首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multivesicular bodies (MVBs) are ubiquitous endocytic organelles containing numerous 50-80 nm vesicles. MVBs are very dynamic in shape and function. In antigen presenting cells (APCs), MVBs play a central role in the loading of major histocompatibility complex class II (MHC II) with antigenic peptides. How MHC II is transported from MVBs to the cell surface is only partly understood. One way involves direct fusion of MVBs with the plasma membrane. As a consequence, their internal vesicles are secreted as so-called exosomes. An alternative has been illustrated in maturing dendritic cells (DCs). Here, MVBs are reshaped into long tubules by back fusion of the internal vesicles with the MVB limiting membrane. Vesicles derived from the tips of these tubules then carry MHC II to the cell surface.  相似文献   

2.
Summary Plama lipoproteins (and other ligands) are endocytosed by hepatocytes and appear in multivesicular bodies (MVBs) in the Golgi-lysosome region of the cell prior to their degradation. We have isolated MVB fractions from livers of estradiol-treated rats, permitting studies of their properties (Hornick et al. 1985). Here we report our cytochemical studies of lysosomal enzyme activity in partially and highly purified MVB fractions and in MVBs in hepatocytes in situ.Only about 15% of partially or highly purified MVBs were positive for acid phosphatase and arylsulfatase, consistent with the prelysosomal nature of this compartment. Partially purified MVB fractions contained small round vesicles, 70–120 nm in diameter, which, stained intensely for these enzymes; occasionally these vesicles appeared to fuse with MVBs, suggesting that these structures are primary lysosomes. Such stained vesicles were rarely seen in highly purified MVB preparations. Acid phosphatase reaction product with cerium as capture reagent appeared as uniform precipitates surrounding endocytosed plasma lipoproteins in positively stained MVBs. Arylsulfatase reaction product, however, appeared as distinctive are or plaque-like deposits just inside the MVB-limiting membrane, often in continuity with intense reaction product contained in a fusing primary lysosome. Similar putative primary lysosomes were occasionally observed in isolated, intact Golgi fractions from the same livers. Similar histochemical reactivities of MVBs and putative primary lysosomes were observed in thin sections of hepatoyctes in situ.These observations support the conclusion that, in hepatocytes, MVBs represent the immediate prelysosomal compartment in the endocytic pathway of macromolecular catabolism, and suggest that MVBs are converted to secondary lysosomes by direct fusion with primary lysosomes arising from closely adjacent Golgi compartment.A portion of this work was published in abstract form in the Journal of Histochemistry and Cytochemistry, Vol. 34, page 120, 1986.This work was supported by U.S. Public Health Service Grant HL 14237 (Arteriosclerosis SCOR)  相似文献   

3.
Summary Clathrin-coated vesicles in rodent (rat and mouse) liver distribute into three distinct populations based on measurements of vesicle diameter. The first population consists of 60–80 nm vesicles found almost exclusively within the Golgi apparatus region. The second population is of 100–160 nm coated vesicles located within 100–500 nm of the cell surface. A third population of coated vesicles of intermediate diameter (ca. 90 nm) is present both at the Golgi apparatus and at the cell surface. We speculate that clathrin and clathrin-coated vesicles within the region of the Golgi apparatus and of the cell surface exist in two recycling populations. The third population of vesicles of intermediate diameter could represent a shuttle to link the two major compartments.  相似文献   

