首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuroglycan C (NGC), a brain-specific transmembrane proteoglycan, is thought to bear not only chondroitin sulfate but also N- and O-linked oligosaccharides on its core protein. In this study, we isolated and purified NGC from rat brains at various developmental stages by immunoaffinity column chromatography or by immunoprecipitation, and examined the structural characters of its carbohydrate moiety. The chondroitin sulfate disaccharide composition of NGC at postnatal day 10 was significantly different from those of two secreted chondroitin sulfate proteoglycans, neurocan and phosphacan, purified from the brain at the same developmental stage; higher levels of 4-sulfate unit and E unit, a disulfated disaccharide unit, and a lower level of 6-sulfate unit. The levels of both 6-sulfate and E units decreased with a compensatory increase of 4-sulfate unit with postnatal development of the brain. Lectin-blot analysis of the NGC core glycoprotein prepared by chondroitinase digestion confirmed that NGC actually bore both N- and O-linked carbohydrates, and also revealed that lectin-species reactive with NGC did not always recognize other brain-specific proteoglycans, neurocan and phosphacan, and vice versa, even though they were isolated from the brain at the same stage. The reactivity of NGC with lectins and with the HNK-1 antibody markedly changed as the brain matured. These findings indicate that the structure of the carbohydrate moiety of NGC is developmentally regulated, and differs from those of neurocan and phosphacan. The developmentally-regulated structural change of the carbohydrates on NGC may be partly implicated in the modulation of neuronal cell recognition during brain development.  相似文献   

2.
Abstract: We have studied developmental changes in the structure and concentration of the hyaluronic acid-binding proteoglycan, neurocan, and of phosphacan, another major chondroitin sulfate proteoglycan of nervous tissue that represents the extracellular domain of a receptor-type protein tyrosine phosphatase. A new monoclonal antibody (designated 1F6), which recognizes an epitope in the N-terminal portion of neurocan, has been used for the isolation of proteolytic processing fragments that occur together with link protein in a complex with hyaluronic acid. Both link protein and two of the neurocan fragments were identified by amino acid sequencing. The N-terminal fragments of neurocan are also recognized by monoclonal antibodies (5C4, 8A4, and 3B1) to epitopes in the G1 and G2 domains of aggrecan and/or in the hyaluronic acid-binding domain of link protein. The presence in brain of these N-terminal fragments is consistent with the developmentally regulated appearance of the C-terminal half of neurocan, which we described previously. We have also used a slot-blot radioimmunoassay to determine the concentrations of neurocan and phosphacan in developing brain. The levels of both proteoglycans increased rapidly during early brain development, but whereas neurocan reached a peak at approximately postnatal day 4 and then declined to below embryonic levels in adult brain, the concentration of phosphacan remained essentially unchanged after postnatal day 12. Keratan sulfate on phosphacan-KS (a glycoform that contains both chondroitin sulfate and keratan sulfate chains) was not detectable until just before birth, and its peak concentration (at 3 weeks postnatal) was reached ~1 week later than that of the phosphacan core protein. Immunocytochemical studies using monoclonal antibodies to keratan sulfate (3H1 and 5D4) together with specific glycosidases (endo-β-galactosidase, keratanase, and keratanase II) also showed that with the exception of some very localized areas, keratan sulfate is generally not present in the embryonic rat CNS.  相似文献   

