首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
In this study, we examined the regulation of NF-kappaB activation and IL-8/CXCL8 expression by thrombin in human lung epithelial cells (EC). Thrombin caused a concentration-dependent increase in IL-8/CXCL8 release in a human lung EC line (A549) and primary normal human bronchial EC. In A549 cells, thrombin, SFLLRN-NH2 (a protease-activated receptor 1 (PAR1) agonist peptide), and GYPGQV-NH2 (a PAR4 agonist peptide), but not TFRGAP-NH2 (a PAR3 agonist peptide), induced an increase in IL-8/CXCL8-luciferase (Luc) activity. The thrombin-induced IL-8/CXCL8 release was attenuated by D-phenylalanyl-L-prolyl-L-arginine chloromethyl ketone (a thrombin inhibitor), U73122 (a phosphoinositide-phospholipase C inhibitor), Ro-32-0432 (a protein kinsase C alpha (PKC alpha) inhibitor), an NF-kappaB inhibitor peptide, and Bay 117082 (an IkappaB phosphorylation inhibitor). Thrombin-induced increase in IL-8/CXCL8-Luc activity was inhibited by the dominant-negative mutant of c-Src and the cells transfected with the kappaB site mutation of the IL-8/CXCL8 construct. Thrombin caused time-dependent increases in phosphorylation of c-Src at tyrosine 416 and c-Src activity. Thrombin-elicited c-Src activity was inhibited by Ro-32-0432. Stimulation of cells with thrombin activated IkappaB kinase alphabeta (IKK alphabeta), IkappaB alpha phosphorylation, IkappaB alpha degradation, p50 and p65 translocation from the cytosol to the nucleus, NF-kappaB-specific DNA-protein complex formation, and kappaB-Luc activity. Pretreatment of A549 cells with Ro-32-4032 and the dominant-negative mutant of c-Src DN inhibited thrombin-induced IKK alphabeta activity, kappaB-Luc activity, and NF-kappaB-specific DNA-protein complex formation. Further studies revealed that thrombin induced PKC alpha, c-Src, and IKK alphabeta complex formation. These results show for the first time that thrombin, acting through PAR1 and PAR4, activates the phosphoinositide-phospholipase C/PKC alpha/c-Src/IKK alphabeta signaling pathway to induce NF-kappaB activation, which in turn induces IL-8/CXCL8 expression and release in human lung EC.  相似文献   

4.
The present study evaluated the necessity of store-operated Ca(2+) entry in mediating thrombin-induced 20-kDa myosin light chain (MLC(20)) phosphorylation and increased permeability in bovine pulmonary artery endothelial cells (BPAECs). Thrombin (7 U/ml) and thapsigargin (1 microM) activated Ca(2+) entry through a common pathway in confluent BPAECs. Similar increases in MLC(20) phosphorylation were observed 5 min after thrombin and thapsigargin challenge, although thrombin produced a sustained increase in MLC(20) phosphorylation that was not observed in response to thapsigargin. Neither agonist increased MLC(20) phosphorylation when Ca(2+) influx was inhibited. Thrombin and thapsigargin induced inter-endothelial cell gap formation and increased FITC-dextran (molecular radii 23 A) transfer across confluent BPAEC monolayers. Activation of store-operated Ca(2+) entry was required for thapsigargin and thrombin receptor-activating peptide to increase permeability, demonstrating that activation of store-operated Ca(2+) entry is coupled with MLC(20) phosphorylation and is associated with intercellular gap formation and increased barrier transport of macromolecules. Unlike thrombin receptor-activating peptide, thrombin increased permeability without activation of store-operated Ca(2+) entry, suggesting that it partly disrupts the endothelial barrier through a proteolytic mechanism independent of Ca(2+) signaling.  相似文献   

