level rise or local subsidence. Lower flooding levels and improved drainage conditions dominated the 2.7 to ∼ 1.6 ka interval, whereas a flooding event (and a hiatus) occurred between 1.5 and 0.5 ka. This flooding event might be synchronous with analogous events as recorded in the Colombian Amazonia between 1.6 and 1.45 ka. Forest disturbance, probably of anthropogenic origin, is recorded in both sites since 0.5 ka.  相似文献   

8.
The Arctic is experiencing rapid vegetation changes, such as shrub and tree line expansion, due to climate warming, as well as increased wetland variability due to hydrological changes associated with permafrost thawing. These changes are of global concern because changes in vegetation may increase tundra soil biogeochemical processes that would significantly enhance atmospheric CO2 concentrations. Predicting the latter will at least partly depend on knowing the structure, functional activities, and distributions of soil microbes among the vegetation types across Arctic landscapes. Here we investigated the bacterial and microeukaryotic community structures in soils from the four principal low Arctic tundra vegetation types: wet sedge, birch hummock, tall birch, and dry heath. Sequencing of rRNA gene fragments indicated that the wet sedge and tall birch communities differed significantly from each other and from those associated with the other two dominant vegetation types. Distinct microbial communities were associated with soil pH, ammonium concentration, carbon/nitrogen (C/N) ratio, and moisture content. In soils with similar moisture contents and pHs (excluding wet sedge), bacterial, fungal, and total eukaryotic communities were correlated with the ammonium concentration, dissolved organic nitrogen (DON) content, and C/N ratio. Operational taxonomic unit (OTU) richness, Faith''s phylogenetic diversity, and the Shannon species-level index (H′) were generally lower in the tall birch soil than in soil from the other vegetation types, with pH being strongly correlated with bacterial richness and Faith''s phylogenetic diversity. Together, these results suggest that Arctic soil feedback responses to climate change will be vegetation specific not just because of distinctive substrates and environmental characteristics but also, potentially, because of inherent differences in microbial community structure.  相似文献   

9.
A vast ecosystem of wetlands and lakes once covered the Mesopotamian Plain of southern Iraq. Widespread drainage in the 1990s nearly obliterated both components of the landscape. This paper reports the results of a study undertaken in 1972–1975 on the vegetation of the wetlands prior to drainage and provides a unique baseline for gauging future restoration of the wetland ecosystems in Mesopotamia. Five representative study sites were used to assess the flora, three of which were wetlands. A total of 371 plant species were recorded in the five sites, of which approximately 40% represent obligate or facultative wetland species. The wetland vegetation was classified into five major physiognomic forms (submerged, floating, herbaceous tall emergent, herbaceous low emergent and woody low emergent), which was further subdivided into 24 fresh and halophytic communities. Water levels greatly fluctuated across the different types of wetlands, and mean surface water depth ranged from below to greater than 2 m above the sediment surface, reflecting permanently, seasonally or intermittently wet habitats. Aboveground biomass was also highly variable among the communities. The Phragmites australis community, which was the most extensive community type, had the greatest biomass with an average value of approximately 5,000 g m−2 in summer. Distribution and community composition were largely controlled by water levels and saline-freshwater gradients. Canonical correspondence analysis showed that salinity and water depth were the most important factors to explain species distribution. Environmental variables related to soil salinity separated halophytic species in woody low emergent and herbaceous low emergent forms (Tamarix galica, Cressa cretica, Alhagi mannifera, Aeluropus lagopoides, Juncus rigida, and Suaeda vermiculata) from other species. Their habitats were also the driest, and soil organic matter content was lower than those of other species. Habitats with deepest water were dominated by submerged aquatic and floating leaved species such as Nymphoides peltata, Ceratophyllum demersum, and Najas armata. Such diverse environmental conditions in the Mesopotamian wetland would be greatly affected by evapotranspiration, river water inputs from north, ground water inputs, local soil conditions, and a tide or seiche-controlled northward transgression of water from the Gulf. These environmental conditions should be considered in restoration plans if plant communities existed in the mid-1970s are to be part of the desired restoration goals. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Salt marshes are interesting and endangered ecosystems in West-Europe. Nevertheless, their arthropod fauna remains largely unknown and the factors determining assemblages at micro-habitat scale are poorly understood. Few data are also available about the effects of management measures in salt marshes and how to monitor them. The aim of the present study is to determine the major factors structuring two dominant communities of arthropods, spider and ground beetles, in natural, managed (cutting and sheep grazing) and invaded (by the grass Elymus athericus) salt marshes. The two taxa were studied during 2002 and 2003 in different salt marshes of the Mont Saint-Michel Bay (NW France) by pitfall traps and hand-collecting. A total of 12 350 spiders (57 species) and 16 355 ground beetles (34 species) were caught during the study and analysed with respect to effects of the salinity gradient and of habitat structure characteristics. Spiders and ground beetles reacted differently to environmental factors in salt marshes. Spiders could more easily cope with salinity and their presence/absence was less related to the salinity than that of ground beetles. For ground beetles, there were few other community-structuring environmental factors and these were only related to the edaphic environment: species restricted to open habitats, significant effects of moisture content and salinity revealed by CCA. Because they are likely to bring complementary information on abiotic factors, we finally suggest using both spiders and ground beetles for monitoring the effects of management practices in salt marshes.  相似文献   