3.
4.
More than 60% of brain chondroitin sulfate proteoglycans were extracted from 10-day-old rat brains by homogenization in ice-cold phosphate-buffered saline containing protease inhibitors. Although the soluble proteoglycan preparation was a mixture of chondroitin sulfate proteoglycans with a different hydrodynamic size as well as a different molecular density, each subfraction of the proteoglycans contained chondroitin sulfate side chains with virtually identical molecular weight (approximately 15,000) and chondroitin sulfate disaccharide composition (high content of 4-sulfate unit). Digestion of the purified proteoglycan preparation with protease-free chondroitinase ABC produced five core proteins with Mr = 250,000 (designated as 250K protein), 220,000 (220K), 150,000 (150K), 130,000 (130K), and 93,000 (93K). All these core proteins were obtained from chondroitin sulfate proteoglycan preparations extracted from various regions of the brain, but their composition varied among different brain regions. Analysis for amino acid composition of these core proteins and two-dimensional mapping of their proteolytic peptides revealed that three major core proteins (250K, 220K, and 150K proteins) were structurally different. These observations indicate that at least three distinct types of chondroitin sulfate proteoglycan occur in the developing rat brain.  相似文献   

5.
A panel of monoclonal antibodies prepared to the chondroitin sulfate proteoglycans of rat brain was used for their immunocytochemical localization and isolation of individual proteoglycan species by immunoaffinity chromatography. One of these proteoglycans (designated 1D1) consists of a major component with an average molecular size of 300 kDa in 7-day brain, containing a 245-kDa core glycoprotein and an average of three 22-kDa chondroitin sulfate chains. A 1D1 proteoglycan of approximately 180 kDa with a 150-kDa core glycoprotein is also present at 7 days, and by 2-3 weeks postnatal this becomes the major species, containing a single 32-kDa chondroitin 4-sulfate chain. The concentration of 1D1 decreases during development, from 20% of the total chondroitin sulfate proteoglycan protein (0.1 mg/g brain) at 7 days postnatal to 6% in adult brain. A 45-kDa protein which is recognized by the 8A4 monoclonal antibody to rat chondrosarcoma link protein copurifies with the 1D1 proteoglycan, which aggregates to a significant extent with hyaluronic acid. A chondroitin/keratan sulfate proteoglycan (designated 3H1) with a size of approximately 500 kDa was isolated from rat brain using monoclonal antibodies to the keratan sulfate chains. The core glycoprotein obtained after treatment of the 3H1 proteoglycan with chondroitinase ABC and endo-beta-galactosidase decreases in size from approximately 360 kDa at 7 days to approximately 280 kDa in adult brain. In 7-day brain, the proteoglycan contains three to five 25-kDa chondroitin 4-sulfate chains and three to six 8.4-kDa keratan sulfate chains, whereas the adult brain proteoglycan contains two to four chondroitin 4-sulfate chains and eight to nine keratan sulfate chains, with an average size of 10 kDa. The concentration of 3H1 increases during development from 3% of the total soluble proteoglycan protein at 7 days to 11% in adult brain, and there is a developmental decrease in the branching and/or sulfation of the keratan sulfate chains. A third monoclonal antibody (3F8) was used to isolate a approximately 500-kDa chondroitin sulfate proteoglycan comprising a 400-kDa core glycoprotein and an average of four 28-kDa chondroitin sulfate chains. In the 1D1 and 3F8 proteoglycans of 7-day brain, 20 and 33%, respectively, of the chondroitin sulfate is 6-sulfated, whereas chondroitin 4-sulfate accounts for greater than 96% of the glycosaminoglycan chains in the adult brain proteoglycans.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Aggrecan family proteoglycans, phosphacan/RPTPzeta/beta, and neuroglycan C (NGC) are the major classes of chondroitin sulfate proteoglycan in the developing mammalian brain. A multidomain is a common structural feature of these proteoglycans which can interact with various molecules including growth factors, cell adhesion molecules, and extracellular matrix molecules. Individual proteoglycans are distributed in the developing brain in a distinct temporal and spatial pattern, suggesting that they are involved in distinct phases of the brain development through multiple molecular interactions. This review mainly summarizes recent studies on the involvement of these three classes of proteoglycan in cell-cell and cell-substratum interactions during the brain development. Their expressions and proposed functional roles in injured brains are also mentioned. In addition, this review briefly covers potential functions of other neural chondroitin sulfate proteoglycans such as decorin, testican, NG2 proteoglycan, and amyloid precursor protein (APP) in developing and injured brains.  相似文献   