5.
Thrombin is a mitogen and chemoattractant for vascular smooth muscle cells (SMCs) and may contribute to vascular lesion formation. We have previously shown that human SMCs, when stimulated with thrombin, release basic fibroblast growth factor (bFGF), causing phosphorylation of FGF receptor-1 (FGFR-1). Treatment with bFGF-neutralizing antibodies (anti-bFGF) or heparin inhibits thrombin-induced DNA synthesis. We concluded that thrombin may stimulate entry into the cell cycle via bFGF release and FGFR-1 activation. In the present study, we demonstrate a requirement for not only FGFR-1 but also syndecan-4, a transmembrane heparan-sulfate proteoglycan. Inhibition of syndecan-4 expression using small interfering RNA (siRNA) resulted in reduced DNA synthesis by human SMCs after stimulation with thrombin (10 nmol/liter). Anti-bFGF antibody, which inhibits DNA synthesis in control cells, had no inhibitory effect when syndecan-4 expression was reduced by siRNA. Thrombin- or bFGF-induced SMC migration, determined in Boyden chamber assays, was reduced in cells treated with syndecan-4 or FGFR-1 siRNA or by anti-bFGF. Thrombin induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 in a biphasic pattern. Although thrombin-mediated ERK phosphorylation at 5 min was not affected by syndecan-4 or FGFR-1 siRNA, ERK phosphorylation at later time points was reduced. We conclude that thrombin-released bFGF binds to syndecan-4 and FGFR-1, which is required for thrombin-induced mitogenesis and migration.  相似文献   

6.
The thrombin/proteinase-activated receptors (PARs) have been shown to regulate smooth muscle cell proliferation, migration, and vascular maturation. Thrombin up-regulates expression of several proteins including cyclooxygenase (COX)-2 in vascular smooth muscle cells (VSMCs) and contributes to vascular diseases. However, the mechanisms underlying thrombin-regulated COX-2 expression in VSMCs remain unclear. Western blotting, RT-PCR, and EIA kit analyses showed that thrombin induced the expression of COX-2 mRNA and protein and PGE(2) release in a time-dependent manner, which was attenuated by inhibitors of PKC (GF109203X and rottlerin), c-Src (PP1), EGF receptor (EGFR; AG1478) and MEK1/2 (U0126), or transfection with dominant negative mutants of PKC-delta, c-Src or extracellular regulated kinase (ERK) and ERK1 short hairpin RNA interference (shRNA). These results suggest that transactivation of EGFR participates in COX-2 expression induced by thrombin in VSMCs. Accordingly, thrombin stimulated phosphorylation of ERK1/2 which was attenuated by GF109203X, rottlerin, PP1, GM6001, CRM197, AG1478, or U0126, respectively. Furthermore, this up-regulation of COX-2 mRNA and protein was blocked by selective inhibitors of AP-1 and NF-kappaB, curcumin and helenalin, respectively. Moreover, thrombin-stimulated activation of NF-kappaB, AP-1, and COX-2 promoter activity was blocked by the inhibitors of c-Src, PKC, EGFR, MEK1/2, AP-1 and NF-kappaB, suggesting that thrombin induces COX-2 promoter activity mediated through PKC(delta)/c-Src-dependent EGFR transactivation, MEK-ERK1/2, AP-1, and NF-kappaB. These results demonstrate that in VSMCs, activation of ERK1/2, AP-1 and NF-kappaB pathways was essential for thrombin-induced COX-2 gene expression. Understanding the regulation of COX-2 expression and PGE(2) release by thrombin/PARs system on VSMCs may provide potential therapeutic targets of vascular inflammatory disorders including arteriosclerosis.  相似文献   

