首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transforming growth factor-beta (TGFbeta) is a potent regulator of cell growth, differentiation, and apoptosis. TGFbeta binds to specific serine/threonine kinase receptors, which leads to activation of Smad-dependent and Smad-independent signaling pathways. O-Glycosylation is a dynamic PTM which has been observed in many regulatory proteins, but has not been studied in the context of TGFbeta signaling. To explore the effect of TGFbeta1 on protein O-glycosylation in human breast epithelial cells, we performed analyses of proteins which were affinity purified with Helix pomatia agglutinin (HPA). HPA lectin allowed enrichment of proteins containing GalNAc and GlcNAc linked to serine and threonine residues. Using 2-DE and MALDI-TOF-MS, we identified 21 HPA-precipitated proteins, which were affected by treatment of cells with TGFbeta1. Among these proteins, regulators of cell survival, apoptosis, trafficking, and RNA processing were identified. We found that TGFbeta1 inhibited the appearance of cell death-inducing DFF-like effector A (CIDE-A) in 2-D gels with HPA-precipitated proteins. CIDE-A is a cell death activator which promotes DNA fragmentation. We observed that TGFbeta1 did not affect expression of CIDE-A, but inhibited its glycosylation. We found that deglycosylation of CIDE-A correlated with enhanced nuclear export of the protein, and that high level of nonglycosylated CIDE-A inhibited TGFbeta1-dependent cell death. Thus, inhibition of the glycosylation of CIDE-A may be a mechanism to protect cells from apoptosis.  相似文献   

2.
As the content of Transforming Growth Factor-beta (TGFbeta) wanes in the milk of lactating rat, an increase in TGFbeta is observed in the gastric epithelia concomitant with differentiation of the glands upon weaning. Whereas TGFbeta has been shown to inhibit the proliferation of gastrointestinal cells in vitro, its functional significance and mechanisms of action have not been studied in vivo. Therefore, we administered TGFbeta1 (1 ng/g body wt.) to 14-day-old rats in which the gastric epithelium was induced to proliferate by fasting, and determined the involvement of signaling through Smads and the impact on epithelial cell proliferation and apoptosis. After the gavage, we observed the progressive increase of active TGFbeta1 while TbetaRII-receptor remained constant in the gastric mucosa. By immunohistochemistry, we showed Smad2/3 increase at 60 min (p<0.05) and Smad2 phosphorylation/activation and translocation to the nucleus most prominently between 0 and 30 min after treatment (p<0.05). Importantly, TGFbeta1 inhibited cell proliferation (p<0.05), which was estimated by BrDU pulse-labeling 12 h after gavage. Lower proliferation was reflected by increased p27(kip1) at 2 h (p<0.05). Also, TGFbeta1 increased apoptosis as measured by M30 labeling at 60 and 180 min (p<0.001), and by morphological features at 12 h (p<0.05). In addition, we observed higher levels of activated caspase 3 (17 kDa) from 0 to 30 min. Altogether, these data indicate a direct effect of TGFbeta1 signaling through Smads on both inhibiting proliferation, through alteration of cycle proteins, and inducing apoptosis of gastric epithelial cells in vivo. Further, the studies suggest a potential role for both milk and tissue-expressed TGFbeta1 in gastric growth during postnatal development.  相似文献   

3.
The connector enhancer of KSR (CNK) is a multidomain scaffold protein discovered in Drosophila, where it is necessary for Ras activation of the Raf kinase. Recent studies have shown that CNK1 also interacts with RalA and Rho and participates in some aspects of signaling by these GTPases. Herein we demonstrate a novel aspect of CNK1 function, i.e. reexpression of CNK1 suppresses tumor cell growth and promotes apoptosis. As shown previously for apoptosis induced by Ki-Ras(G12V), CNK1-induced apoptosis is suppressed by a dominant inhibitor of the mammalian sterile 20 kinases 1 and (MST1/MST2). Immunoprecipitates of MST1 endogenous to LoVo colon cancer cells contain endogenous CNK1; however, no association of these two polypeptides can be detected in a yeast two-hybrid assay. CNK1 does, however, bind directly to the RASSF1A and RASSF1C polypeptides, constitutive binding partners of the MST1/2 kinases. Deletion of the MST1 carboxyl-terminal segment that mediates its binding to RASSF1A/C eliminates the association of MST1 with CNK1. Coexpression of CNK1 with the tumor suppressive isoform, RASSF1A, greatly augments CNK1-induced apoptosis, whereas the nonsuppressive RASSF1C isoform is without effect on CNK1-induced apoptosis. Overexpression of CNK1-(1-282), a fragment that binds RASSF1A but is not proapoptotic, blocks the apoptosis induced by CNK1 and by Ki-Ras(G12V). Thus, in addition to its positive role in the proliferative outputs of active Ras, the CNK1 scaffold protein, through its binding of a RASSF1A.MST complex, also participates in the proapoptotic signaling initiated by active Ras.  相似文献   

