首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Attractin (ATRN) and Attractin-like 1 (ATRNL1) are highly similar type I transmembrane proteins. Atrn null mutant mice have a pleiotropic phenotype including dark fur, juvenile-onset spongiform neurodegeneration, hypomyelination, tremor, and reduced body weight and adiposity, implicating ATRN in numerous biological processes. Bioinformatic analysis indicated that Atrn and Atrnl1 arose from a common ancestral gene early in vertebrate evolution. To investigate the genetics of the ATRN system and explore potential redundancy between Atrn and Atrnl1, we generated and characterized Atrnl1 loss- and gain-of-function mutations in mice. Atrnl1 mutant mice were grossly normal with no alterations of pigmentation, central nervous system pathology or body weight. Atrn null mutant mice carrying a beta-actin promoter-driven Atrnl1 transgene had normal, agouti-banded hairs and significantly delayed onset of spongiform neurodegeneration, indicating that over-expression of ATRNL1 compensates for loss of ATRN. Thus, the two genes are redundant from the perspective of gain-of-function but not loss-of-function mutations.  相似文献   

2.
Molecular and phenotypic analysis of Attractin mutant mice   总被引:5,自引:0,他引:5  
Gunn TM  Inui T  Kitada K  Ito S  Wakamatsu K  He L  Bouley DM  Serikawa T  Barsh GS 《Genetics》2001,158(4):1683-1695
Mutations of the mouse Attractin (Atrn; formerly mahogany) gene were originally recognized because they suppress Agouti pigment type switching. More recently, effects independent of Agouti have been recognized: mice homozygous for the Atrn(mg-3J) allele are resistant to diet-induced obesity and also develop abnormal myelination and vacuolation in the central nervous system. To better understand the pathophysiology and relationship of these pleiotropic effects, we further characterized the molecular abnormalities responsible for two additional Atrn alleles, Atrn(mg) and Atrn(mg-L), and examined in parallel the phenotypes of homozygous and compound heterozygous animals. We find that the three alleles have similar effects on pigmentation and neurodegeneration, with a relative severity of Atrn(mg-3J) > Atrn(mg) > Atrn(mg-L), which also corresponds to the effects of the three alleles on levels of normal Atrn mRNA. Animals homozygous for Atrn(mg-3J) or Atrn(mg), but not Atrn(mg-L), show reduced body weight, reduced adiposity, and increased locomotor activity, all in the presence of normal food intake. These results confirm that the mechanism responsible for the neuropathological alteration is a loss--rather than gain--of function, indicate that abnormal body weight in Atrn mutant mice is caused by a central process leading to increased energy expenditure, and demonstrate that pigmentation is more sensitive to levels of Atrn mRNA than are nonpigmentary phenotypes.  相似文献   

3.
Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (A(y)) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A(y) are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti-melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell-cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti-melanocortin system to control coat color.  相似文献   

4.
Rat myelin vacuolation mutation at the Attractin locus (Atrn(mv)) is a genomic deletion including the whole exon 1 of the Atrn gene. The precise size and location of the deleted region has not yet been identified because of poor information on genomic organization of the rat Atrn gene. Here, we identified the breakpoints of the Atrn(mv) mutation, using a draft sequence of the rat genome. In the Atrn(mv/mv) rat, a 6,914-bp genomic region was deleted. Primers flanked 5'- and 3'- breakpoints amplified the Atrn(mv) allele but not the wild-type allele. This primer set enables us to distinguish Atrn(mv/+) heterozygous rats from Atrn(+/+) rats, and will contribute to the efficient production of Atrn(mv/mv) rats.  相似文献   