7.
8.
Thrombin signalling through PAR (protease-activated receptor)-1 is involved in cellular processes, such as proliferation, differentiation and cell survival. Following traumatic injury to the eye, thrombin signalling may participate in disorders, such as PVR (proliferative vitreoretinopathy), a human eye disease characterized by the uncontrolled proliferation, transdifferentiation and migration of otherwise quiescent RPE (retinal pigment epithelium) cells. PARs activate the Ras/Raf/MEK/ERK MAPK pathway (where ERK is extracellular-signal-regulated kinase, MAPK is mitogen-activated protein kinase and MEK is MAPK/ERK kinase) through the activation of G(alpha) and G(betagamma) heterotrimeric G-proteins, and the downstream stimulation of the PLC (phospholipase C)-beta/PKC (protein kinase C) and PI3K (phosphoinositide 3-kinase) signalling axis. In the present study, we examined the molecular signalling involved in thrombin-induced RPE cell proliferation, using rat RPE cells in culture as a model system for PVR pathogenesis. Our results showed that thrombin activation of PAR-1 induces RPE cell proliferation through Ras-independent activation of the Raf/MEK/ERK1/2 MAPK signalling cascade. Pharmacological analysis revealed that the activation of 'conventional' PKC isoforms is essential for proliferation, although thrombin-induced phosphorylation of ERK1/2 requires the activation of atypical PKCzeta by PI3K. Consistently, thrombin-induced ERK1/2 activation and RPE cell proliferation were prevented completely by PI3K or PKCzeta inhibition. These results suggest that thrombin induces RPE cell proliferation by joint activation of PLC-dependent and atypical PKC isoforms and the Ras-independent downstream stimulation of the Raf/MEK/ERK1/2 MAPK cascade. The present study is the first report demonstrating directly thrombin-induced ERK phosphorylation in the RPE, and the involvement of atypical PKCzeta in this process.  相似文献   

9.
10.
Thrombin induced a shape change of UT-7/TPO, a thrombopoietin-dependent human megakaryocytic cell line. Expression of myosin light chain (MLC) kinase was negligible in UT-7/TPO cells, while Rho-kinase and protein kinase C (PKC) were detected. Thrombin stimulated both monophosphorylation at Ser19 and diphosphorylation at Thr18 and Ser19 of 20 kDa MLC, as well as phosphorylation of myosin-binding subunit (MBS) and PKC-potentiated inhibitory phosphoprotein of myosin phosphatase (CPI). The Rho-kinase inhibitor Y-27632 [(+)-(R)-trans-(1-aminoethyl)-N-(4-phynidyl) cyclohexane-carboxamide dihydrochloride, monohydrade] strongly inhibited thrombin-induced shape change, MBS phosphorylation, and mono- and diphosphorylation of MLC. The PKC inhibitor GF109203X (2-[1-(3-dimethylaminopropyl)-1H-indol-3-yl]-3-(1H-indol-3-yl)-maleimide) partially inhibited thrombin-induced shape change and MLC diphosphorylation even at the concentration that completely inhibited thrombin-induced CPI phosphorylation. In shape-changed UT-7/TPO cells induced by thrombin, phosphorylated MBS and CPI were colocalized with diphosphorylated MLC at pseudopods, whereas monophosphorylated MLC was mainly located in the cortical region. The accumulation of diphosphorylated MLC was blocked by preincubation with either Y-27632 or GF109203X. These results suggest that Rho-kinase is responsible for the induction of MLC phosphorylation in thrombin-induced shape change of UT-7/TPO cells and that myosin phosphatase inactivation through Rho-kinase-MBS and PKC-CPI pathways could be necessary for enhancement of MLC diphosphorylation which promote the pseudopod formation.  相似文献   