4.
Transforming growth factor-beta (TGFbeta) regulates the activation state of the endothelium via two opposing type I receptor/Smad pathways. Activin receptor-like kinase-1 (ALK1) induces Smad1/5 phosphorylation, leading to an increase in endothelial cell proliferation and migration, while ALK5 promotes Smad2/3 activation and inhibits both processes. Here, we report that ALK5 is important for TGFbeta/ALK1 signaling; endothelial cells lacking ALK5 are deficient in TGFbeta/ALK1-induced responses. More specifically, we show that ALK5 mediates a TGFbeta-dependent recruitment of ALK1 into a TGFbeta receptor complex and that the ALK5 kinase activity is required for optimal ALK1 activation. TGFbeta type II receptor is also required for ALK1 activation by TGFbeta. Interestingly, ALK1 not only induces a biological response opposite to that of ALK5 but also directly antagonizes ALK5/Smad signaling.  相似文献   

5.
Role of Ras and Mapks in TGFbeta signaling   总被引:9,自引:0,他引:9  
  相似文献   

6.
7.
TGFbeta1 and Treg cells: alliance for tolerance   总被引:1,自引:0,他引:1  
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (Treg)-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca2+-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in Treg cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (Th IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.  相似文献   

8.
Human embryonic stem cells (hESCs) self-renew indefinitely and give rise to derivatives of all three primary germ layers, yet little is known about the signaling cascades that govern their pluripotent character. Because it plays a prominent role in the early cell fate decisions of embryonic development, we have examined the role of TGFbeta superfamily signaling in hESCs. We found that, in undifferentiated cells, the TGFbeta/activin/nodal branch is activated (through the signal transducer SMAD2/3) while the BMP/GDF branch (SMAD1/5) is only active in isolated mitotic cells. Upon early differentiation, SMAD2/3 signaling is decreased while SMAD1/5 signaling is activated. We next tested the functional role of TGFbeta/activin/nodal signaling in hESCs and found that it is required for the maintenance of markers of the undifferentiated state. We extend these findings to show that SMAD2/3 activation is required downstream of WNT signaling, which we have previously shown to be sufficient to maintain the undifferentiated state of hESCs. Strikingly, we show that in ex vivo mouse blastocyst cultures, SMAD2/3 signaling is also required to maintain the inner cell mass (from which stem cells are derived). These data reveal a crucial role for TGFbeta signaling in the earliest stages of cell fate determination and demonstrate an interconnection between TGFbeta and WNT signaling in these contexts.  相似文献   

9.
10.
The transforming growth factor-beta (TGFbeta) family represents a class of signaling molecules that plays a central role in morphogenesis, growth, and cell differentiation during normal embryonic development. Members of this growth factor family are particularly vital to development of the mammalian secondary palate where they regulate palate mesenchymal cell proliferation and extracellular matrix synthesis. Such regulation is particularly critical since perturbation of either cellular process results in a cleft of the palate. While the cellular and phenotypic effects of TGFbeta on embryonic craniofacial tissue have been extensively catalogued, the specific genes that function as downstream mediators of TGFbeta action in the embryo during palatal ontogenesis are poorly defined. Embryonic palatal tissue in vivo and murine embryonic palate mesenchymal (MEPM) cells in vitro secrete and respond to TGFbeta. In the current study, elements of the Smad component of the TGFbeta intracellular signaling system were identified and characterized in cells of the embryonic palate and functional activation of the Smad pathway by TGFbeta1, TGFbeta2, and TGFbeta3 was demonstrated. TGFbeta-initiated Smad signaling in cells of the embryonic palate was found to result in: (1) phosphorylation of Smad 2; (2) nuclear translocation of the Smads 2, 3, and 4 protein complex; (3) binding of Smads 3 and 4 to a consensus Smad binding element (SBE) oligonucleotide; (4) transactivation of transfected reporter constructs, containing TGFbeta-inducible Smad response elements; and (4) increased expression of gelatinases A and B (endogenous genes containing Smad response elements) whose expression is critical to matrix remodeling during palatal ontogenesis. Collectively, these data point to the presence of a functional Smad-mediated TGFbeta signaling system in cells of the developing murine palate.  相似文献   