4.
The sub-cellular distribution of chitin synthetase was studied in homogenates of Saccharomyces cerevisiae protoplasts. Use of a mild disruption method minimized rupture of vacuoles and ensuing contamination of subcellular fractions by vacoular proteinases. After fractionation of whole or partially purified homogenates through an isopycnic sucrose gradient chitin synthetase activity was found to be distributed between two distinct particulate fractions with different buoyant density and particle diameter. When whole homogenates were used, about 52% of the chitin synthetase loaded was localized in a microvesicular population identified as chitosomes (diameter 40–110 nm; bouyant density (d) = 1.146 g/cm3). Another vesicular population containing 26% of the activity was identified as plasma membrane vesicles because of its large mean diameter (260 nm), its high buoyant density (d = 1.203 g/cm3) and by the presence of the vanadate-sensitive ATPase activity. Moreover, after surface labeling of protoplasts with 3H-concanavalin A, the label cosedimented with the presumed plasma membrane vesicles. There was a negligible cross-contamination of the chitosome fraction by yeast plasma membrane markers. In both the plasma membrane and the chitosome fractions, the chitin synthetase was stable and essentially zymogenic. Activation of the chitosome fraction produces microfibrils 100–250 nm in length. Our results support the idea that chitosomes do not originate by plasma membrane vesiculation but are defined sub-cellular organelles containing most of the chitin synthetase in protoplasts of Saccharomyces cerevisiae.  相似文献   

5.
A combination of electron microscopic tracers and subcellular fractionation has been used to examine the endocytic pathway of the yolk protein precursor, vitellogenin (VG), in Xenopus oocytes. VG was adsorbed to colloidal gold, and the organelles traversed by newly internalized ligand were examined at various time intervals after endocytosis. VG-Au enters oocytes via coated pits and vesicles and then appears rapidly in tubular endosomes and multivesicular bodies (MVBs). MVBs play a central role in VG processing for storage; the large majority of newly internalized VG enters this compartment, remaining there for up to several hours. Condensation of VG into crystalline bodies begins in MVBs, and continues with growth of the crystals until typical platelets are formed. When oocytes are exposed to high [VG], MVBs containing large amounts of internalized VG are morphologically indistinguishable from the primordial yolk platelets described earlier (Dumont, 1978). The use of VG-Au particles of two sizes demonstrates that gold particles in early MVBs were generally associated with the limiting membrane of these organelles, while older MVB compartments have gold particles well separated from the limiting membranes, suggesting that dissociation of VG from its receptor occurs in this compartment. Newly internalized ligand preferentially forms a new MVB, rather than fusing and mixing with previously formed MVBs. Progressive yolk protein condensation gradually transforms MVBs into yolk platelets over a period of several hours. Analysis of 125I-VG-Au behavior after sucrose gradient fractionation of oocytes allowed correlation of biochemical compartments with those observed in the electron microscope. MVBs containing yolk in progressive stages of condensation were found at densities from 1.16 up to 1.21 g/cc. The final, rate-limiting step in VG transport is a shift of ligand from light (1.21 g/cc) to heavy (1.23 g/cc) platelet compartments (Wall and Meleka, 1985). The morphological correlate of this process is movement of VG-Au from small (less than 3-4 microns diameter) to large (greater than 4 microns diameter) platelets.  相似文献   

6.
Plasma lipoproteins (and other ligands) are endocytosed by hepatocytes and appear in multivesicular bodies (MVBs) in the Golgi-lysosome region of the cell prior to their degradation. We have isolated MVB fractions from livers of estradiol-treated rats, permitting studies of their properties (Hornick et al. 1985). Here we report our cytochemical studies of lysosomal enzyme activity in partially and highly purified MVB fractions and in MVBs in hepatocytes in situ. Only about 15% of partially or highly purified MVBs were positive for acid phosphatase and arylsulfatase, consistent with the prelysosomal nature of this compartment. Partially purified MVB fractions contained small round vesicles, 70-120 nm in diameter, which stained intensely for these enzymes; occasionally these vesicles appeared to fuse with MVBs, suggesting that these structures are primary lysosomes. Such stained vesicles were rarely seen in highly purified MVB preparations. Acid phosphatase reaction product with cerium as capture reagent appeared as uniform precipitates surrounding endocytosed plasma lipoproteins in positively stained MVBs. Arylsulfatase reaction product, however, appeared as distinctive arc or plaque-like deposits just inside the MVB-limiting membrane, often in continuity with intense reaction product contained in a fusing primary lysosome. Similar putative primary lysosomes were occasionally observed in isolated, "intact" Golgi fractions from the same livers. Similar histochemical reactivities of MVBs and putative primary lysosomes were observed in thin sections of hepatocytes in situ. These observations support the conclusion that, in hepatocytes, MVBs represent the immediate prelysosomal compartment in the endocytic pathway of macromolecular catabolism, and suggest that MVBs are converted to secondary lysosomes by direct fusion with primary lysosomes arising from closely adjacent Golgi compartments.  相似文献   