11.
In response to oxidative stress, the pathogenesis of a number of cardiovascular events and several genes are stimulated by extracellular signal-regulated kinases (ERK1/2). Biphasic (early, 10 min; and delayed, 120 min) ERK1/2 activation by H(2)O(2), a reactive oxygen species, was observed in cultured neonatal rat cardiomyocytes. We investigated the hypothesis that the delayed activation of ERK1/2 depends on a factor secreted by oxidative stress (FSO). The delayed activation was inhibited by calphostin C, a protein kinase C inhibitor. Conditioned medium (CM) obtained from cells stimulated with H(2)O(2) induced rapid and monophasic ERK1/2 activation, which was not inhibited by calphostin C. In contrast, calphostin C-pretreated CM did not activate ERK1/2. Macrophage migration inhibitory factor (MIF) was one of the candidate FSOs activating ERK1/2. The existence of MIF in CM, the recombinant MIF-stimulated ERK1/2 rapid activation, and anti-MIF neutralizing antibody-induced inhibition of the delayed activation implied that MIF could be the FSO. Pretreatment of cardiomyocytes with a mitogen-activated protein kinase/ERK kinase (MEK) inhibitor did not suppress the MIF secretion, although it prevented the ERK1/2 activation by H(2)O(2). These results indicate that MIF is secreted from cardiomyocytes as a result of oxidative stress and activates ERK1/2 through a MEK1/2-dependent mechanism, although the secretion is not regulated by ERK1/2 but by protein kinase C.  相似文献   

12.
Endothelial cell (EC) contraction results in intercellular gap formation and loss of the selective vascular barrier to circulating macromolecules. We tested the hypothesis that phosphorylation of regulatory myosin light chains (MLC) by Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) is critical to EC barrier dysfunction elicited by thrombin. Thrombin stimulated a rapid (<15 sec) increase in [Ca2+]i which preceded maximal MLC phosphorylation (60 sec) with a 6 to 8-fold increase above constitutive levels of phosphorylated MLC. Dramatic cellular shape changes indicative of contraction and gap formation were observed at 5 min with maximal increases in albumin permeability occurring by 10 min. Neither the Ca2+ ionophore, A23187, nor phorbol myristate acetate (PMA), a direct activator of protein kinase C (PKC), alone or in combination, produced MLC phosphorylation. The combination was synergistic, however, in stimulating EC contraction/gap formation and barrier dysfunction (3 to 4-fold increase). Down-regulation or inhibition of PKC activity attenuated thrombin-induced MLC phosphorylation (~40% inhibition) and both thrombin- and PMA-induced albumin clearance (~50% inhibition). Agents which augmented [cAMP]i partially blocked thrombin-induced MLC phosphorylation (~50%) and completely inhibited both thrombin- and PMA-induced EC permeability (100% inhibition). Furthermore, cAMP produced significant reduction in the basal levels of constitutive MLC phosphorylation. Finally, MLCK inhibition (with either ML-7 or KT 5926) or Ca2+/calmodulin antagonism (with either trifluoperazine or W-7) attenuated thrombin-induced MLC phosphorylation and barrier dysfunction. These results suggest a model wherein EC contractile events, gap formation and barrier dysfunction occur via MLCK-dependent and independent mechanisms and are significantly modulated by both PKC and cAMP-dependent protein kinase A activities. © 1995 Wiley-Liss, Inc.  相似文献   

13.
14.
15.
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory cytokine that was recently identified as a non‐cognate ligand of the CXC‐family chemokine receptors 2 and 4 (CXCR2 and CXCR4). MIF is expressed and secreted from endothelial cells (ECs) following atherogenic stimulation, exhibits chemokine‐like properties and promotes the recruitment of leucocytes to atherogenic endothelium. CXCR4 expressed on endothelial progenitor cells (EPCs) and EC‐derived CXCL12, the cognate ligand of CXCR4, have been demonstrated to be critical when EPCs are recruited to ischemic tissues. Here we studied whether hypoxic stimulation triggers MIF secretion from ECs and whether the MIF/CXCR4 axis contributes to EPC recruitment. Exposure of human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells (HAoECs) to 1% hypoxia led to the specific release of substantial amounts of MIF. Hypoxia‐induced MIF release followed a biphasic behaviour. MIF secretion in the first phase peaked at 60 min. and was inhibited by glyburide, indicating that this MIF pool was secreted by a non‐classical mechanism and originated from pre‐formed MIF stores. Early hypoxia‐triggered MIF secretion was not inhibited by cycloheximide and echinomycin, inhibitors of general and hypoxia‐inducible factor (HIF)‐1α‐induced protein synthesis, respectively. A second phase of MIF secretion peaked around 8 hrs and was likely due to HIF‐1α‐induced de novo synthesis of MIF. To functionally investigate the role of hypoxia‐inducible secreted MIF on the recruitment of EPCs, we subjected human AcLDL+ KDR+ CD31+ EPCs to a chemotactic MIF gradient. MIF potently promoted EPC chemotaxis in a dose‐dependent bell‐shaped manner (peak: 10 ng/ml MIF). Importantly, EPC migration was induced by supernatants of hypoxia‐conditioned HUVECs, an effect that was completely abrogated by anti‐MIF‐ or anti‐CXCR4‐antibodies. Thus, hypoxia‐induced MIF secretion from ECs might play an important role in the recruitment and migration of EPCs to hypoxic tissues such as after ischemia‐induced myocardial damage.  相似文献   

