首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aims of this study were: 1) to characterize the solubility and water absorption of different composite resins used as dental restorative materials; 2) to analyse their surface morphology using S.E.M. The resins tested were a mixture of glycidyl methacrylate (Bis-GMA) and TEGMA filled with silane-coated particles of inorganic fillers, and Bis-GMA and urethane resin. Cylindrical samples of composite resin were polymerized and stored in distilled water and weighed after different times. SEM analysis demonstrated voids and porous in several samples. The present study shows that dental restorative composite loose a small percentage of their components during storage time and that the type of resin, the nature of fillers and the methods of polymerization greatly influence water uptake and solubility of dental composite resin materials. These findings could explain the loss of anatomic form and the occlusal degradation of dental composites in "in vivo" conditions.  相似文献   

2.
Phytagel and nano-clay particles were used to improve the mechanical and thermal properties and moisture resistance of soy protein concentrate (SPC) resin successfully. SPC and Phytagel were mixed together to form a cross-linked structure. The Phytagel-modified SPC resin (PH-SPC) showed improved tensile strength, modulus, moisture resistance, and thermal stability as compared to the unmodified SPC resin. The incorporation of 40% Phytagel and 20% glycerol led to an overall 340% increase in the tensile strength (over 50 MPa) and approximately 360% increase in the Young's modulus (over 710 MPa) of the SPC resin. Nano-clay was uniformly dispersed into PH-SPC resin to further improve the properties. The PH-SPC (40% Phytagel) resin modified with 7% clay nanoparticles (CPH-SPC) had a modulus of 2.1 GPa and a strength of 72.5 MPa. The dynamic mechanical properties such as storage modulus together with the glass transition temperature of the modified resins were also increased by the addition of clay nanoparticles. The moisture resistance of the CPH-SPC resin was higher as compared to both SPC and PH-SPC resins. The thermal stability of the CPH-SPC resin was seen to be higher as compared to the unmodified SPC.  相似文献   

3.
The possibility to cultivate Lactococcus lactis in aqueous polymer two-phase system has been investigated. The phase system was made up of poly(ethylene imine) and (hydroxyethyl) cellulose. Long lag phases were needed for the microorganism to adapt to the polymer rich media. Cells favoured the (hydroxyethyl)cellulose rich top phase or they accumulated at the interface, while lactic acid showed affinity for the poly(ethylene imine) rich phase.Abbreviations PEG poly(ethylene glycol) - PEI poly(ethylene imine) - HEC (hydroxyethyl)cellulose  相似文献   

4.
Monocrystalline starch nanoparticles were successfully grafted with poly(tetrahydrofuran), poly(caprolactone), and poly(ethylene glycol) monobutyl ether chains using toluene 2,4-diisocyanate as a linking agent. Surface grafting was confirmed using Fourier transform infrared and X-ray photoelectron spectroscopies, differential scanning calorimetry, elemental analysis, and contact angle measurements. Transmission electron microscopy observations of modified starch nanocrystals showed either the individualization of nanoparticles or the formation of a film, depending on the polymer used. It was shown that grafting efficiency decreased with the length of the polymeric chains, as expected. The resulting modified nanoparticles can find applications in the field of co-continuous nanocomposite materials.  相似文献   

5.
To develop materials with improved controllability and specificity, we have investigated composite hydrogels with temperature-sensitive properties using photo cross-linking. Specifically, our novel composite materials are composed of nanoparticles made of poly(N-isopropylacrylamide) (PNIPAAm), temperature-sensitive hydrogels, and a photo cross-linker, poly(ethylene glycol) diacrylate (PEGDA). PNIPAAm particles were synthesized by emulsion polymerization and by varying concentration of four main factors: monomers (N-isopropylacrylamide), cross-linkers (N,N'-methylenebisacrylamide), surfactants (sodium dodecyl sulfate, SDS), and initiators (potassium persulfate). We found that the surfactant, SDS, was the most important factor affecting the particle size using the factorial design analysis. Additionally, both nano- and micro-PNIPAAm particles had excellent loading efficiency (>80% of the incubated bovine serum albumin (BSA)), and their release kinetics expressed an initial burst effect followed by a sustained release over time. Furthermore, BSA-loaded PNIPAAm nanoparticles were used to form three-dimensional gel networks by means of a photocuring process using a photo cross-linker, PEGDA, and a photoinitiator, Irgacure-2959 (I-2959). Results from scanning electron microscopy and in vitro BSA release studies from these hydrogels demonstrated that PNIPAAm nanoparticles were embedded inside the PEG polymeric matrix and the composite material was able to release BSA in response to changes in temperature. These PNIPAAm nanoparticle hydrogel networks may have advantages in applications of controlled drug delivery systems because of their temperature sensitivity and their ability of in situ photopolymerization to localize at the specific region in the body.  相似文献   