11.
Transforming growth factor beta1 (TGFbeta1), an important regulator of cell behavior, is secreted as a large latent complex (LLC) in which it is bound to its cleaved prodomain (latency-associated peptide [LAP]) and, via LAP, to latent TGFbeta-binding proteins (LTBPs). The latter target LLCs to the extracellular matrix (ECM). Bone morphogenetic protein 1 (BMP1)-like metalloproteinases play key roles in ECM formation, by converting precursors into mature functional proteins, and in morphogenetic patterning, by cleaving the antagonist Chordin to activate BMP2/4. We provide in vitro and in vivo evidence that BMP1 cleaves LTBP1 at two specific sites, thus liberating LLC from ECM and resulting in consequent activation of TGFbeta1 via cleavage of LAP by non-BMP1-like proteinases. In mouse embryo fibroblasts, LAP cleavage is shown to be predominantly matrix metalloproteinase 2 dependent. TGFbeta1 is a potent inducer of ECM formation and of BMP1 expression. Thus, a role for BMP1-like proteinases in TGFbeta1 activation completes a novel fast-forward loop in vertebrate tissue remodeling.  相似文献   

12.
13.
14.
Transforming growth factor beta (TGFbeta) can modulate the activity of various MAP kinases. However, how this pathway may mediate TGFbeta-induced malignant phenotypes remains elusive. We investigated the role of autocrine TGFbeta signaling through MAP kinases in the regulation of cell survival in breast carcinoma MCF-7 cells and untransformed human mammary epithelial cells (HMECs). Our results show that abrogation of autocrine TGFbeta signaling with the expression of a dominant negative type II TGFbeta receptor (DNRII) or the treatment with a TGFbeta type I receptor inhibitor significantly increased apoptosis in MCF-7 cell, but not in HMEC. The expression of DNRII markedly decreased activated/phosphorylated Erk, whereas increased activated/phosphorylated p38 in MCF-7 cells. In contrast, there was no or little change of phosphorylated Erk and p38 in HMECs after the expression of DNRII. Inhibition of Erk activity in MCF-7 control cell induced apoptosis whereas restoration of Erk activity in MCF-7 DNRII cell reduced apoptosis. Similarly, inhibition of p38 activity also inhibited apoptosis in MCF-7 DNRII cell. Thus, autocrine TGFbeta signaling can enhance the survival of MCF-7 cells by maintaining the level of active Erk high and the level of active p38 low. Furthermore, the survival properties of TGFbeta pathway appear related to transformation supporting the notion that it may be a potential target for cancer therapy.  相似文献   

15.
Prolactin (PRL) stimulates breast cancer cell proliferation; however, the involvement of PRL-activated signaling molecules in cell proliferation is not fully established. Here we studied the role of c-Src on PRL-stimulated proliferation of T47D and MCF7 breast cancer cells. We initially observed that PRL-dependent activation of focal adhesion kinase (Fak), Erk1/2, and cell proliferation was mediated by c-Src in T47D cells, because expression of a dominant-negative form of c-Src (SrcDM, K295A/Y527F) blocked the PRL-dependent effects. The Src inhibitor PP1 abrogated PRL-dependent in vivo activation of Fak, Erk1/2, p70S6K, and Akt and the proliferation of T47D and MCF7 cells; Janus kinase 2 (Jak2) activation was not affected. However, in vitro, Fak and Jak2 kinases were not directly inhibited by PP1, demonstrating the effect of PP1 on c-Src kinase as an upstream activator of Fak. Expression of Fak mutant Y397F abrogated PRL-dependent activation of Fak, Erk1/2, and thymidine incorporation, but had no effect on p70S6K and Akt kinases. MAPK kinase 1/2 (Mek1/2) inhibitor PD184352 blocked PRL-induced stimulation of Erk1/2 and cell proliferation; however, p70S6K and Akt activation were unaffected. The phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 abolished cell proliferation and activation of p70S6K and Akt; however, PRL-dependent activation of Erk1/2 was not modified. Moreover, we show that both c-Src/PI3K and c-Src/Fak/Erk1/2 pathways are involved in the up-regulation of c-myc and cyclin d1 expression mediated by PRL. The previous findings suggest the existence of two PRL-dependent signaling cascades, initiated by the c-Src-mediated activation of Fak/Erk1/2 and PI3K pathways that, subsequently, control the expression of c-Myc and cyclin D1 and the proliferation of T47D and MCF7 breast cancer cells.  相似文献   

16.
The transforming growth factor beta (TGFbeta) superfamily encompasses a number of structurally related proteins that can be divided into several subfamilies including TGFbetas, activins/inhibins and bone morphogenetic proteins (BMPs). The Smads are major intracellular mediators in transducing the signals of TGFbeta superfamily members, and are abundantly expressed in the developing epidermis and epidermal appendages. Moreover, the phenotypes of transgenic/knockout mice with altered components of the TGFbeta superfamily signaling pathway suggest that TGFbeta superfamily signaling is required for epidermal/appendage development. TGFbeta superfamily members are involved in most events during epidermal/appendage development through the TGFbeta signal transduction pathway and through cross talk with other signaling pathways. Future studies will be instrumental in defining the precise roles for TGFbeta superfamily signaling in epidermal/appendage development.  相似文献   

