首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We focused the present analysis on blood-oxygen-level-dependent responses evoked in four architectonic subdivisions of human posterior parietal operculum (PO) during two groups of tasks involving either vibrotactile stimulation or rubbing different surfaces against the right index finger pad. Activity localized in previously defined parietal opercular subdivisions, OP 1–4, was co-registered to a standard cortical surface-based atlas. Four vibrotactile stimulation tasks involved attention to the parameters of paired vibrations: (1) detect rare target trials when vibration frequencies matched; (2) select the presentation order of the vibration with a higher frequency or (3) longer duration; and (4) divide attention between frequency and duration before selecting stimulus order. Surface stimulation tasks involved various discriminations of different surfaces: (1) smooth surfaces required no discrimination; (2) paired horizontal gratings required determination of the direction of roughness change; (3) paired shapes entailed identifying matched and unmatched shapes; (4) raised letters involved letter recognition. The results showed activity in multiple somatosensory subdivisions bilaterally in human PO that are plausibly homologues of somatosensory areas previously described in animals. All tasks activated OP 1, but in vibrotactile tasks foci were more restricted compared to moving surface tasks. Greater spatial extents of activity especially in OP 1 and 4 when surfaces rubbed the finger pad did not support previously reported somatotopy of the second finger representation in “S2”. The varied activity distributions across OP subdivisions may reflect low-level perceptual and/or cognitive processing differences between tasks.  相似文献   

2.
Vibration of one hand reduces blood flow in the exposed hand and in the contralateral hand not exposed to vibration, but the mechanisms involved are not understood. This study investigated whether vibration-induced reductions in finger blood flow are associated with vibrotactile perception thresholds mediated by the Pacinian channel and considered sex differences in both vibration thresholds and vibration-induced changes in digital circulation. With force and vibration applied to the thenar eminence of the right hand, finger blood flow and finger skin temperature were measured in the middle fingers of both hands at 30-s intervals during seven successive 4-min periods: 1) pre-exposure with no force or vibration, 2) pre-exposure with force, 3) vibration 1, 4) rest with force, 5) vibration 2, 6) postexposure with force, and 7) recovery with no force or vibration. A 2-N force was applied during periods 2-6 and 125-Hz vibration at 0.5 and 1.5 ms(-2) root mean square (r.m.s.; unweighted) was applied during periods 3 and 5, respectively. Vibrotactile thresholds were measured at the thenar eminence of right hand using the same force, contact conditions, and vibration frequency. When the vibration magnitude was greater than individual vibration thresholds, changes in finger blood flow were correlated with thresholds (with both 0.5 and 1.5 ms(-2) r.m.s. vibration): subjects with lower thresholds showed greater reductions in finger blood flow. Women had lower vibrotactile thresholds and showed greater vibration-induced reductions in finger blood flow. It is concluded that mechanoreceptors responsible for mediating vibration perception are involved in the vascular response to vibration.  相似文献   

3.
Stepp CE  An Q  Matsuoka Y 《PloS one》2012,7(2):e32743
Most users of prosthetic hands must rely on visual feedback alone, which requires visual attention and cognitive resources. Providing haptic feedback of variables relevant to manipulation, such as contact force, may thus improve the usability of prosthetic hands for tasks of daily living. Vibrotactile stimulation was explored as a feedback modality in ten unimpaired participants across eight sessions in a two-week period. Participants used their right index finger to perform a virtual object manipulation task with both visual and augmentative vibrotactile feedback related to force. Through repeated training, participants were able to learn to use the vibrotactile feedback to significantly improve object manipulation. Removal of vibrotactile feedback in session 8 significantly reduced task performance. These results suggest that vibrotactile feedback paired with training may enhance the manipulation ability of prosthetic hand users without the need for more invasive strategies.  相似文献   