7.
Monoclonal antibodies specific for unsulfated, 4-sulfated, and 6-sulfated disaccharide "stubs" that remain attached to the core protein after chondroitinase ABC digestion of chondroitin/dermatan sulfate proteoglycans have been used to study the localization of chondroitin and the two isomeric chondroitin sulfates in developing rat cerebellum. At 1-2 weeks postnatal, unsulfated chondroitin is present in the granule cell layer, molecular layer, and prospective white matter, but there was no staining of the external granule cell layer other than light staining of Bergmann glia fibers. By 3 weeks postnatal, staining of the molecular layer has disappeared and has diminished in the white matter, whereas in adult cerebellum only the granule cell layer remains stained. The staining pattern of chondroitin 4-sulfate is similar to that for chondroitin at 1-2 weeks postnatal, but in contrast to chondroitin, chondroitin 4-sulfate increases in the molecular layer at 3 weeks, and this becomes the most densely stained region of adult cerebellum. Chondroitin 6-sulfate is present predominantly in the prospective white matter of 1-2 week postnatal cerebellum, although significant staining of the granule cell layer is also seen. By 3 weeks postnatal the granule cell staining of chondroitin 6-sulfate has decreased, and in adult cerebellum staining is seen only in the white matter and to a lesser extent in the granule cell layer. Electron microscopy confirmed the presence of chondroitin sulfate in the cytoplasm of neurons and glia of adult brain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Neurocan and brevican are related chondroitin sulfate proteoglycans which are mainly expressed in the central nervous system. Neurocan and the secreted brevican variant are composed of globular N-terminal hyaluronan binding domains, central O-linked oligosaccharide attachment regions, and globular C-terminal domains. Interaction studies of mouse brain proteoglycans revealed that neurocan, but not brevican, was retained on a heparin affinity matrix. Also a recombinantly produced C-terminal fragment of neurocan, expressed by HEK 293 cells, was retained by the heparin affinity matrix. The substitution of this fragment with a chondroitin sulfate chain did not inhibit binding to the heparin affinity matrix at physiological NaCl concentrations, but decreased the NaCl concentration necessary for elution. Two potential consequences of the heparin binding ability of neurocan are an enforcement of the interaction with other heparin binding molecules and a directed secretion by polarized cells.  相似文献   

9.
Developmental changes in the distribution of brain-specific chondroitin sulfate proteoglycans, neurocan and phosphacan/RPTPzeta/beta, in the hippocampus of the Sprague-Dawley rat were examined using monoclonal antibodies 1G2 and 6B4. The 1G2 immunoreactivity was predominant in the neonatal hippocampus while the 6B4 immunoreactivity was predominant in the mature hippocampus. Moderate 1G2 immunoreactivity was detected in the dentate gyrus and subiculum immediately after birth. Immunoreactivity reached a peak on postnatal days 7-10 (P7-P10) when intense 1G2 labeling was present throughout the neuropil layers of the hippocampus except the mossy fiber tract. 6B4 immunoreactivity was limited in the stratum lacunosum moleculare of CA1 in the neonatal hippocampus. It gradually increased by P21 when diffuse 6B4 immunoreactivity was detected in the stratum oriens and radiatum of Ammon's horn, and in the hilus and inner one-third molecular layer of the dentate gyrus, while 1G2 immunoreactivity decreased after P21. In the adult hippocampus, moderate 6B4 immunoreactivity was present in the stratum oriens and radiatum of Ammon's horn, and in the hilus and inner one-third molecular layer of the dentate gyrus, but not in the mossy fiber tract. In addition, strong 6B4 labeling appeared around a subset of neurons after P21. The results suggest that neurocan may have a role in the development of neuronal organization, while phosphacan/RPTPzeta/beta may contribute to the maintenance and plasticity of synaptic structure and function. Furthermore, the absence of 1G2 and 6B4 immunoreactivities in the stratum lucidum suggests that neurocan and phosphacan/RPTPzeta/beta may function as a barrier for the extension of mossy fibers and provide an environment permissive for fasciculation of the mossy fibers.  相似文献   