5.
6.
A new autosomal recessive coat color mutant in the Mongolian gerbil (Meriones unguiculatus) is described: recessive yellow. On the dorsal side the mutant has a rich yellow to ginger color. Ventrally it shows the typical creamy white belly of a wild-type Mongolian gerbil. The dorsal yellow hairs have short black tips, and a light olive green base. A clear demarcation line between dorsal and ventral color is present. Crosses between recessive yellow animals and multiple homozygous recessive tester animals (a/a; cchm/cchm; g/g; p/p) resulted only in animals of an agouti (wild-type) phenotype, showing that the new allele is not allelic with any of the known coat color mutations in the Mongolian gerbil. Molecular studies showed that the new mutant is caused by a missence mutation at the extension (E) locus. On a non-agouti background (a/a; e/e) mutant animals look like a dark wild-type agouti. In contrast to wild-type agouti it shows yellow pigmentation and dark ticking at the ventral side, resulting in the absence of a demarcation line. Since black pigment is present in both the agouti and non-agouti variant (A/A; e/e and a/a; e/e), we conclude that recessive yellow in the Mongolian gerbil is non-epistatic to agouti. Additionally we describe a second mutation at the same locus leading to a similar phenotype, however without black pigment and diminishing yellow pigment during life. Fertility and viability of both new mutants are within normal range. The extension (E) gene is known to encode the melanocortin 1 receptor (MC1R). Interestingly, this is the only gene that is known to account for substantial variation in skin and hair color in humans. Many different mutations are known of which some are associated with higher skin cancer incidence.  相似文献   

7.
Agouti: from mouse to man, from skin to fat   总被引:25,自引:0,他引:25  
The agouti protein regulates pigmentation in the mouse hair follicle producing a black hair with a subapical yellow band. Its effect on pigmentation is achieved by antagonizing the binding of alpha-melanocyte stimulating hormone (alpha-MSH) to melanocortin 1 receptor (Mc1r), switching melanin synthesis from eumelanin (black/brown) to phaeomelanin (red/yellow). Dominant mutations in the non-coding region of mouse agouti cause yellow coat colour and ectopic expression also results in obesity, type 11 diabetes, increased somatic growth and tumourigenesis. At least some of these pleiotropic effects can be explained by antagonism of other members of the melanocortin receptor family by agouti protein. The yellow coat colour is the result of agouti chronically antagonizing the binding of alpha-MSH to Mc1r and the obese phenotype results from agouti protein antagonizing the binding of alpha-MSH to Mc3r and/or Mc4r. Despite the existence of a highly homologous agouti protein in humans, agouti signal protein (ASIP), its role has yet to be defined. However it is known that human ASIP is expressed at highest levels in adipose tissue where it may antagonize one of the melanocortin receptors. The conserved nature of the agouti protein combined with the diverse phenotypic effects of agouti mutations in mouse and the different expression patterns of human and mouse agouti, suggest ASIP may play a role in human energy homeostasis and possibly human pigmentation.  相似文献   

8.
We identified a spontaneous pigmentation mutant in the wild mouse species Mus caroli. Mutant mice exhibit a golden coat color on the agouti background, easily distinguishable from the darker wild type. The golden phenotype segregates as an autosomal recessive, showing no linkage to the sex-linked enzyme marker glucose-6-phosphate dehydrogenase. Obligate heterozygotes are phenotypically indistinguishable from the wild type. At birth, homozygotes have poorly pigmented eyes, which darken with age to become indistinguishable from the wild type. Pigmentation of the ears, tail, and footpads is reduced in intensity. Preliminary studies indicate that the phenotype may be due to an alteration in the shape and pigmentation of the eumelanosomes. The viability and fertility of both heterozygotes and homozygotes, as measured by litter size, sex ratio, or frequency of survival to weaning, appear to be normal for M. caroli. Spectrophotometric analysis of hair samples from the mouse variant at the putative golden locus (gdn) suggests that this mutant is not homologous to at least six independent pigment mutants previously identified in M. musculus.  相似文献   

9.
The Helicobacter pylori-produced cytotoxin VacA induces intracellular vacuolation. The formed vacuole is assumed to be a hybrid of late endosome and lysosome. To elucidate the molecular mechanism of VacA-induced vacuolation, we examined the participation of syntaxin 7 in the human gastric epithelial cell line AGS. Immunocytochemistry revealed that endogenous syntaxin 7 was localized to vacuoles induced by VacA. Northern and Western blotting demonstrated that VacA intoxication increased syntaxin 7 mRNA and protein expression, respectively, in a time-dependent manner. Transient transfection of dominant-negative mutant syntaxin 7, which lacks a carboxyl-terminal transmembrane domain, inhibited VacA-induced vacuolation. In contrast, transient transfection of wild-type syntaxin 7, dominant-negative mutant syntaxin 1a, or dominant-negative mutant syntaxin 4 did not alter VacA-induced vacuolation. Furthermore, under VacA treatment, neutral red dye uptake, a parameter of VacA-induced vacuolation, was inhibited in cells stably transfected with mutant syntaxin 7 but not in cells stably transfected with wild-type syntaxin 7, mutant syntaxin 1a, or mutant syntaxin 4. Sequential immunocytochemical observation confirmed that expression of mutant syntaxin 7 did not affect VacA attachment to or internalization into AGS cells. We suggest that syntaxin 7 is involved in the intracellular vacuolation induced by VacA.  相似文献   

