首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: BACKGROUND: The patterns and drivers of species assemblages represent the core of community ecology.We focus on the assemblages of a single family of ubiquitous lotic insects, the Simuliidae(black flies), of which the larvae play a critical role in resource turnover in steams. We useMantel tests and null models to tease out the potential influence of abiotic stream conditions,species interactions, and dispersal on the assemblage patterns of larval black flies over twospatial scales (within and across ecoregions) and two seasons (spring and summer). RESULTS: When stream sites were considered across ecoregions in the spring, stream conditions anddispersal were correlated significantly with species similarity; however, within ecoregions inthe spring, dispersal was important only in the Piedmont and Sandhills and abiotic factorsonly in the Mountains. In contrast, results of the summer analyses within and acrossecoregions were congruent; assemblage similarity was significantly correlated with streamconditions both across and within ecoregions. Null models suggested that patterns of speciessegregation in the spring were consistent with a community structured by competition,whereas patterns in the summer were consistent with species assemblages influenced byabiotic factors. CONCLUSIONS: Species composition of black flies at streams sites is correlated with dispersal factors andstream conditions, but results vary over spatial and temporal scales. Communities of blackflies can be viewed within a metacommunity context; local assemblages are consistent withspecies sorting and mass effects. Given that black flies have a terrestrial stage, with femalesdeciding where to place the eggs, a full understanding of the processes that determine local aquatic assemblages will require integration of the dynamics of the aquatic immature stagesand the terrestrial adults.  相似文献   

2.
Local ecological attributes of streams are known to have strong influences on community membership for many aquatic insects. Differences in aquatic insect assemblages, therefore, should be clearly detectable across large scale ecological "units", such as ecoregions. Many studies of aquatic invertebrates however, have suffered from a lack of species level identifications. In addition, many previous studies that examined the influence of ecoregion on aquatic assemblages have the implicit assumption that members of different taxa are responding in the same manner. Our study, therefore, was restricted to an ecologically (lotic) and functionally (mostly filter-feeding) homogenous group, the Simuliidae. In the current study, we examine the relationship between species assemblages of preimaginal blackflies and the landscape through which their stream habitats flow. Accordingly, the larval simuliid faunas from South Carolina, USA, are compared among three ecoregions established a priori: Blue Ridge Mountains, Piedmont, and Sandhills. Using discriminant function analysis, we show that each ecoregion produces a distinct stream habitat; factors responsible for regionalization are quantified. We also show that streams can be assigned correctly to ecoregion of origin 85% of the time on the basis of the simuliid assemblage. We suggest that our results can be interpreted most readily by considering the distribution of individual species.  相似文献   

3.
An ecological study was conducted in May and June of 1995 and 1996 in South Carolina to determine the factors associated with distributions of aquatic Lepidoptera (Crambidae: Nymphulinae). Larvae were found at 65 lotic and lentic sites in three ecoregions (Piedmont, Sandhills, Coastal Plain). Nine species of aquatic Lepidoptera were collected from 12 species of aquatic vascular macrophytes. One to six plant species were used as hosts, depending on the species of lepidopteran; however, the number of host plants used by a lepidopteran was significantly correlated with the lepidopteran's frequency of occurrence. Significant habitat associations were found for five species. Langessa nomophilalis (Dyar) was found under the widest range of temperature and width and occurred in both lotic and lentic habitats. Munroessa icciusalis (Walker) was found in lotic and lentic habitats and had the widest range of recorded depths. Parapoynx maculalis (Clemens) occurred at stream sites with lentic-like conditions. Parapoynx obscuralis (Grote) occupied the widest range of pH and was restricted to lotic habitats, and P. seminealis (Walker) was found in both lotic and lentic habitats. Additional species, collected at fewer than 8% of sites, included M. gyralis, P. allionealis, Synclita obliteralis, and S. tinealis. Overall, the distributions of aquatic Lepidoptera in South Carolina were nonrandom and predictable on the basis of habitat characteristics. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Stream fish assemblages are structured by biogeographical, physical and biological factors acting on different spatial scales. We determined how physical factors, geomorphology and stream habitat, influenced fish species composition (presence–absence) in eastern Oklahoma, USA relative to the ecoregion and biogeographic effects previously reported. We sampled fish assemblages and surveyed geomorphology and habitat at 107 stream sites in the Boston Mountains, Ouachita Mountains, and Ozark Highlands ecoregions in eastern Oklahoma. Partial canonical correspondence analyses (pCCAs) and variance partitioning showed that patterns of endemism related to drainage basins and ecoregions explained important variation in fish species composition in all streams, but stream size and local channel morphology explained more variation overall. Stream size effects were most important in explaining variability in fish species composition in both northeastern and southeastern Oklahoma streams. Local channel morphology and substrate characteristics were secondarily important. Variables typically considered important as fish habitat (aquatic vegetation, etc.) had little effect on fish species composition.  相似文献   