16.
17.
Extracellular signal-regulated kinase (ERK) activation pathways have been well characterized in a number of cell types but very few data are available for platelets. The thrombin-induced signaling pathway leading to ERK2 activation in platelets is largely uncharacterized. In this study, we investigated the kinases involved in thrombin-induced ERK2 activation in conditions of maximal ERK2 activation. We found that thrombin-induced mitogen-activated protein kinase/ERK kinase (MEK)1/2 activation was necessary for ERK2 phosphorylation. We obtained strong evidence that conventional protein kinase Cs (PKCs) and calcium are involved in thrombin-induced ERK2 activation. First, ERK2 and MEK1/2 phosphorylation was totally inhibited by low concentrations (1 microM) of RO318425, a specific inhibitor of conventional PKCs. Second, Ca(2+), from either intracellular pools or the extracellular medium, was necessary for ERK2 activation and conventional PKC activation, excluding the involvement of a new class of calcium-insensitive PKCs. Third, LY294002 and wortmannin had no significant effect on ERK2 activation, even at concentrations that inhibit phosphatidylinositol (PI)3-kinase (5 microM to 25 microM and 50 nM, respectively). This suggests that PI3-kinase was not necessary for ERK2 activation and therefore, that PI3-kinase-dependent atypical PKCs were not involved. Surprisingly, in contrast to proliferative cells, we found that the serine/threonine kinases Raf-1 and B-Raf were not an intermediate kinase between conventional PKCs and MEK1/2. After immunoprecipitation of Raf-1 and B-Raf, the basal glutathione S-transferase-MEK1 phosphorylation observed in resting platelets was not upregulated by thrombin and was still observed in the absence of anti-Raf-1 or anti-B-Raf antibodies. In these conditions, the in vitro cascade kinase assay did not detect any MEK activity. Thus in platelets, thrombin-induced ERK2 activation is activated by conventional PKCs independently of Raf-1 and B-Raf activation.  相似文献   

18.
Thrombin acts on the endothelium by activating protease-activated receptors (PARs). The endothelial thrombin-PAR system becomes deregulated during pathological conditions resulting in loss of barrier function and a pro-inflammatory and pro-angiogenic endothelial phenotype. We reported recently that the ion transporter Na+/Ca2+ exchanger (NCX) operating in the Ca2+-influx (reverse) mode promoted ERK1/2 activation and angiogenesis in vascular endothelial growth factor-stimulated primary human vascular endothelial cells. Here, we investigated whether Ca2+ influx through NCX was involved in ERK1/2 activation, angiogenesis, and endothelial barrier dysfunction in response to thrombin. Reverse-mode NCX inhibitors and RNAi-mediated NCX1 knockdown attenuated ERK1/2 phosphorylation in response to thrombin or an agonist of PAR-1, the main endothelial thrombin receptor. Conversely, promoting reverse-mode NCX by suppressing Na+-K+-ATPase activity enhanced ERK1/2 activation. Reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced primary human vascular endothelial cell angiogenesis, quantified as proliferation and tubular differentiation. Reverse-mode NCX inhibitors or NCX1 knockdown preserved barrier integrity upon thrombin stimulation in vitro. Moreover, the reverse-mode NCX inhibitor SEA0400 suppressed Evans'' blue albumin extravasation to the lung and kidneys and attenuated edema formation and ERK1/2 activation in the lungs of mice challenged with a peptide activator of PAR-1. Mechanistically, thrombin-induced ERK1/2 activation required NADPH oxidase 2-mediated reactive oxygen species (ROS) production, and reverse-mode NCX inhibitors and NCX1 siRNA suppressed thrombin-induced ROS production. We propose that reverse-mode NCX is a novel mechanism contributing to thrombin-induced angiogenesis and hyperpermeability by mediating ERK1/2 activation in a ROS-dependent manner. Targeting reverse-mode NCX could be beneficial in pathological conditions involving unregulated thrombin signaling.  相似文献   