10.
11.
12.
The Spontaneously Epileptic Rat (SER), a double-mutant for tremor and zitter mutations, shows spontaneous occurrences of absence-like and tonic seizures. Several lines of evidence suggest that the combined effect of Aspa and Atrn mutations is the most likely cause of the epileptic phenotype of the SER. To address this issue, we produced a new double-mutant mouse line carrying both homozygous Aspa-knockout and Atrn(mg-3J) mutant alleles. The Aspa/Atrn double-mutant mice exhibited absence-like and tonic seizures that were characterized by the appearance of 5-7 Hz spike-wave-like complexes and low voltage fast waves on EEGs. These results demonstrate directly that the simultaneous loss of the Aspa and Atrn gene functions causes epileptic seizures in the mouse and suggest that both Aspa and Atrn deficiencies might be responsible for epileptic seizures in the SER.  相似文献   

13.
The epsilon-toxin of Clostridium perfringens forms a heptamer in the membranes of Madin-Darby canine kidney cells, leading to cell death. Here, we report that it caused the vacuolation of Madin-Darby canine kidney cells. The toxin induced vacuolation in a dose-dependent and time-dependent manner. The monomer of the toxin formed oligomers on lipid rafts in membranes of the cells. Methyl-β-cyclodextrin and poly(ethylene glycol) 4000 inhibited the vacuolation. Epsilon-toxin was internalized into the cells. Confocal microscopy revealed that the internalized toxin was transported from early endosomes (early endosome antigen 1 staining) to late endosomes and lysosomes (lysosomal-associated membrane protein 2 staining) and then distributed to the membranes of vacuoles. Furthermore, the vacuolation was inhibited by bafilomycin A1, a V-type ATPase inhibitor, and colchicine and nocodazole, microtubule-depolymerizing agents. The early endosomal marker green fluorescent protein-Rab5 and early endosome antigen 1 did not localize to vacuolar membranes. In contrast, the vacuolar membranes were specifically stained by the late endosomal and lysosomal marker green fluorescent protein-Rab7 and lysosomal-associated membrane protein 2. The vacuoles in the toxin-treated cells were stained with LysoTracker Red DND-99, a marker for late endosomes and lysosomes. A dominant negative mutant of Rab7 prevented the vacuolization, whereas a mutant form of Rab5 was less effective. These results demonstrate, for the first time, that: (a) oligomers of epsilon-toxin formed in lipid rafts are endocytosed; and (b) the vacuoles originating from late endosomes and lysosomes are formed by an oligomer of epsilon-toxin.  相似文献   

14.
The genetics of coat colors in the mongolian gerbil (Meriones unguiculatus)   总被引:2,自引:0,他引:2  
Genetic studies demonstrated three loci controlling coat colors in the Mongolian gerbil. F1 hybrids of white gerbils with red eyes and agouti gerbils with wild coat color had the agouti coat color. The segregating ratio of agouti and white in the F2 generation was 3:1. In the backcross (BC) generation (white x F1), the ratio of the agouti and white coat colors was 1:1. Next, inheritance of the agouti coat color was investigated. Matings between agouti and non-agouti (black) gerbils produced only agouti gerbils. In the F2 generation, the ratio of agouti to non-agouti (black) was 3:1. There was no distortion in the sex ratios within each coat color in the F1, F2 and BC generations. This indicated that the white coat color of gerbils is governed by an autosomal recessive gene which should be named the c allele of the c (albino) locus controlling pigmentation, and the agouti coat color is controlled by an autosomal dominant gene which might be named the A allele of the A (agouti) locus controlling pigmentation patterns in the hair. The occurrence of the black gerbil demonstrated clearly the existence of the b (brown) locus, and it clearly indicated that the coat colors of gerbils can basically be explained by a, b, and c loci as in mice and rats.  相似文献   