11.
12.
Abstract:The influence of environmental variables on epiphytic lichens in Liguria (NW Italy) was examined using two complementary approaches. Firstly, the variability of lichen vegetation in relation to environmental variables was investigated. Secondly, the variability of Lichen Biodiversity (LB) counts, used in biomonitoring studies, was analysed in relation to bioclimatic areas. Geomorphology strongly affects lichen vegetation. The coastal mountain ridge and the Tyrrhenian-Po valley watershed limit the distribution range of three different communities: a Parmelion community with a high frequency of coastal suboceanic species, a Parmelion community rich in oak wood species and the Parmelietum acetabuli association, situated beyond the Po Valley watershed. Substantial differences in the distribution of lichen communities related to a climatic gradient (from humid Mediterranean to dry sub-Mediterranean regions) are not matched by corresponding statistically significant differences in LB counts. More accurate studies are necessary to define homogeneous bioclimatic areas, in which LB values can be compared for biomonitoring purposes.  相似文献   

13.
Schipper  L.A.  Lee  W.G. 《Plant and Soil》2004,262(1-2):151-158
Ultramafic soils are colonised by plant communities adapted to naturally elevated heavy metal content but it is not known whether soil microbial communities are similarly adapted to heavy metals. We measured microbial properties of six ultramafic soils that ranged in heavy metal content to test whether microbial diversity would decrease and respiratory quotient (microbial respiration:biomass) increase due to the stress imposed by increasing metal content. Soil samples were collected from beneath Nothofagus solandri var. cliffortioides tall forest, tall Leptospermum scoparium shrubland, open Leptospermum scoparium shrubland, an open Leptospermum scoparium shrubland with the rare ultramafic endemic Celmisia spedenii, a mixed divaricate shrubland, and a red tussock (Chionochloa rubra) grassland on the Dun Mountain Ophiolite belt, New Zealand. Samples were analysed for catabolic evenness using the catabolic response profile technique, microbial biomass, microbial respiration, and soil properties (pH, total carbon, total nitrogen, magnesium and total or extractable chromium and nickel). The sites differed in base saturation, pH and concentrations of metals, particularly magnesium, chromium and nickel, properties that are a major determinant of the plant communities that develop. Microbial biomass and respiration, catabolic evenness (range of 19.1 to 22.7) and the respiratory quotient were not correlated to any of the measured soil chemical properties. Factor analysis of the respiratory responses showed that the microbial communities under each vegetation type were distinct. The second factor extracted was correlated to total carbon (r 2=0.62, P<0.01), basal respiration (r 2=0.55, P<0.01) and microbial biomass (r 2=0.65, P<0.01). Increasing metals concentrations had no direct impact on microbial diversity, biomass, respiration or community energetics. However, we suggest that metal concentrations may have exerted an indirect effect on the structure of the microbial communities through control of the vegetation community and litter inputs of carbon to the soil.  相似文献   

14.
To explore the biogeographical patterns of endophytic fungal communities on a large scale, we surveyed fungal endophytes in roots of Stipa krylovii from six vegetation types in grassland along a 3200 km west–east transect in northern China. Pyrosequencing of samples collected from 18 sites (three sites per vegetation type) revealed that Pleosporales, Hypocreales, Agaricales, and Xylariales were the dominant fungal orders in roots of S. krylovii. The dominant genera were Marasmius, Fusarium, Acremonium, Sarcinomyces, and Monosporascus, and these genera were distributed differently among the six vegetation types. In a variation partitioning analysis, vegetation type, geographical distance, and environmental parameters (mean annual precipitation and air temperature, soil organic carbon, soil total nitrogen, pH, elevation) explained 98.2% of variation in the endophyte fungal community, and environmental parameters explained more variation than did vegetation type or geographical distance. Mean annual precipitation was the major significant factor influencing endophytic fungal communities.  相似文献   

15.
Natural restoration of historical wetland plant communities in fallow fields with a degraded seed bank has been assumed to be possible only if source populations of the target species are present adjacent to the abandoned fields and a high density of suitable microsites is available. However, few studies have monitored both factors simultaneously and verified this assumption. We hypothesized that plant communities that are similar to historical wetlands, including back marshes, back swamps, and bogs, will reestablish in abandoned pasturelands in cases when (1) gaps for new recruitment emerge, followed by the decline of pastures; and (2) seeds with longevity are supplied from the surrounding remnant plant communities of wetlands. We conducted a survey of vegetation and microsites in pastures, abandoned pastures, and reference wetlands followed by structural equation modeling to verify our hypothesis for the natural restoration of Phragmites australis–Phalaris arundinacea and Alnus japonica–Spiraea salicifolia communities. These communities represent historical back marshes and back swamps along a river. However, our hypothesis was not verified for the natural restoration of Vaccinium oxycoccos–Sphagnum spp. communities, which represent plant communities in historical bogs grown on acidic peat that are maintained by rainfall and fog. Our findings partly support our hypothesis that decline in pastures creates gaps and that cumulative seed dispersal from nearby remnant wetlands allows the original wetland plant communities to regenerate. Further case studies are needed to determine how the natural restoration of bog plant communities occurs.  相似文献   