4.
The present functional magnetic resonance imaging (fMRI) study was designed to get a better understanding of the brain regions involved in sustained spatial attention to tactile events and to ascertain to what extent their activation was correlated. We presented continuous 20 Hz vibrotactile stimuli (range of flutter) concurrently to the left and right index fingers of healthy human volunteers. An arrow cue instructed subjects in a trial-by-trial fashion to attend to the left or right index finger and to detect rare target events that were embedded in the vibrotactile stimulation streams. We found blood oxygen level-dependent (BOLD) attentional modulation in primary somatosensory cortex (SI), mainly covering Brodmann area 1, 2, and 3b, as well as in secondary somatosensory cortex (SII), contralateral to the to-be-attended hand. Furthermore, attention to the right (dominant) hand resulted in additional BOLD modulation in left posterior insula. All of the effects were caused by an increased activation when attention was paid to the contralateral hand, except for the effects in left SI and insula. In left SI, the effect was related to a mixture of both a slight increase in activation when attention was paid to the contralateral hand as well as a slight decrease in activation when attention was paid to the ipsilateral hand (i.e., the tactile distraction condition). In contrast, the effect in left posterior insula was exclusively driven by a relative decrease in activation in the tactile distraction condition, which points to an active inhibition when tactile information is irrelevant. Finally, correlation analyses indicate a linear relationship between attention effects in intrahemispheric somatosensory cortices, since attentional modulation in SI and SII were interrelated within one hemisphere but not across hemispheres. All in all, our results provide a basis for future research on sustained attention to continuous vibrotactile stimulation in the range of flutter.  相似文献   

5.
Positron emission tomographic measurements were used to study the distribution of focal changes in cerebral blood flow (CBF) induced by vibrotactile stimulation of the hands and feet in 22 normal humans. Subjects received bolus intravenous saline injections containing ~ 60 mCi 15O-labeled water. Active regions during stimulation were defined relative to resting, nonstimulated states. Scan data from different subjects were averaged after stereotactic standardization. The results identified previously described foci of increased CBF in postrolandic sensory cortex (primary somatosensory cortex) and supplementary motor cortex. New statistical testing procedures provided independent demonstrations of two additional increases in regional CBF, bilaterally, within the sylvian fissure. One site along the parietal operculum corresponded to previous conjectures about a second somatosensory cortical area (SII) in humans. Another site also was found on the insula. No topographic organization was found in either location. The discussion considers these responsive areas to innocuous tactile stimuli in reference to suggestions about a role for SII in the perception of pain.  相似文献   

6.
This work is a preliminary study towards developing an alternative communication channel for conveying shape information to aid in recognition of items when tactile perception is hindered. Tactile data, acquired during object exploration by sensor fitted robot arm, are processed to recognize four basic geometric shapes. Patterns representing each shape, classified from tactile data, are generated using micro-controller-driven vibration motors which vibrotactually stimulate users to convey the particular shape information. These motors are attached on the subject’s arm and their psychological (verbal) responses are recorded to assess the competence of the system to convey shape information to the user in form of vibrotactile stimulations. Object shapes are classified from tactile data with an average accuracy of 95.21 %. Three successive sessions of shape recognition from vibrotactile pattern depicted learning of the stimulus from subjects’ psychological response which increased from 75 to 95 %. This observation substantiates the learning of vibrotactile stimulation in user over the sessions which in turn increase the system efficacy. The tactile sensing module and vibrotactile pattern generating module are integrated to complete the system whose operation is analysed in real-time. Thus, the work demonstrates a successful implementation of the complete schema of artificial tactile sensing system for object-shape recognition through vibrotactile stimulations.  相似文献   

7.

Background/Objective

Transcutaneous electrical stimulation has been proven to modulate nervous system activity, leading to changes in pain perception, via the peripheral sensory system, in a bottom up approach. We tested whether different sensory behavioral tasks induce significant effects in pain processing and whether these changes correlate with cortical plasticity.

Methodology/Principal Findings

This randomized parallel designed experiment included forty healthy right-handed males. Three different somatosensory tasks, including learning tasks with and without visual feedback and simple somatosensory input, were tested on pressure pain threshold and motor cortex excitability using transcranial magnetic stimulation (TMS). Sensory tasks induced hand-specific pain modulation effects. They increased pain thresholds of the left hand (which was the target to the sensory tasks) and decreased them in the right hand. TMS showed that somatosensory input decreased cortical excitability, as indexed by reduced MEP amplitudes and increased SICI. Although somatosensory tasks similarly altered pain thresholds and cortical excitability, there was no significant correlation between these variables and only the visual feedback task showed significant somatosensory learning.