15.
J. F. Leslie  K. K. Klein 《Genetics》1996,144(2):557-567
The murine agouti locus regulates a switch in pigment synthesis between eumelanin (black/brown pigment) and phaeomelanin (yellow/red pigment) by hair bulb melanocytes. We recently described a spontaneous mutation, hypervariable yellow (A(hvy)) and demonstrated that A(hvy) is responsible for the largest range of phenotypes yet identified at the agouti locus, producing mice that are obese with yellow coats to mice that are of normal weight with black coats. Here, we show that agouti expression is altered both temporally and spatially in A(hvy) mutants. Agouti expression levels are positively correlated with the degree of yellow pigmentation in individual A(hvy) mice, consistent with results from other dominant yellow agouti mutations. Sequencing of 5' RACE and genomic PCR products revealed that A(hvy) resulted from the integration of an intracisternal A particle (IAP) in an antisense orientation within the 5' untranslated agouti exon 1C. This retrovirus-like element is responsible for deregulating agouti expression in A(hvy) mice; agouti expression is correlated with the methylation state of CpG residues in the IAP long terminal repeat as well as in host genomic DNA. In addition, the data suggest that the variable phenotype of A(hvy) offspring is influenced in part by the phenotype of their A(hvy) female parent.  相似文献   

16.
Mutations at the attractin (Atrn) locus in mice result in altered pigmentation on an agouti background, higher basal metabolic rate and juvenile-onset hypomyelination leading to neurodegeneration, while studies on human immune cells indicate a chemotaxis regulatory function. The underlying biochemical defect remains elusive. In this report we identify a role for attractin in plasma membrane maintenance. In attractin's absence there is a decline in plasma membrane glycolipid-enriched rafts from normal levels at 8 weeks to a complete absence by 24 weeks. The structural integrity of lipid rafts depends upon cholesterol and sphingomyelin, and can be identified by partitioning within of ganglioside GM(1). Despite a significant fall in cellular cholesterol with maturity, and a lesser fall in both membrane and total cellular GM(1), these parameters lag behind raft loss, and are normal when hypomyelination/neurodegeneration has already begun thus supporting consequence rather than cause. These findings can be recapitulated in Atrn-deficient cell lines propagated in vitro. Further, signal transduction through complex membrane receptor assemblies is not grossly disturbed despite the complete absence of lipid rafts. We find these results compatible with a role for attractin in plasma membrane maintenance and consistent with the proposal that the juvenile-onset hypomyelination and neurodegeneration represent a defect in attractin-mediated raft-dependent myelin biogenesis.  相似文献   

17.
The mouse pink-eyed dilution (p) locus is known to control eumelanin synthesis, melanosome morphology, and tyrosinase activity in melanocytes. However, it has not been fully determined whether the mutant allele, p affects pheomelanin synthesis. Effects of the p allele on eumelanin and phemelanin synthesis were investigated by chemical analysis of dorsal hairs of 5-week-old mice obtained from the F(2) generations (black, pink-eyed black, recessive yellow, pink-eyed recessive yellow, agouti, and pink-eyed agouti) between C57BL/10JHir (B10)-congenic pink-eyed black mice (B10-p/p) and recessive yellow (B10-Mc1r(e)/Mc1r(e)) or agouti (B10-A/A) mice. The eumelanin content was dramatically (>20-fold) decreased in pink-eyed black and pink-eyed agouti mice, whereas the pheomelanin content did not decrease in pink-eyed black, pink-eyed recessive yellow, or pink-eyed agouti mice compared to the corresponding P/- mice. These results suggest that the pink-eyed dilution allele greatly inhibits eumelanin synthesis, but not pheomelanin synthesis.  相似文献   