6.
Displacement chromatography was demonstrated to perform separations efficiently under mass-overloaded conditions, offering advantages such as increased product recovery and purity, superior resolving power, and concentration and purification in a single processing step. The use of water-soluble polymers for protein displacement in dye-ligand chromatography was initiated in our laboratory. The polymers for displacement were selected using differences spectroscopy to monitor their interactions with a dye-ligand in solution. Non-charged polymers such as poly(N-vinyl pyrrolidone) and poly(N-vinyl caprolactam) efficiently displaced lactate dehydrogenase from porcine muscle from a Blue Sepahrose column. The latter polymer, being thermosensitive, could be easily removed from the eluate and recovered by precipitation at 45 degrees C and low-speed centrifugation. The positively charged polymer poly(ethylene imine) proved to be an even more efficient displacer. The dye-ligand column could be regenerated after application of displacer either by washing with a solution of the soluble ligand Cibacron Blue (in the case of non-charged polymers) or by washing with highly alkaline solutions containing polyanions (in the case of poly(ethylene imine)) The latter formed a soluble complex with poly(ethylene imine) and stripped the column from the polymer.  相似文献   

7.
The use of biodegradable derivatives of poly(organo phosphazenes) for the preparation of nanoparticles and their surface modification with the novel poly(ethylene oxide) derivative of poly(organo phosphazene) has been assessed using a range of in vitro characterization methods. The nanoparticles were produced by the precipitation solvent evaporation method from the derivative co-substituted with phenylalanine and glycine ethyl ester side groups. A reduction in particle size to less than 200 nm was achieved by an increase in pH of the preparation medium. The formation (and colloidal stability) of these nanoparticles seems to be controlled by two opposite effects: attractive hydrophobic interactions between phenylalanine ester groups and electrostatic repulsions arising from the carboxyl groups formed due to (partial) hydrolysis of the ester bond(s) at the high pH of the preparation medium. The poly[(glycine ethyl ester)phosphazene] derivative containing 5000-Da poly(ethylene oxide) as 5% of the side groups was used for the surface modification of nanoparticles. Adsorbed onto the particles, the polymer produced a thick coating layer of approximately 35 nm. The coated nanoparticles exhibited reduced surface negative potential and improved colloidal stability toward electrolyte-induced flocculation, relative to the uncoated system. However, the steric stabilization provided was less effective than that of a Poloxamine 908 coating. This difference in effectiveness of the steric stabilization might indicate that, although both the stabilizing polymers possess a 5000-Da poly(ethylene oxide) moiety, there is a difference in the arrangements of these poly(ethylene oxide) chains at the particle surface. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Injectable multiphasic polymer/ceramic composites are attractive as bioresorbable scaffolds for bone regeneration because they can be cross-linked in situ and are osteoconductive. The injectability of the composite depends on the nanoparticle content and the energetic interactions at the polymer/particle interface. The objective of this research was to determine experimentally the rheological properties of the PLEOF/apatite composite as an injectable biomaterial and to compare the viscoelastic response with the predictions of a linear elastic dumbbell model. A degradable in situ cross-linkable terpolymer based on low molecular weight poly(L-lactide) and poly(ethylene oxide) linked by unsaturated fumarate groups is synthesized. The poly(L-lactide-co-ethylene oxide-co-fumarate) (PLEOF) terpolymer interacts with the surface of the apatite nanoparticles by polar interactions and hydrogen bonding. A kinetic model is developed that takes into account the adsorption/desorption of polymer chains to/from the nanoparticle surface. Rheological properties of the aqueous dispersion of PLEOF terpolymer reinforced with nanosized hydroxyapatite (HA) particles are investigated using mechanical rheometry. To this end, we performed a series of rheological experiments on un-cross-linked PLEOF reinforced with different volume fractions of HA nanoparticles. The results demonstrate that the observed nonlinear viscoelasticity at higher shear rates is controlled by the energetic interactions between the polymer chains and dispersed particle aggregates and by the rate of the adsorption/desorption of the chains to/from the surface of the nanoparticles.  相似文献   