10.
PTP zeta is a receptor-type protein-tyrosine phosphatase that is synthesized as a chondroitin sulfate proteoglycan and uses pleiotrophin as a ligand. The chondroitin sulfate portion of this receptor is essential for high affinity binding to pleiotrophin. Here, we purified phosphacan, which corresponds to the extracellular domain of PTP zeta, from postnatal day 7 (P7) and P12 rat cerebral cortex (PG-P7 and PG-P12, respectively) and from P20 rat whole brain (PG-P20). The chondroitin sulfate of these preparations displayed immunologically and compositionally different structures. In particular, only PG-P20 reacted with the monoclonal antibody MO-225, which recognizes chondroitin sulfate containing the GlcA(2S)beta 1-3GalNAc(6S) disaccharide unit (D unit). Analysis of the chondroitinase digestion products revealed that GlcA beta 1-3GalNAc(4S) disaccharide unit (A unit) was the major component in these preparations and that PG-P20 contained 1.3% D unit, which was not detected in PG-P7 and PG-P12. Interaction analysis using a surface plasmon resonance biosensor indicated that PG-P20 had approximately 5-fold stronger affinity for pleiotrophin (dissociation constant (KD) = 0.14 nM) than PG-P7 and PG-P12, although all these preparations showed similar low affinity binding to pleiotrophin after chondroitinase ABC digestion (KD = 1.4 approximately 1.6 nM). We also found that shark cartilage chondroitin sulfate D containing approximately 20% D unit bound to pleiotrophin with moderate affinity (KD = 2.7 nM), whereas whale cartilage chondroitin sulfate A showed no binding to this growth factor. These results suggest that variation of chondroitin sulfate plays important roles in the regulation of signal transduction in the brain.  相似文献   

11.
The basic concept, that specialized extracellular matrices rich in hyaluronan, chondroitin sulfate proteoglycans (aggrecan, versican, neurocan, brevican, phosphacan), link proteins and tenascins (Tn-R, Tn-C) can regulate cellular migration and axonal growth and thus, actively participate in the development and maturation of the nervous system, has in recent years gained rapidly expanding experimental support. The swift assembly and remodeling of these matrices have been associated with axonal guidance functions in the periphery and with the structural stabilization of myelinated fiber tracts and synaptic contacts in the maturating central nervous system. Particular interest has been focused on the putative role of chondroitin sulfate proteoglycans in suppressing central nervous system regeneration after lesions. The axon growth inhibitory properties of several of these chondroitin sulfate proteoglycans in vitro, and the partial recovery of structural plasticity in lesioned animals treated with chondroitin sulfate degrading enzymes in vivo have significantly contributed to the increased awareness of this long time neglected structure.  相似文献   