18.
Sertoli cells provide the microenvironment necessary for germ cell development and spermatogenesis; disruption of Sertoli cell morphology or function can lead to germ cell aplasia, which is observed in testicular dysgenesis syndrome. Mutation of the adenomatous polyposis coli (APC) gene has been associated with various human cancers, including testicular cancer, but its involvement in nonmalignant testicular pathologies has not been reported. We have developed a mouse model (APC(cko)) that expresses a truncated form of APC in Sertoli cells. Despite normal embryonic and early postnatal testicular development in APC(cko) mice, premature germ cell loss and Sertoli cell-only seminiferous tubules were observed in mutant testes without affecting Sertoli cell quiescence, apoptosis, or differentiation, which were confirmed by the absence of both proliferating cell nuclear antigen, DNA strand breaks, and anti-Müllerian hormone, respectively. We show that mutant Sertoli cells lose their apical extensions, which would normally enclose germ cells during various stages of spermatogenesis, and were unable to maintain the blood-testis barrier because of disrupted expression of junctional proteins. We also observed an up-regulation of Snail and Slug, markers suggestive of epithelial-mesenchymal transition in the Sertoli cells, but tumorigenesis was not observed. No comparable phenotype was observed with Sertoli cell-specific loss-of-function mutations in β-catenin, leading us to speculate that truncation of APC in Sertoli cells results in progressive degeneration of the seminiferous tubules by a mechanism that disrupts the integrity of Sertoli cell junctions independently of APC-regulated β-catenin activities and leads to development of a Sertoli cell-only phenotype.  相似文献   

19.
Testis structure in the sys (symplastic spermatids) mouse.   总被引:1,自引:0,他引:1  
Testes of mice with the recessive insertional mutation termed symplastic spermatids (sys) were assessed for structural and developmental abnormalities. Homozygous (sys/sys) males are infertile due to an abnormality in spermatogenesis leading to azoospermia. The major interruption to spermatogenesis occurs when the intercellular bridges that connect round spermatids open prematurely resulting in the formation of symplasts. Symplasts contain as many as 285 nuclei. Development of spermatids within symplasts is arrested just before, or just after, elongation of the spermatid nuclei begins. Symplasts degenerate and appear to be phagocytized by Sertoli cells and by intratubular macrophages. In addition, degeneration of young round spermatids and also spermatocytes occasionally is observed. Spermatocyte degeneration is substantial in some tubules and leaves them depleted of cells other than basal compartment cells. Sertoli cell abnormalities are prominent and include intracellular vacuolation, absence of apical processes surrounding round spermatids, degeneration, and occasional sloughing. Although reduplication and infolding of the basal lamina is also seen, this does not appear as a common phenomenon. The sys phenotype is first manifest in animals between 19 days and 22 days of age. Considerable variability is seen in testis histology of prepubertal animals; some display degenerating pachytene spermatocytes and virtually no Sertoli cell vacuoles, while others display vacuoles without apparent elevated numbers of degenerating spermatocytes. Although this study has not revealed the primary cell type(s) affected by the insertional inactivation event, it is possible that the abnormalities in the Sertoli cells are responsible for germ cell degeneration as it is generally recognized that deficits in the Sertoli cell can result in major germ cell abnormalities but not vice versa.  相似文献   

20.
ABSTRACT

Pleiotropic effects of melanocortin signaling were first described nearly 100 years ago when mice carrying the lethal yellow (Ay) allele of the Agouti coat color gene were recognized to develop increased growth and adiposity. Work from our laboratory and others over the last several years has demonstrated that the non-pigmentary effects of A?y are caused by ectopic expression of Agouti protein, a paracrine signaling molecule whose normal function is to inhibit signaling through the melanocortin 1 receptor (Mc1r), but which can mimic the effects of Agouti-related protein (Agrp), a homologous neuropeptide produced in the medial portion of the arcuate nucleus that acts as a potent antagonist of the Mc3r and Mc4r. Recently we have used the genetics of pigmentation as an in vivo screening system to analyze other mutations in the Agouti–melanocortin pathway, leading to the identification of Attractin (Atrn), a widely expressed type I transmembrane protein that serves as an accessory receptor for Agouti protein. Surprisingly, homologs of Atrn are found in fruitflies and nematodes, even though Agouti and/or Agouti-related protein are found only in vertebrates. Insight into this apparent paradox now comes from studies of different Atrn alleles, in which we find hyperactivity, abnormal myelination, and widespread CNS vacuolation. We suggest that the neurodegenerative phenotype reflects the ancestral function of Atrn to facilitate and/or maintain cell–cell interactions in the nervous system. Expression in neurectodermal cells during vertebrate evolution may have allowed Atrn to be recruited by the Agouti–melanocortin system to control coat color.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号