9.
Highly efficient recyclable antibacterial magnetite nanoparticles consisting of a magnetic Fe(3)O(4) core with an antibacterial poly(quaternary ammonium) (PQA) coating were prepared in an efficient four-step process. The synthetic pathway included: (1) preparation of Fe(3)O(4) nanoparticles via coprecipitation of Fe(2+)/Fe(3+) in the presence of an alkaline solution; (2) attachment of an ATRP initiating functionality to the surface of the nanoparticles; (3) surface-initiated atom transfer radical polymerization (ATRP) of 2-(dimethylamino)ethyl methacrylate (DMAEMA); and (4) transformation of PDMAEMA brushes to PQA via quaternization with ethyl bromide. The success of the surface functionalization was confirmed by FT-IR, thermal gravimetric analysis (TGA), elemental analysis, and transmission electron microscopy (TEM). The PQA-modified magnetite nanoparticles were dispersed in water and exhibited a response to an external magnetic field, making the nanoparticles easy to remove from water after antibacterial tests. The PQA-modified magnetite nanoparticles retained 100% biocidal efficiency against E. coli (10(5) to 10(6)E. coli/mg nanoparticles) during eight exposure/collect/recycle procedures without washing with any solvents or water.  相似文献   

10.
Amphiphilic monodisperse compounds (series B-I and B-II) and poly(ethylene imine)s (PEI-I, PEI-II, and PEI-III) with different microstructures were prepared from primary amines or poly(ethylene imine) with functional carbonates bearing cationic, hydrophobic, or amphiphilic groups. Their inhibition potential against proliferation of E. coli , S. aureus , and B. subtilis was investigated and their hemolytic activities were determined. The influence of the microstructures, the alkyl chain length and the distribution of cationic and hydrophobic groups, on their antimicrobial efficacy was studied. Amphiphilic compounds with long alkyl chains (C14-C18) directly linked to the cationic groups (series B-I) are more effective against both Gram-positive and Gram-negative bacteria than amphiphilic compounds in which the hydrophobic and cationic groups (series B-II) are connected by a spacer. Poly(ethylene imine)s with amphiphilic grafts (B-I) called PEI-II are more effective than amphiphilic PEIs with the same alkyl chain but with randomly linked cationic and hydrophobic graft called PEI-I or with the amphiphilic grafts (B-II) called PEI-III. The influence of the inoculum size on the MIC value was investigated exemplarily with compounds of series B-I against S. aureus .  相似文献   

11.
Traditionally, solid-phase synthesis has relied on polystyrene-based resins for the synthesis of all kinds of peptides. However, due to their high hydrophobicity, these resins have certain limitations, particularly in the synthesis of complex peptides, and in such cases, poly(ethylene glycol) (PEG)-based resins are often found to give superior results. Another powerful strategy for expediting the assembly of complex peptides is to employ pseudoproline dipeptides. These derivatives disrupt the interactions among chains that are usually the cause of poor coupling yields in aggregated sequences. Here we report on an efficient stepwise solid-phase synthesis of RANTES (1-68) by combining the advantages of the totally PEG-based ChemMatrix resin and pseudoproline dipeptides.  相似文献   

12.
Molecularly imprinted nanoparticles were encapsulated into polymer nanofibers with a simple electrospinning method. The composite nanofibers form non-woven mats that can be used as affinity membrane to greatly simplify solid phase extraction of drug residues in analytical samples. Upward 100% of propranolol-imprinted nanoparticles can be easily encapsulated into poly(ethylene terephthalate) nanofibers, ensuring the composite materials to have a high specific binding capacity. As confirmed by radioligand binding analysis, the specific binding sites in the composite materials remain easily accessible and are chiral-selective. Using the new composite nanofiber mats as solid phase extraction materials, trace amount of propranolol (1 ng mL(-1)) in tap water can be easily detected after a simple sample preparation. As validated in this study, there is no problem of template leakage from the composite nanofibers. Without the solid phase extraction, the existence of propranolol residues in water cannot be confirmed with even tandem HPLC-MS/MS analysis.  相似文献   