7.
Multivesicular bodies (MVBs) are membranous structures within 60-100 nm diameter vesicles accumulate. MVBs are generated after invagination and pinching off of the endosomal membrane in the lumen of the vacuole. In certain cell types, fusion of MVBs with the plasma membrane results in the release of the internal vesicles called exosomes. In this report we have examined how an increase in cytosolic calcium affects the development of MVBs and exosome release in K562 cells overexpressing GFP-Rab11 wt or its mutants. In cells overexpressing the Rab11Q70 L mutant or Rab11 wt, an increase in the cytosolic calcium concentration induced by monensin caused a marked enlargement of the MVBs. This effect was abrogated by the membrane permeant calcium chelator BAPTA-AM. We also examined the behavior of MVBs in living cells by time lapse confocal microscopy. Many MVBs, decorated by wt or Q70L mutant GFP-Rab11, were docked and ready to fuse in the presence of a calcium chelator. This observation suggests that Rab11 is acting in the tethering/docking of MVBs to promote homotypic fusion, but that the final fusion reaction requires the presence of calcium. Additionally, a rise in intracellular calcium concentration enhanced exosome secretion in Rab11 wt overexpressing cells and reversed the inhibition of the mutants. The results suggest that both Rab11 and calcium are involved in the homotypic fusion of MVBs.  相似文献   

8.
Immature dendritic cells (DCs) sample their environment for antigens and after stimulation present peptide associated with major histocompatibility complex class II (MHC II) to naive T cells. We have studied the intracellular trafficking of MHC II in cultured DCs. In immature cells, the majority of MHC II was stored intracellularly at the internal vesicles of multivesicular bodies (MVBs). In contrast, DM, an accessory molecule required for peptide loading, was located predominantly at the limiting membrane of MVBs. After stimulation, the internal vesicles carrying MHC II were transferred to the limiting membrane of the MVB, bringing MHC II and DM to the same membrane domain. Concomitantly, the MVBs transformed into long tubular organelles that extended into the periphery of the cells. Vesicles that were formed at the tips of these tubules nonselectively incorporated MHC II and DM and presumably mediated transport to the plasma membrane. We propose that in maturing DCs, the reorganization of MVBs is fundamental for the timing of MHC II antigen loading and transport to the plasma membrane.  相似文献   

9.
Summary Nerve fibres of the neurosecretory hypothalamo-hypophyseal tract were studied in embryonic C3H mouse neural lobes; at least four glands at each gestational day 15–19 were examined.Single axons and small bundles of fibres are visible at gestational days 15 and 16. By day 17 large fibre bundles penetrate between glial cells. They increase in number during the next two days.Electron-lucent and electron-dense vesicles are seen in the fibres of the 15th and 16th gestational days. In the 17–19 day-old embryos development is characterized by a successive rise in the number of the two types of vesicles. The mean diameter of the electron-lucent vesicles is approximately unchanged in all the stages examined (50 nm). The electron-dense vesicles increase in size from approximately 80–90 nm at days 15–16 to 140 nm at the 19th gestational day.By day 19 contacts between neurosecretory fibre terminals and the outer basement membrane of internal and peripheral capillaries are occasionally observed. The possibly adrenergic nature of a few terminals contacting peripheral vascular structures in 17 and 18 day-old embryos is suggested.This investigation was supported by grant No. 2180-020 from the Swedish Natural Science Research Council. The skilful technical assistance of Mrs. Ulla Wennerberg is gratefully acknowledged.  相似文献   