19.
Our previous studies demonstrated that the proinflammatory peptide, macrophage migration inhibitory factor (MIF), functions as an autocrine mediator of both growth factor- and integrin-dependent sustained ERK MAPK activation, cyclin D1 expression, and cell cycle progression. We now report that MIF promotes the activation of the canonical ERK MAPK cascade and cyclin D1 expression by stimulating the activity of the Rho GTPase and downstream signaling to stress fiber formation. Rho-dependent stress fiber accumulation promotes the sustained activation of ERK and subsequent cyclin D1 expression during G(1)-S phase cell cycle progression. This pathway is reported to be dependent upon myosin light chain (MLC) kinase, integrin clustering, and subsequent activation of focal adhesion kinase, leading to sustained MAPK activity. Our studies reveal that recombinant MIF induces cyclin D1 expression in a Rho-, Rho kinase-, MLC kinase-, and ERK-dependent manner in asynchronous NIH 3T3 fibroblasts. Moreover, MIF(-/-) murine embryonic fibroblasts display aberrant cyclin D1 expression that is linked to defective Rho activity, stress fiber formation, and MLC phosphorylation. These results suggest that MIF is an integral autocrine mediator of Rho GTPase-dependent signaling events and provide mechanistic insight into how MIF regulates proliferative, migratory, and oncogenic processes.  相似文献   

20.
Tumor necrosis factor alpha (TNFalpha) interferes with insulin signaling in adipose tissue and may promote insulin resistance. Insulin binding to the insulin receptor (IR) triggers its autophosphorylation, resulting in phosphorylation of Shc and the downstream activation of p42/p44 extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase (ERK1/2), which mediates insulin-induced proliferation in vascular smooth muscle cells (VSMC). Since insulin resistance is a risk factor for vascular disease, we examined the effects of TNFalpha on mitogenic signaling by insulin. In rat aortic VSMC, insulin induced rapid phosphorylation of the IR and Shc and caused a 5.3-fold increase in activated, phosphorylated ERK1/2 at 10 min. Insulin induced a biphasic ERK1/2 activation with a transient peak at 10 min and a sustained late phase after 2 h. Preincubation (30-120 min) with TNFalpha had no effect on insulin-induced IR phosphorylation. In contrast, TNFalpha transiently suppressed insulin-induced ERK1/2 activation. Insulin-induced phosphorylation of Shc was inhibited by TNFalpha in a similar pattern. Since mitogenic signaling by insulin in VSMC requires ERK1/2 activation, we examined the effect of TNFalpha on insulin-induced proliferation. Insulin alone induced a 3.4-fold increase in DNA synthesis, which TNFalpha inhibited by 48%. TNFalpha alone was not mitogenic. Inhibition of ERK1/2 activation with PD98059 also inhibited insulin-stimulated DNA synthesis by 57%. TNFalpha did not inhibit platelet-derived growth factor-induced ERK1/2 activation or DNA synthesis in VSMC. Thus, TNFalpha selectively interferes with insulin-induced mitogenic signaling by inhibiting the phosphorylation of Shc and the downstream activation of ERK1/2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号