12.
We developed a method to extract differentially chondroitin sulfate proteoglycans (CSPGs) that are diffusely present in the central nervous system (CNS) matrix and CSPGs that are present in the condensed matrix of perineuronal nets (PNNs). Adult rat brain was sequentially extracted with Tris-buffered saline (TBS), TBS-containing detergent, 1 m NaCl, and 6 m urea. Extracting tissue sections with these buffers showed that the diffuse and membrane-bound CSPGs were extracted in the first three buffers, but PNN-associated CSPGs remained and were only removed by 6 m urea. Most of the CSPGs were extracted to some degree with all the buffers, with neurocan, brevican, aggrecan, and versican particularly associated with the stable urea-extractable PNNs. The CSPGs in stable complexes only extractable in urea buffer are found from postnatal day 7-14 coinciding with PNN formation. Disaccharide composition analysis indicated a different glycosaminoglycan (GAG) composition for PGs strongly associated with extracellular matrix (ECM). For CS/dermatan sulfate (DS)-GAG the content of nonsulfated, 6-O-sulfated, 2,6-O-disulfated, and 4,6-O-disulfated disaccharides were higher and for heparan sulfate (HS)-GAG, the content of 6-O-sulfated, 2-N-, 6-O-disulfated, 2-O-, 2-N-disulfated, and 2-O-, 2-N-, 6-O-trisulfated disaccharides were higher in urea extract compared with other buffer extracts. Digestions with chondroitinase ABC and hyaluronidase indicated that aggrecan, versican, neurocan, brevican, and phosphacan are retained in PNNs through binding to hyaluronan (HA). A comparison of the brain and spinal cord ECM with respect to CSPGs indicated that the PNNs in both parts of the CNS have the same composition.  相似文献   

13.
Ng-CAM and N-CAM are cell adhesion molecules (CAMs), and each CAM can bind homophilically as demonstrated by the ability of CAM-coated beads (Covaspheres) to self-aggregate. We have found that the extent of aggregation of Covaspheres coated with either Ng-CAM or N-CAM was strongly inhibited by the intact 1D1 and 3F8 chondroitin sulfate proteoglycans of rat brain, and by the core glycoproteins resulting from chondroitinase treatment of the proteoglycans. Much higher concentrations of rat chondrosarcoma chondroitin sulfate proteoglycan (aggrecan) core proteins had no significant effect in these assays. The 1D1 and 3F8 proteoglycans also inhibited binding of neurons to Ng-CAM when mixtures of these proteins were adsorbed to polystyrene dishes. Direct binding of neurons to the proteoglycan core glycoproteins from brain but not from chondrosarcoma was demonstrated using an assay in which cell-substrate contact was initiated by centrifugation, and neuronal binding to the 1D1 proteoglycans was specifically inhibited by the 1D1 monoclonal antibody. Different forms of the 1D1 proteoglycan have been identified in developing and adult brain. The early postnatal form (neurocan) was found to bind neurons more effectively than the adult proteoglycan, which represents the C-terminal half of the larger neurocan core protein. Our results therefore indicate that certain brain proteoglycans can bind to neurons, and that Ng-CAM and N-CAM may be heterophilic ligands for neurocan and the 3F8 proteoglycan. The ability of these brain proteoglycans to inhibit adhesion of cells to CAMs may be one mechanism to modulate cell adhesion and migration in the nervous system.  相似文献   

14.
Summary Monoclonal antibodies directed against specific carbohydrate epitopes on chondroitin 4-/dermatan sulfate, chondroitin 6-sulfate, keratan sulfate, and a monoclonal antibody directed against the hyaluronate binding region were used to characterize proteoglycans extracted from embryonic chick bone marrow. About half of the proteoglycans separate into the high density fraction on a CsCl gradient. Glycosaminoglycan-specific antibodies recognize proteoglycans from all fractions; this includes an antibody directed against keratan sulfate. Some proteoglycans, principally in the high buoyant density fraction, contain sites recognized by the antibody specific for the hyaluronate binding region. Within limits of detection, all core proteins belong to the high-molecular-weight category, with weights in excess of 212 kD. Antibodies directed against chondroitin 4-/dermatan sulfate and against keratan sulfate primarily bind to extracellular matrix material located in the extracellular spaces and to matrix elements in the pericellular regions of fibroblastic stromal cells. The antibody that recognizes chondroitin 6-sulfate binds to sites on surfaces of fibroblastic stromal cells and also to extracellular matrix material. Little or no antibody binding is detected on surfaces of granulocytic cells. These studies indicate that chondroitin sulfate and keratan sulfate chains are both present in the proteoglycan extract.  相似文献   