Conclusions/Significance

Lack of correlation between cortical excitability and pain thresholds and lack of differential effects across tasks, but significant changes in pain thresholds suggest that analgesic effects of somatosensory tasks are not primarily associated with motor cortical neural mechanisms, thus, suggesting that subcortical neural circuits and/or spinal cord are involved with the observed effects. Identifying the neural mechanisms of somatosensory stimulation on pain may open novel possibilities for combining different targeted therapies for pain control.  相似文献   

8.

Background

The haptic perception of ground compliance is used for stable regulation of dynamic posture and the control of locomotion in diverse natural environments. Although rarely investigated in relation to walking, vibrotactile sensory channels are known to be active in the discrimination of material properties of objects and surfaces through touch. This study investigated how the perception of ground surface compliance is altered by plantar vibration feedback.

Methodology/Principal Findings

Subjects walked in shoes over a rigid floor plate that provided plantar vibration feedback, and responded indicating how compliant it felt, either in subjective magnitude or via pairwise comparisons. In one experiment, the compliance of the floor plate was also varied. Results showed that perceived compliance of the plate increased monotonically with vibration feedback intensity, and depended to a lesser extent on the temporal or frequency distribution of the feedback. When both plate stiffness (inverse compliance) and vibration amplitude were manipulated, the effect persisted, with both factors contributing to compliance perception. A significant influence of vibration was observed even for amplitudes close to psychophysical detection thresholds.

Conclusions/Significance

These findings reveal that vibrotactile sensory channels are highly salient to the perception of surface compliance, and suggest that correlations between vibrotactile sensory information and motor activity may be of broader significance for the control of human locomotion than has been previously acknowledged.  相似文献   

9.
A method using a DC servo motor is described to produce brisk angular movements at finger interphalangeal joints in humans. Small passive flexions of 2° elicited sizable somatosensory evoked potentials (SEPs) starting with a contralateral positive P34 parietal response thought to reflect activation of a radial equivalent dipole generator in area 2 which receives joint inputs. By contrast, electric stimulation of tactile (non-joint) inputs from the distal phalanx evoked the usual contralateral negative N20 reflecting a tangential equivalent dipole generator in area 3b. Finger joint inputs also evoked a precentral positivity equivalent to the P22 of motor area 4, and a large frontal negativity equivalent to N30. It is suggested that natural stimulation allows human SEP components to the differentiated in conjunction with distinct cortical somatotopic projections.  相似文献   

10.
Meeting report     
Neuronal responses in somatosensory cortical areas 3b and 1- 2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1- 2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al. , Somatosens Mot Res 14 : 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

11.
Neuronal responses in somatosensory cortical areas 3b and 1-2 (S1) were recorded during an attention task involving cue directed selection of one of three simultaneous stimuli: dual sinewave shaped vibrotactile stimuli applied to mirror sites on both hands or a similarly timed auditory tone. The cued stimulus occurred with one of two equally probable patterns: a constant amplitude vibration or the latter with a superimposed brief sinewave amplitude pulse midway during stimulation. Uncued stimuli always contained amplitude pulses. Two monkeys signaled the absence or presence of an amplitude pulse by appropriately moving a foot pedal up or down. Cues initiated trials by marking the location where the monkey had to discriminate the stimulus pattern. Cue location and stimulus pattern varied randomly per trial. Approximately 50% of cells (44/77 in 3b and 39/77 in 1-2) had significantly different firing rates to stimulation cued to the contralateral hand relative to spatially cuing the ipsilateral hand or cross-modally the auditory stimulus. Relatively suppressed firing rates during times prior to the epoch containing amplitude pulses improved signal-to-noise ratios for responses to amplitude pulses. Instances of significant enhanced activity during and after intervals with amplitude pulses were rare and relative to suppressed activity when cues directed attention to the ipsilateral hand or auditory stimulus. The present findings suggest that attention influences even the earliest stage somatosensory cortical processing. Findings were more modest in S1 than those previously seen in S2 (Burton et al., Somatosens Mot Res 14: 237-267, 1997), which supports the concept of multistage attention processes for touch.  相似文献   

12.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250?Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm2 area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm2 excitation area), and (ii) a 6-mm diameter circular probe (28-mm2 area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm2 excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5?Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250?Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   