13.
We filtered dog semen through various resin columns to obtain a quick, simple system for improving semen quality. Fresh ejaculates were filtered through columns with either glasswool or a chemically-inert polypropylene network disc. The columns were filled with Sephadex G-15 (nonionic resin), Sephadex A-50 (anionic-exchange resin), Sephadex C-50 (cationic-exchange resin) or a combination of Sephadex A-50 and C-50. Filtration through glasswool improved semen quality, with a significant (P<0.001) increase in the percentage of viability and decrease in the percentage of altered acrosomes (P<0.001) and total abnormalities (P<0.001). Total motility was not modified, but curvilinear velocity or linearity of the movement were improved using the glasswool bed. The effect of the glasswool was so intense that it masked the effects of the filtration resins. Substitution of glasswool by polypropylene discs resulted in an unmasking of the effects of the resins, although the polypropylene exerted slight effects on semen. Elution of the spermatozoa through Sephadex G-15 or Sephadex C-50 resulted in a decrease of altered acrosomes. However, filtration through Sephadex A-50 increased viability and decreased the percentage of altered acrosomes and total abnormalities. Combined filtration through Sephadex A-50 and C-50 yielded the combined results observed with the resins individually. Ultrastructural imaging of the interaction between spermatozoa and the beds and resins showed that the cells were loosely deposited upon the glasswool fibers and the Sephadex G-15 particles, whereas close interaction was observed between spermatozoa and Sephadex A-50 and C-50 particles. The whole of the sperm cell bound to C-50 particles, whereas spermatozoa were specifically bonded to A-50 particles in the apical region of the head and in segments of the tail, which were periodically distributed. The data suggest that filtration through glasswool or an anionic resin-exchange can significantly improve dog semen quality.  相似文献   

14.
A novel composite material has been fabricated for bone tissue engineering scaffolds utilizing the biodegradable polymer poly(propylene fumarate)/poly(propylene fumarate)-diacrylate (PPF/PPF-DA) and surface-modified carboxylate alumoxane nanoparticles. Various surface-modified nanoparticles were added to the polymer including a surfactant alumoxane, an activated alumoxane, a mixed alumoxane containing both activated and surfactant groups, and a hybrid alumoxane containing both groups within the same substituent. These nanocomposites, as well as polymer resin and unmodified boehmite composites, underwent flexural and compressive mechanical testing and were examined using electron microscopy. Hybrid alumoxane nanoparticles dispersed in PPF/PPF-DA exhibited over a 3-fold increase in flexural modulus at 1 wt % loading compared to polymer resin alone. No significant loss of flexural or compressive strength was observed with increased loading of hybrid alumoxane nanoparticles. These dramatic improvements in flexural properties may be attributed to the fine dispersion of nanoparticles into the polymer and increased covalent interaction between polymer chains and surface modifications of nanoparticles.  相似文献   

15.
Antisense oligonucleotides (AOs) have been shown to induce dystrophin expression in muscles cells of patients with Duchenne Muscular Dystrophy (DMD) and in the mdx mouse, the murine model of DMD. However, ineffective delivery of AOs limits their therapeutic potential. Copolymers of cationic poly(ethylene imine) (PEI) and non-ionic poly(ethylene glycol) (PEG) form stable nanoparticles when complexed with AOs, but the positive surface charge on the resultant PEG-PEI-AO nanoparticles limits their biodistribution. We adapted a modified double emulsion procedure for encapsulating PEG-PEI-AO polyplexes into degradable polylactide-co-glycolic acid (PLGA) nanospheres. Formulation parameters were varied including PLGA molecular weight, ester end-capping, and sonication energy/volume. Our results showed successful encapsulation of PEG-PEI-AO within PLGA nanospheres with average diameters ranging from 215 to 240 nm. Encapsulation efficiency ranged from 60 to 100%, and zeta potential measurements confirmed shielding of the PEG-PEI-AO cationic charge. Kinetic measurements of 17 kDa PLGA showed a rapid burst release of about 20% of the PEG-PEI-AO, followed by sustained release of up to 65% over three weeks. To evaluate functionality, PEG-PEI-AO polyplexes were loaded into PLGA nanospheres using an AO that is known to induce dystrophin expression in dystrophic mdx mice. Intramuscular injections of this compound into mdx mice resulted in over 300 dystrophin-positive muscle fibers distributed throughout the muscle cross-sections, approximately 3.4 times greater than for injections of AO alone. We conclude that PLGA nanospheres are effective compounds for the sustained release of PEG-PEI-AO polyplexes in skeletal muscle and concomitant expression of dystrophin, and may have translational potential in treating DMD.  相似文献   