16.
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.  相似文献   

17.
Wetlands provide numerous ecosystem services, and ericaceous plants are important components of these habitats. However, the ecology of fungi associated with ericaceous roots in these habitats is poorly known. To investigate fungi associated with ericaceous roots in wetlands, ericoid mycorrhizal colonization was quantified, and fungal communities were characterized on the roots of Gaultheria hispidula and Kalmia angustifolia along two upland – forested wetland transects in spring and fall. Ericoid mycorrhizal colonization was significantly higher in the wetlands for both plant species. Both upland and wetland habitats supported distinct assemblages of ericaceous root associated fungi including habitat specific members of the genus Serendipita. Habitat was a stronger driver of ericoid mycorrhizal colonization and ericaceous root associated community composition than host or sampling season, with differences related to soil water content, soil nutrient content, or both. Our results indicate that ericaceous plant roots in forested wetlands are heavily colonized by habitat specific symbionts.  相似文献   

18.
Abstract. The species composition of stands of submerged macrophytes was studied in relation to the main environmental factors in oligohaline wetlands of the Camargue, southern France. Correlations were sought between the environmental factors and the abundance of the different species using canonical analysis. 24 species of submerged macrophytes, including 10 species of Charophyta, were recorded in the 60 sites studied. The hydrological regime and the salinity appeared to be the main factors controlling the abundance of the different species. This is related to the management of the marshes in the Camargue, which is carried out using these two controlling factors, particularly the hydrological regime, and also includes the destruction of emergent vegetation, mechanically or by grazing. The bivariate ecological amplitude of the individual species was calculated from field data along the gradients of flooding duration and conductivity of the water. My-riophyllum spicatum, Potamogetón pectinatus and Ruppia cirrhosa dominate permanent marshes along the conductivity gradient. In temporary marshes, all having a low conductivity, Zannichellia pedunculata, Ranunculus baudotii, Chara áspera and Callitriche truncata dominate.  相似文献   

19.
Salt marshes restored through managed coastal realignment (MR) often develop slowly and show persistent differences in vegetation from natural marshes. Development might be constrained by the availability of propagules or poor suitability of the abiotic environment for their establishment. To distinguish between these factors, we compared vegetation colonization and environmental conditions at a salt marsh created by MR at Brancaster, Norfolk, UK, with five reference marshes, varying in age from 30 to circa 6,000 years. After 5 years, plant communities of the MR site remained different from those in mature reference marshes. In contrast, the communities of the youngest reference marsh were not significantly different from mature reference marshes. At the MR site, abundance of perennial and later‐successional species was low and large areas remained unvegetated. These differences are unlikely to be due to dispersal limitation, because 76% of the species from the local species pool colonized the site within 5 years. Although the annuals Salicornia europaea and Suaeda maritima were abundant by year 2, they were not ubiquitous until the end of the study. Tidal elevations of the MR site were suitable for vegetation development, but soil redox potentials were lower than that at the reference sites. Reducing conditions in the MR site appear to be the major cause of vegetation differences from the reference marshes, as they are associated with an abundance of bare ground and a small range of vegetation clusters. Measures to avoid low sediment redox potentials may have a great benefit in some salt marsh restoration projects.  相似文献   

20.
An overview of the salt-marsh herbland and scrub vegetation belonging to the class Salicornietea fruticosae Br.-Bl. et Tx. ex A. Bolòs y Vayreda 1950 in Apulia is presented. Data available from literature have been supplemented with original relevés performed in different locations of the Apulia region. On the basis of a total of 297 relevés, fifteen communities have been defined, according to the traditional phytosociological system based on dominant and/or diagnostic taxa. For comparison purposes, the salt-marsh vegetation has been classified using numerical methods. The results obtained show that most of the clusters correspond to specific associations, and confirm the division into vegetation alliances and orders. Numerical analysis also allowed us to assign the proper allocation of some associations and plant communities drawn from literature. Five alliances, with plant communities characterized by specific ecological features, have been discriminated: Sarcocornion alpini and Arthrocnemion glauci (lower marshes), Salicornion fruticosae (middle marshes), Inulion crithmoidis and Suaedion brevofoliae (upper marshes). In addition, during the field work, a population of Halocnemum strobilaceum (Arthrocnemo-Halocnemetum strobilacei), new record for the Apulia region, has been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号