10.
Multivesicular bodies (MVBs) are endosomes or prevacuolar compartments. The lumens of their internal vesicles are thought to be topologically equivalent to cytoplasm and their membranes direct proteins and lipids for degradation. Here, we describe a new MVB function; in certain plant MVBs, the internal vesicles contain lytic enzymes and the surrounding 'soup' is a storage compartment. Separate vesicular pathways deliver proteins to the storage and lytic compartments. Recent data indicate that mammalian secretory lysosomes also have two compartments served by separate vesicular pathways. The formation of separate storage and lytic compartments within MVBs poses problems for membrane organization and topology that have not previously been considered in the literature. We offer a hypothetical model to address these problems.  相似文献   

11.
Summary The morphological evidence for a direct autonomic innervation of the mouse vomeronasal glands is presented. Axonal varicosities containing a few densecore vesicles and numerous clear vesicles (36–60 nm in diameter) make synaptic contacts with the secretory cells at the base of the glandular acini. The axonal presynaptic membrane is associated with a distinct dense material and it is separated from the secretory cell by a synaptic cleft of about 12–14 nm. At the postsynaptical level, coated vesicles can be found. Additional postsynaptical specializations have not been observed.  相似文献   

12.
The biogenesis and functions of exosomes   总被引:9,自引:2,他引:7  
Exosomes are membrane vesicles with a diameter of 40–100 nm that are secreted by many cell types into the extracellular milieu. They correspond to the internal vesicles of an endosomal compartment, the multivesicular body and are released upon exocytic fusion of this organelle with the plasma membrane. Intracellularly, they are formed by inward budding of the endosomal membrane in a process that sequesters particular proteins and lipids. The unique composition of exosomes may confer specific functions on them upon secretion. Although their physiological role in vivo is far from being unraveled, it is apparent that they function in a multitude of processes, including intercellular communication during the immune response. Exosomes may have evolved early in the evolution of multicellular organisms and also seem to be important for tissue developmental processes.  相似文献   

13.
Freeze-fracture electron microscopy has been used to investigate the size, form, distribution and supramolecular organization of chlorosomes (chlorobium type vesicles) in Chloroflexus aurantiacus J-10fl, a phototrophic, filamentous gliding bacterium. The chlorosomes, that appear tightly attached to the cytoplasmic membrane, have the form of flat, elongated sacs with rounded ends, and measure 106±24×32±10×12±2nm. They are randomly distributed, and in most instances their longitudinal axis makes an angle of 30–60° to the filament axis. Each chlorosome consists of a core and an approx. 2 nm thick envelope. The core is filled with rod-shaped elements (approx. 5.2 nm in diameter) made up of globular subunits with a periodicity of approx. 6 nm. The rod elements extend the full length of the chlorosome. The membrane-associated envelope layer is marked by extremely fine striations with a repeating distance of 2.5–3nm, while the envelope layer adjacent to the cytoplasm exhibits no discernable substructure. The margins of the vesicles are delineated by regularly spaced 7 nm particles.No information is yet available on the organization of the cytoplasmic membrane areas to which the vesicles are attached since the fracture plane always passes into the adjacent vesicles in such region rather than continuing through the membrane. Upon cooling of the cells large particle-free areas develop in the cytoplasmic membrane. Simultaneously the chlorosomes become crowded into the remaining particle-rich areas, where some seem to fuse with each other to formAbbreviation bchl bacteriochlorophyll  相似文献   