15.
Cartilage chondroitin sulfate isolated directly from rat rib or from in vitro culture of rat rib constitutes a population of glycosaminoglycans which is heterogeneous with respect to size, degree of sulfation and content of N-acetylgalactosamine 4-sulfate. Fractions elute from Dowex-1 in order of increasing molecular size and degree of sulfation up to a certain limit. Unsulfated disaccharides and disulfated disaccharides are present in both the undersulfated chondroitin sulfate fractions and in the average or more representative chondroitin sulfate. A small content of disaccharide 6-sulfate is present in all fractions and appears to be an integral part of the chondroitin 4-sulfate molecules. Rat gastric chondrosulfatase hydrolyzes sulfate preferentially from the larger chondroitin 4-sulfate molecules, and the sulfate is removed primarily from the disaccharide 4-sulfate units.  相似文献   

16.
We studied carbohydrate residues of glycoproteins and proteoglycans (PGs) in peritoneal Pacinian corpuscles of five adult cats. Terminal monosaccharides of glycoproteins and related polysaccharides were identified by lectin histochemistry and the PGs and glycosaminoglycans (GAGs) by specific antibodies. The most intensive lectin staining reactions indicated an abundance of glycoconjugates with terminal mannose (Man) or sialic acid residues, but no complex-type oligosaccharides were detected within the corpuscles. Terminal fucose (Fuc) and galactose (Gal) residues typical for O-linked mucin-type glycoproteins generally associated with high water binding capacity were also absent. Antibodies against unsulfated chondroitin (C-0-S), chondroitin-4-sulfate (C-4-S), and decorin showed positive reactions in the interfibrillar spaces between the lamellae, around collagen fibers, and around the lamellae of the perineural capsule, especially in the outer parts known to contain Type II collagen. Biglycan showed a preference for the innermost part of the perineural capsule (intermediate layer), known to contain Type V collagen. Collagen V and biglycan are both linked to growth processes. Hyaluronic acid (HA), chondroitin-6-sulfate (C-6-S) chains, and a chondroitin sulfate proteoglycan (CSPG) were co-localized in the terminal glia. The study of carbohydrates with high water binding capacity may contribute to our understanding of the high viscoelasticity of Pacinian corpuscles.  相似文献   

17.
The types and distributions of chondroitin sulfate proteoglycans within developing chick bursae of Fabricius were determined by indirect immunocytochemical analyses using mAb specific for chondroitin/dermatan sulfate epitopes. Analyses obtained from the use of well characterized mAb known to specifically identify chondroitin 4- and dermatan sulfates (antibody 2B6) and chondroitin 6-sulfate (antibody 3B3) were compared with those obtained from two additional mAb raised against chick chondroitin sulfates proteoglycans derived from hemopoietic tissue. The results indicate that chondroitin sulfate compositions of the adjacent lymphopoietic and granulopoietic compartments differ. Chondroitin 6-sulfate, notably absent from lymphopoietic regions, is a major chondroitin sulfate species in granulopoietic regions of day 13 bursae. Moreover, chondroitin 6-sulfate disappears from the granulopoietic compartment in a time course that corresponds to the decline in granulopoietic activity. Simultaneously, there is an apparent increase in chondroitin sulfates associated with developing medullary regions of lymphoid follicles. The content of chondroitin 4-/dermatan sulfates and, most significantly, of chondroitin/dermatan sulfates identified by antibodies raised against chick proteoglycans, increases within developing follicles. As a consequence, by day 18 of incubation, immunostained follicles become clearly demarcated from the connective tissue of the tunica propria. This study provides evidence that chondroitin sulfates are constituents of both lymphopoietic and granulopoietic microenvironments and that subtle changes occur within these proteoglycan structures during bursal development. These developmental changes in chondroitin sulfate compositions are consistent with these molecules playing a functional role in hemopoiesis.  相似文献   