13.
It has not been established whether the smallest perceptible change in the intensity of vibrotactile stimuli depends on the somatosensory channel mediating the sensation. This study investigated intensity difference thresholds for vibration using contact conditions (different frequencies, magnitudes, contact areas, body locations) selected so that perception would be mediated by more than one psychophysical channel. It was hypothesized that difference thresholds mediated by the non-Pacinian I (NPI) channel and the Pacinian (P) channel would differ. Using two different contactors (1-mm diameter contactor with 1-mm gap to a fixed surround; 10-mm diameter contactor with 2-mm gap to the surround) vibration was applied to the thenar eminence and the volar forearm at two frequencies (10 and 125?Hz). The up-down-transformed-response method with a three-down-one-up rule provided absolute thresholds and also difference thresholds at various levels above the absolute thresholds of 12 subjects (i.e., sensation levels, SLs) selected to activate preferentially either single channels or multiple channels. Median difference thresholds varied from 0.20 (thenar eminence with 125-Hz vibration at 10?dB SL) to 0.58 (thenar eminence with 10-Hz vibration at 20?dB SL). Median difference thresholds tended to be lower for the P channel than the NPI channel. The NPII channel may have reduced difference thresholds with the smaller contactor at 125?Hz. It is concluded that there are large and systematic variations in difference thresholds associated with the frequency, the magnitude, the area of contact, and the location of contact with vibrotactile stimuli that cannot be explained without increased understanding of the perception of supra-threshold vibrotactile stimuli.  相似文献   

14.
The effect of vibrotactile adaptation on the ability to discriminate textured surfaces was examined in three experiments. The surfaces were rectilinear arrays of pyramids produced by etching of silicon wafers. Adaptation to 100-Hz vibration severely hampered discrimination of surfaces with spatial periods below 100 &#119 m (Experiment 1), but had little effect on the discrimination of coarser textures (Experiment 2). To determine which vibrotactile channel—Rapidly Adapting or Pacinian—plays the larger role in mediating the discrimination of fine textures, widely separated adapting frequencies (10 and 250 Hz) were used in Experiment 3. The fact that high- but not low-frequency adaptation interfered with discrimination suggests that the Pacinian system contributes importantly to this ability. Taken as a whole, the results of this study strongly support the duplex theory of tactile texture perception, according to which different mechanisms—spatial and vibrotactile—mediate the perception of coarse and fine textures, respectively.  相似文献   

15.
Projections from the parietal cortex (areas 5 and 7) to subdivisions of the sensori-motor cortical region were investigated in cats using axonal degeneration techniques. Differences between the density of distribution of association fibers proceeding from these areas were found within the parietal and sensorimotor cortex. Area 5 projects mainly to the posterolateral portion of the cruciate sulcus (areas 4fu and 4) and to fields 4y, 4sfu, 6iffu, 6aa, and 6ab to a lesser extent. Area 7 is connected mainly to the medial portion of the lower lip of the cruciate sulcus (areas 6iffu, 6aa, and 6ab). Somewhat fewer fibers proceed to areas 4fu and 4. Fewer projections proceed from the parietal cortex to the somatosensory than to the motor region. Only a few single fibers connect the primary somatosensory region (fields 2, 3a, and 3b) with area 5, while area 7 does not project into this area. Neither field 5 nor 7 projects to the secondary somatosensory cortical area.L. A. Orbeli Institute of Physiology, Academy of Sciences of the Armenian SSR, Erevan. Translated from Neirofiziologiya, Vol. 20, No. 3, pp. 319–326, May–June, 1988.  相似文献   

16.
Vibrotactile thresholds depend on the characteristics of the vibration, the location of contact with the skin, and the geometry of the contact with the skin. This experimental study investigated vibrotactile thresholds (from 8 to 250 Hz) at five locations on the distal phalanx of the finger with two contactors: (i) a 1-mm diameter circular probe (0.78-mm(2) area) with a 1-mm gap to a fixed circular surround (i.e., 7.1-mm(2) excitation area), and (ii) a 6-mm diameter circular probe (28-mm(2) area) with a 2-mm gap to a fixed circular surround (i.e., 79-mm(2) excitation area). With both contactors, especially the smaller contactor at low frequencies (i.e., 8, 16, and 31.5 Hz), thresholds decreased towards the tip of the finger, although there was little variation around the whorl. With low frequencies of vibration, and at all five locations on the finger, similar thresholds were obtained with both contactors, consistent with the NPI channel not changing in sensitivity with a change in the area of stimulation. At high frequencies (i.e., 63, 125, and 250 Hz), thresholds were lower with the larger area of stimulation at all locations, except at the extreme tip of the finger, consistent with spatial summation in the Pacinian channel. It is concluded that with a 6-mm diameter contactor, moderate variations in location around the whorl have little influence on the measured thresholds. With the 1-mm diameter contactor there were greater variations in thresholds and extreme locations, near the nail and the distal interphalangeal joint, may be unsuitable for investigating sensorineural disorders.  相似文献   