17.
Mechanism of TGFbeta receptor inhibition by FKBP12.   总被引:4,自引:2,他引:2       下载免费PDF全文
Y G Chen  F Liu    J Massague 《The EMBO journal》1997,16(13):3866-3876
Transforming growth factor-beta (TGFbeta) signaling requires phosphorylation of the type I receptor TbetaR-I by TbetaR-II. Although TGFbeta promotes the association of TbetaR-I with TbetaR-II, these receptor components have affinity for each other which can lead to their ligand-independent activation. The immunophilin FKBP12 binds to TbetaR-I and inhibits its signaling function. We investigated the mechanism and functional significance of this effect. FKBP12 binding to TbetaR-I involves the rapamycin/Leu-Pro binding pocket of FKBP12 and a Leu-Pro sequence located next to the activating phosphorylation sites in TbetaR-I. Mutations in the binding sites of FKBP12 or TbetaR-I abolish the interaction between these proteins, leading to receptor activation in the absence of added ligand. FKBP12 does not inhibit TbetaR-I association with TbetaR-II, but inhibits TbetaR-I phosphorylation by TbetaR-II. Rapamycin, which blocks FKBP12 binding to TbetaR-I, reverses the inhibitory effect of FKBP12 on TbetaR-I phosphorylation. By impeding the activation of TGFbeta receptor complexes formed in the absence of ligand, FKBP12 may provide a safeguard against leaky signaling resulting from the innate tendency of TbetaR-I and TbetaR-II to interact with each other.  相似文献   

18.
19.
Cho IJ  Kim SH  Kim SG 《Cytokine》2006,35(5-6):284-294
Transforming growth factor-beta1 (TGFbeta1) induces plasminogen activator inhibitor-1 (PAI-1) as a major target protein. PAI-1 is associated with fibrosis, thrombosis, and metabolic disorders. TGFbeta1 induces PAI-1 via phosphorylation and nuclear translocation of Smads. Oltipraz inhibits TGFbeta1 expression and also regenerates cirrhotic liver. Nevertheless, whether oltipraz modulates TGFbeta1-mediated cell signaling is unclear. First, this study examined the effect of oltipraz on PAI-1 expression in cirrhotic rat liver. The cells immunochemically stained with anti-PAI-1 antibody accumulated around and within fibrous nodules in cirrhotic liver, which was notably decreased by oltipraz treatment. Next, whether oltipraz inhibits TGFbeta1-mediated Smads activation or Smad-mediated PAI-1 induction was determined in L929 fibroblasts. Oltipraz inhibited the ability of TGFbeta1 to induce PAI-1, as indicated by repression of TGFbeta1-mediated luciferase induction from the plasmid comprising the human PAI-1 promoter and of TGFbeta1-induced Smad-DNA-binding activity. TGFbeta1 induced nuclear transport of receptor-regulated Smad 2 and Smad 3, of which oltipraz selectively inhibited the transport and phosphorylation of Smad 3, thereby reducing formation of Smad 3/4 complex in the nucleus. In summary, oltipraz inhibits PAI-1 induction via a decrease in the formation of Smad 3/4 complex due to selective interruption of Smad 3 activation, indicating that oltipraz regulates the cellular responses downstream of ligand-activated TGFbeta1 receptor.  相似文献   

20.
A novel signaling pathway for mediation of beta(3)-adrenergic activation of the mitogen-activated protein kinases Erk1/2 (associated with proliferation, differentiation, and apoptosis) has recently been proposed, which implies mediation via constitutively coupled G(i)-proteins and Gbetagamma-subunits, distinct from the classical cAMP pathway of beta-adrenergic stimulation. To verify the significance of this pathway in cells in primary cultures that entopically express beta(3)-adrenoreceptors, we examined the functionality of this pathway in cultured brown adipocytes. Norepinephrine activated Erk1/2 via both beta(3) receptors and alpha(1) receptors but not via alpha(2) receptors. Forskolin induced Erk1/2 activation similarly to beta(3) activation, indicating cAMP-mediation; this induction could be inhibited with H89, implying protein kinase A mediation. The G(i)-pathway was functional in these cells, as pertussis toxin increased agonist-induced cAMP accumulation. However, pertussis toxin was unable to affect adrenergically induced Erk1/2 activation. Also, wortmannin was without effect, implying that Gbetagamma activation of the phosphatidylinositol 3-kinase pathway was not involved. PP1/2, which inhibits Src, abolished both beta(3)- and alpha(1)-induced Erk1/2 activation. Thus, the proposed novel G(i) pathway for beta(3) mediation is not universal, because it is not functional in the untransformed primary cell culture system with entopically expressed beta(3) receptors examined here. Here, the beta(3) signal is mediated classically via cAMP/protein kinase A. beta(3) and alpha(1) signals converge at Src, which thus mediates Erk1/2 activation in both pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号