16.
《Process Biochemistry》1999,34(4):367-373
Arthrobacter sp. was entrapped inside a macro- and microporous matrix build up with poly(hydroxiethyl methacrylate) (Poly-HEMA) cross-linked with trimethylolpropanetrime-thacrylate (TMPTM). The resin-biomass complex (RBC) was prepared with different characteristics according to a factorial experiment. Factors investigated were: crosslinker (TMPTM) molar fraction, biomass concentration in the solid and particles granulometry. The nanomorphology and molecular accessibility of resins with different cross-linker concentrations have been studied with ISEC (Inverse Steric Exclusion Chromatography). Results indicated an essentially monodispersed structure of resins, with lower crosslinker weight fractions and a bidispersed structure of the resin with the highest cross-linking degree. Copper biosorption performances were examined with an analysis of variance (ANOVA), considering the specific uptake at equilibrium and the delay time as responses of the process. The analysis evidenced: (i) a negative effect (significance 97%) of biomass concentration on the maximum specific uptake; (ii) a positive effect (98%) of biomass concentration on the delay time; (iii) a positive effect (99.9%) of granulometry on the delay time; and (iv) a negative effect (99.1%) of the interaction between cross-linker and biomass concentration on the delay time. A maximum copper specific uptake of about 0.6 mg Cu g−1 RBC (7 mg Cu g−1 biomass d.w.) has been observed, in the case of a RBC with the following characteristics: 2% w cross-linker concentration, 8% w biomass concentration, 425–750 μm granulometry.  相似文献   

17.
Solid-phase peptide synthesis using nanoparticulate amino acids in water.   总被引:1,自引:0,他引:1  
Solid-phase peptide synthesis has many advantages compared with solution peptide synthesis. However, this procedure requires a large amount of organic solvents. Since safe organic solvent waste disposal is an important environmental problem, a technology based on coupling reaction of suspended nanoparticle reactants in water was studied. Fmoc-amino acids are used widely, but most of them show low solubility in water. We prepared well-dispersible Fmoc-amino acid nanoparticles in water by pulverization using a planetary ball mill in the presence of poly(ethylene glycol). Leu-enkephalin amide was prepared successfully using the nanoparticulate Fmoc-amino acid on a poly(ethylene glycol)-grafted Rink amide resin in water.  相似文献   

18.
This paper reports on the synthesis, characterisation, and efficiency of a new intravenous conjugate of amphotericin B (AMB). Twelve molecules of AMB were attached to block copolymer poly(ethylene glycol)-b-poly(L-lysine) via pH-sensitive imine linkages. In vitro drug release studies demonstrated the conjugate (M(w)=26,700) to be relatively stable in human plasma and in phosphate buffer (pH 7.4, 37 degrees C). Controlled release of AMB was observed in acidic phosphate buffer (pH 5.5, 37 degrees C) with the half-life of 2 min. The LD(50) value determined in vivo (mouse) is 45 mg/kg.  相似文献   

19.
Primary amine groups of branched poly(ethylene imine) (PEI) were functionalized with quaternary ammonium groups, alkyl chains of different length, allylic and benzylic groups in a one-step reaction, using a carbonate coupler. The structure of the obtained amphiphilic polymers was determined by means of 1H and 13C NMR spectroscopy. Depending on their hydrophilic/hydrophobic balance, the obtained polymers can be used as water-soluble disinfectants and for antimicrobial coating materials. The bactericidal properties of some of the amphiphilic polymers against Gram-negative and Gram-positive bacteria were investigated. Minimal inhibitory concentrations (log 4 reduction of bacterial growth) against Escherichia coli and Bacillus subtilis were determined in the range of 0.3-0.4 mg/mL and 0.03-0.04 mg/mL for water-soluble polymers. Glass slides coated with functionalized PEIs showed a reduction of colony forming units of at least 95%, at best 99.9%, against E. coli and B. subtilis.  相似文献   

20.
Ever since Movin in (1950) and McKee in (1951) introduced the use of acrylic cement for fixation of hip prosthesis components a number of investigators have proposed various hip prosthesis designs using this cement fixation concept (Neale, 1967). This study was undertaken to support the hypothesis that certain dental materials could provide a more satisfactory bone-prosthesis bond than that presently possible with acrylic bone cement. Two restorative resins were found to have superior strength and resistance to thermal degradation when compared to acrylic bone cement. Tests of acrylic cement combined with apatite fillers suggest that restorative resin-anorganic bone composites would exhibit improved strength and toxicity properties and would also promote improved bonding due to resorption of the surface anorganic bone particles with subsequent bone infiltration and anchorage. Relatively high degradation of acrylic bone cement in accelerated aging tests suggests caution in using this material for implantation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号