18.
Neurocan is one of the major chondroitin sulfate proteoglycans of perinatal rodent brain. HEK-293 cells producing neurocan recombinantly show changes in their behavior. The expression of full-length neurocan led to a detachment of the secreting cells and the formation of floating spheroids. This occurred in the continuous presence of 10% fetal bovine serum in the culture medium. Cells secreting fragments of neurocan-containing chondroitin sulfate chains and the C-terminal domain of the molecule showed a similar behavior, whereas cells expressing fragments of neurocan-containing chondroitin sulfate chains but lacking parts of the C-terminal domain did not show spheroid formation. Cells secreting the hyaluronan-binding N-terminal domain of neurocan showed an enhanced adhesiveness. When untransfected HEK-293 cells were plated on a surface conditioned by spheroid-forming cells, they also formed spheroids. This effect could be abolished by chondroitinase treatment of the conditioned surface. The observations indicate that the ability of the chondroitin sulfate proteoglycan neurocan to modulate the adhesive character of extracellular matrices is dependent on the structural integrity of the C-terminal domain of the core protein.  相似文献   

19.
CD44 and sulfation have both been implicated in leukocyte adhesion. In monocytes, the inflammatory cytokine tumor necrosis factor alpha (TNF-alpha) stimulates CD44 sulfation, and this correlates with the induction of CD44-mediated adhesion events. However, little is known about the sulfation of CD44 or its induction by inflammatory cytokines. We determined that TNF-alpha induces the carbohydrate sulfation of CD44. CD44 was established as a major sulfated cell surface protein on myeloid cells. In the SR91 myeloid cell line, the majority of CD44 sulfation was attributed to the glycosaminoglycan chondroitin sulfate. However, TNF-alpha stimulation increased CD44 sulfation two- to threefold, largely attributed to the increased sulfation of N- and O-linked glycans on CD44. Therefore, TNF-alpha induced a decrease in the percentage of CD44 sulfation due to chondroitin sulfate and an increase due to N- and O-linked sulfation. Furthermore, TNF-alpha induced the expression of 6-sulfo N-acetyl lactosamine (LacNAc)/Lewis x on these cells, which was detected by a monoclonal antibody after neuraminidase treatment. This 6-sulfo LacNAc/Lewis x epitope was induced on N-linked and (to a lesser extent) on O-linked glycans present on CD44. This demonstrates that CD44 is modified by sulfated carbohydrates in myeloid cells and that TNF-alpha modifies both the type and amount of carbohydrate sulfation occurring on CD44. In addition, it demonstrates that TNF-alpha can induce the expression of 6-sulfo N-acetyl glucosamine on both N- and O-linked glycans of CD44 in myeloid cells.  相似文献   

20.
Monoclonal antibodies produced against chick embryo limb bud proteoglycan (PG-M) were selected for their ability to recognize determinants on intact chondroitin sulfate chains. One of these monoclonal antibodies (IgM; designated MO-225) reacts with PG-M, chick embryo cartilage proteoglycans (PG-H, PG-Lb, and PG-Lt), and bovine nasal cartilage proteoglycan, but not with Swarm rat chondrosarcoma proteoglycan. The reactivity of PG-H to MO-225 is not affected by keratanase digestion but is completely abolished after chondroitinase digestion. Competitive binding analyses with various glycosaminoglycan samples indicate that the determinant recognized by MO-225 resides in a D-glucuronic acid 2-sulfate(beta 1----3)N-acetylgalactosamine 6-sulfate disaccharide unit (D-unit) common to antigenic chondroitin sulfates. A tetrasaccharide trisulfate containing D-unit at the reducing end is the smallest chondroitin sulfate fragment that can inhibit the binding of the antibody to PG-H. Decreasing the size of a D-unit-rich chondroitin sulfate by hyaluronidase digestion results in progressive reduction in its inhibitory activity. The results suggest that the epitope has a requirement for a long stretch of a disaccharide-repeating structure for a better fit to the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号