14.
Summary Hydrocortisone injections into rats on postnatal days 3–9 caused an increase in the number of small granulecontaining cells in the superior cervical ganglia. These cells, corresponding to the small, intensely fluorescent cells, showed an extensive rough endoplasmic reticulum, a large Golgi apparatus and a very large number of granular vesicles. In addition to the granular vesicles, 70–160 nm in diameter, in which the dense core filled most of the vesicle, most cells of the hydrocortisone-injected rats contained also larger granular vesicles, up to 350 nm in diameter, in which the dense core was eccentrically located. A minority of the cells contained only granular vesicles 70–100 nm in diameter, which was the only type seen in the saline-treated control rats.Thirty days after discontinuation of the hydrocortisone treatment, most of the cells with large granular vesicles had disappeared, and only two profiles of such cells were seen on day 40. The other small cells contained only granular vesicles 70–160 nm in diameter, and these cells could not be distinguished from the small granule-containing cells of 40-day-old control rats treated early postnatally with saline.Hydrocortisone treatment, first on days 3–9 and subsequently on days 40–46, caused reappearance of the small granule-containing cells with large granular vesicles up to 350 nm in diameter, the dense core of which was eccentrically located. Hydrocortisone treatment on days 40–46 only was not followed by appearance of such cells in rats treated with saline on days 3–9.Abbreviations used in the Text PNMT phenylethanolamine-N-methyltransferase - SIF cell small intensely fluorescent cell - SGC cell small granule-containing cell The author is grateful to Professor Olavi Eränkö and Dr. Seppo Soinila for constructive criticism. Expert technical assistance by Miss Hanna-Liisa Alanen, Mrs. Marja-Leena Piironen and Mrs. Anne Reijula is gratefully acknowledged. This study has been supported by a grant from the Finnish Medical Foundation.  相似文献   

15.
L. Hellgren  D. J. Morré 《Protoplasma》1992,167(3-4):238-242
Summary Fractions enriched in intact nuclei and nuclear fragments isolated from etiolated hypocotyls of soybean responded in vitro to ATP plus a concentrated fraction of cytoplasmic proteins by formation of ca. 50–70 nm buds and vesicles resembling those observed to bud from the outer membrane of the nuclear envelope in situ at regions of nuclear envelope-Golgi apparatus interface. Similar vesicles are normally considered to function in the transfer of materials from the outer membrane of the nuclear envelope to cis elements of the Golgi apparatus.  相似文献   

16.
Summary The ultrastructure of intranuclear rodlets, microtubules, fibrillar lattices and membranous inclusions found in the developing cuneate nuclei of rats is described. Rodlets, ranging in diameter from 96–312 nm and in length from 1–2 m, are made up of tightly packed straight filaments measuring 5–8 nm in diameter. Microtubules with a diameter of 26 nm are clustered together. Fibrillar lattices are made up of fibrils with a diameter of 9 nm arranged in layers or sets. Two to nine sets make up a lattice, with a maximum width of 68 nm, in which the adjacent sets are arranged at an angle to each other. Rodlets and fibrillar lattices occur in 6.8% of the neurons. Membranous inclusions, reported here for the first time in normal neurons, are of 2 types: small vesicles of 0.1–0.6 m and large vacuoles measuring 1–2 m. Both types are bounded by either a single or a double membrane and generally have an electron lucent content. Membranous inclusions occur in 25.3 % of the neurons. Changes in the frequency of occurrence of the various intranuclear inclusions in the course of postnatal development are also reported.  相似文献   

17.
Sorting of endocytosed EGF receptor (EGFR) to internal vesicles of multivesicular bodies (MVBs) depends on sustained activation and ubiquitination of the EGFR. Ubiquitination of EGFR is mediated by the ubiquitin ligase Cbl, being recruited to the EGFR both directly and indirectly through association with Grb2. Endosomal sorting of ubiquitinated proteins further depends on interaction with ubiquitin binding adaptors like Hrs. Hrs localizes to flat, clathrin-coated domains on the limiting membrane of endosomes. In the present study, we have investigated the localization of EGFR, Cbl and Grb2 with respect to coated and non-coated domains of the endosomal membrane and to vesicles within MVBs. Both EGFR, Grb2, and Cbl were concentrated in coated domains of the limiting membrane before translocation to inner vesicles of MVBs. While almost all Hrs was in clathrin-positive coats, EGFR and Grb2 in coated domains only partially colocalized with Hrs and clathrin. The extent of colocalization of EGFR and Grb2 with Hrs and clathrin varied with time of incubation with EGF. These results demonstrate that both clathrin-positive and clathrin-negative electron dense coats exist on endosomes and are involved in endosomal sorting of the EGFR.  相似文献   