17.
Abstract

Purpose: Temporal-structure discrimination is an essential dimension of tactile processing. Exploring object surface by touch generates vibrotactile input with various temporal dynamics, which gives diversity to tactile percepts. Here, we examined whether slow cortical potential shifts (SCPs) (<1?Hz) evoked by long vibrotactile stimuli can reflect active temporal-structure processing.

Materials and methods: Vibrotactile-evoked magnetic brain responses were recorded in 10 right-handed healthy volunteers using a piezoelectric-based stimulator and whole-head magnetoencephalography. A series of vibrotactile train stimuli with various temporal structures were delivered to the right index finger. While all trains consisted of identical number (15) of stimuli delivered within a fixed duration (1500?ms), temporal structures were varied by modulating inter-stimulus intervals (ISIs). Participants judged regularity/irregularity of ISI for each train in the active condition, whereas they ignored the stimuli while performing a visual distraction task in the passive condition. We analysed the spatiotemporal features of SCPs and their behaviour using the minimum norm estimates with the dynamic statistical parametric mapping.

Results: SCPs were localized to contralateral primary somatosensory area (S1), contralateral superior temporal gyrus, and contralateral as well as ipsilateral secondary somatosensory areas (S2). A significant enhancement of SCPs was observed in the ipsilateral S2 (S2i) in the active condition, whereas such effects were absent in the other regions. We also found a significant larger amplitude difference between the regular- and irregular-stimulus evoked S2i responses during the active condition than during the passive condition.

Conclusions: This study suggests that S2 subserves the temporal dimension of vibrotactile processing.  相似文献   

18.
19.
Tactile rivalry demonstrated with an ambiguous apparent-motion quartet   总被引:1,自引:0,他引:1  
When observers view ambiguous visual stimuli, their perception will often alternate between the possible interpretations, a phenomenon termed perceptual rivalry [1]. To induce perceptual rivalry in the tactile domain, we developed a new tactile illusion, based on the visual apparent-motion quartet [2]. Pairs of 200 ms vibrotactile stimuli were applied to the finger pad at intervals separated by 300 ms. The location of each successive stimulus pair alternated between the opposing diagonal corners of the approximately 1 cm(2) stimulation array. This stimulation sequence led all participants to report switches between the perception of motion traveling either up and down or left and right across their fingertip. Adaptation to tactile stimulation biased toward one direction caused subsequent ambiguous stimulation to be experienced in the opposing direction. In contrast, when consecutive trials of ambiguous stimulation were presented, motion was generally perceived in the direction consistent with the motion reported in the previous trial. Voluntary eye movements induced shifts in the tactile perception toward a motion axis aligned along a world-centered coordinate frame. Because the tactile quartet results in switching perceptual states despite unvaried sensory input, it is ideally suited to future studies of the neural processes associated with conscious tactile perception.  相似文献   

20.
This study was designed to identify psychophysical channels responsible for the detection of hand-transmitted vibration. Perception thresholds for vibration (16, 31.5, 63 and 125?Hz sinusoidal for 600?ms) at the distal phalanx of the middle finger and the whole hand were determined with and without simultaneous masking stimuli (1/3 octave bandwidth Gaussian random vibration centered on either 16?Hz or 125?Hz for 3000?ms, varying in magnitude 0 to 30?dB above threshold). At all frequencies from 16 to 125?Hz, absolute thresholds for the hand were significantly lower than those for the finger. Changes in threshold as a function of masker level were used to estimate the thresholds of three psychophysical channels (i.e. P, NP I, and NP II channels). Increased vibrotactile sensitivity of the hand compared to the finger seems to be not entirely due to increased spatial summation via the Pacinian system (P channel); non-Pacinian system (NP I and NP II channels) also contributed to perception. Differing transmission of vibration between the hand and the finger may have also influenced the thresholds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号