18.
Summary In the frog median eminence, fixed with glutaraldehyde and osmium tetroxide, four types of nerve endings can be generally distinguished. These endings are in contact with the pericapillary spaces of primary portal vessels and can be identified by the internal structure and the size of their granules and vesicles. Type 1 contains large granules (1500–2400 Å in diameter) and small clear vesicles (300–500 Å in diameter), type 2 intermediate granules (about 1100–1700 Å in diameter) and small clear vesicles, type 3 small granules (about 600–1000 Å in diameter) and small clear vesicles, type 4 only numerous small clear vesicles. The mixed types containing the large, intermediate and small dense granules in the same ending are infrequently found.After KMnO4 or LiMnO4 fixation the granules and vesicles mentioned above are observed as follows. The large granules in the type 1 nerve ending appear mostly pale or less-dense. The intermediate granules in the type 2 also appear mostly pale or less-dense, but some frequently show granules of high density. The small granules in the type 3 consistently contain the dense substance and these endings can be subdivided into two different types according to the populations of different sizes of dense granules [type 3a (900–1000 Å) and type 3b (500–800 Å)]. Dense-cored and cleared-synaptic vesicles are frequently present with together in the type 3 endings. The small vesicles (300–400 Å), in the type 4, appear generally pale (type 4a), but some nerve endings contain small dense cored-vesicles (type 4b).The author wishes to thank Prof. H. Fujita for his advice and criticism.  相似文献   

19.
The laminar ultrastructure of the dorsal cochlear nucleus was studied in ultrathin wide frontal sections, passing through all layers of the nucleus, placed on blinds with a Formvar film. The ultrastructural characteristics of cells corresponding to the cell types distinguished previously by light microscopy are described. The laminar distribution of the axon terminals was studied. In the surface and middle layers of the neuropil, by contrast with the deep layer, large branching terminals measuring 6–8 µ with spherical synaptic vesicles 40–50 nm in diameter, small terminals measuring 1–3 µ with spherical synaptic vesicles 45–60 nm in diameter, and thin unmyelinated fibers running perpendicularly to the plane of the section were predominant. On transition from the middle to the deep layer there was a corresponding increase in the number of myelinated axons and large oval-shaped terminals measuring 4–6 µ, with central mitochondria and neurofilaments, and also with spherical synaptic vesicles 50–60 nm in diameter, in the neuropil. In the surface and middle layers granular cells also were more numerous than in the deep layer. The functional significance of terminals of each type is discussed.N. A. Semashko Moscow Medical Stomatologic Institute. Translated from Neirofiziologiya, Vol. 10, No. 4, pp. 368–374, July–August, 1978.  相似文献   

20.
Summary The submicroscopic structure of the nerve cells in the planarian brain was studied. Close similarities with neurons of other invertebrates were noted. In the cytoplasm of the planarian nerve cells there are at least three types of vesicular inclusions: 1) Clear vesicles (200–800 Å in epon embedded tissue) similar in morphological appearance to classical synaptic vesicles. These have generally some content of extremely low density but occasionally a dense core. 2) Dense vesicles (400–1,200 Å in epon embedded tissue) containing highly osmiophilic granules. Between the limiting membrane of the vesicle and the granule there is always a clear rim of variable width. These vesicles closely resemble synaptic vesicles described in vertebrate adrenergic endings. 3) Neurosecretory vesicles (600–1,300 Å in Vestopal embedded tissue) similar to elementary granules observed in neurosecretory systems in vertebrates and invertebrates. All three vesicle types have the same mode of origin from the Golgi membranes. All are present in the nerve cell processes of the neuropil as well as in the perikarya. Any given perikaryon or axon contains only one of the three vesicle types. All of these vesicles are considered to be discharged into the axons from their site of origin within the perikaryon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号