5.
Aims We have two aims: (1) to examine the relationship between local population persistence, local abundance and regional occupancy of stream diatoms and (2) to characterize the form of the species–occupancy frequency distribution of stream diatoms. Location Boreal streams in Finland. There were three spatial extents: (1) across ecoregions in Finland, (2) within ecoregions in Finland, and (3) within a single drainage system in southern Finland. Methods Diatoms were sampled from stones (epilithon), sediment (epipelon) and aquatic plants (epiphyton) in streams using standardized sampling methods. To assess population persistence, diatom sampling was conducted monthly at four stream sites from June to October. The relationships between local population persistence, local abundance and regional occupancy were examined using correlation analyses. Results There was a significant positive relationship between local persistence and abundance of diatoms in epilithon, epipelon and epiphyton. Furthermore, local abundance and regional occupancy showed a significant positive relationship at multiple spatial extents; that is, across ecoregions, within ecoregions and within a drainage system. The relationships between occupancy and abundance did not differ appreciably among impacted and near pristine‐reference sites. The occupancy–frequency distribution was characterized by a large number of satellite species which occurred at only a few sites, whereas core species that occurred at most sites were virtually absent. Main conclusions The positive relationship between local population persistence and abundance suggested that a high local abundance may prevent local extinction or that high persistence is facilitated by a high local cell density. High local persistence and local abundance may also positively affect the degree of regional occupancy in stream diatoms. The results further showed that anthropogenic effects were probably too weak to bias the relationship between occupancy and abundance, or that the effects have already modified the distribution patterns of stream diatoms. The small number of core species in the species–occupancy frequency distribution suggested that the regional distribution patterns of stream diatoms, or perhaps unicellular microbial organisms in general, may not be fundamentally different from those described previously for multicellular organisms, mainly in terrestrial environments, although average global range sizes may differ sharply between these two broad groups of organisms.  相似文献   

6.
We examined the community-environment relationships of lotic macroinvertebrates in near-pristine headwater streams, and the correlation between patterns in taxonomic and functional structure at two regional extents. The across-ecoregion scale comprised five ecoregions spanning all of Finland, while the within-ecoregion scale comprised of north boreal and middle boreal ecoregions. We expected that taxonomic structure should exhibit stronger relationships than functional structure to spatial gradients, while the reverse should be true for local environmental factors. We found some support for this notion, because spatial variables were marginally more important for taxonomic than functional structure. Furthermore, within the two ecoregions, local environmental variables were slightly more important for functional than taxonomic structure. Geographical location (i.e. spatial variables) was more influential at the across-ecoregions extent than within the two ecoregions. Largely the same local environmental variables accounted for variation in both taxonomic and functional structure, including water pH, nutrients, colour, and stream size. Similar responses to local environmental features likely contributed to the significant correlation between patterns in taxonomic and functional structure. It has been suggested that functional traits may be rather insensitive to natural variation, yet our functional categorization showed distinct variation along local environmental, catchment, and spatial gradients across near-pristine streams. Thus, natural ecological filters should be accounted for prior to the examination of the effects of anthropogenic filters on stream macroinvertebrate community structure.  相似文献   

7.
1. Additive partitioning of three measures of diversity (species richness, Shannon's diversity index H and Simpson's diversity D) was used to study the relationship between local and regional diversity of benthic macroinvertebrate communities of boreal lakes (littoral habitats) and streams (riffle habitats) across three spatial scales (sampling sites, ecoregions and biogeographic regions). 2. Alpha (α) and beta (β) diversity are defined as within‐habitat and between‐habitat diversity, respectively. According to the concept of additive partitioning, diversity can be partitioned across multiple spatial scales such that the total (γ) diversity on one spatial scale becomes within‐habitat (α) diversity at the next higher scale. Hence, the total diversity at one scale is determined by the α diversity and the between‐habitat diversity (β) at the next lower scale. Consequently, one of the advantages of additive partitioning is that it is possible to study simultaneously β diversity and the regional‐local species relationship and the scale dependence of α and β components. 3. For both lakes and streams α diversity was low for sites and ecoregions, whereas β diversity was high, indicating that among‐site factors are important in describing the variability among the lakes and streams studied here. 4. Weak, albeit significant, evidence was found for regional and local species saturation patterns. Multiple stepwise regression indicated that local processes might be more important in structuring lake‐littoral and stream‐riffle species assemblages than regional processes. From these results we conclude that environmental heterogeneity may act as an important factor contributing to species coexistence, resulting in the observed saturation patterns. 5. Our study supports the use of additive partitioning for identifying specific patterns of macroinvertebrate diversity on multiple spatial scales and the underlying processes generating these patterns. This information is needed to improve understanding of the relation between patterns and processes affecting (decreasing) trends in aquatic biodiversity.  相似文献   

8.
There is an increasing need to examine regional patterns of diversity in coral-reef systems since their biodiversity is declining globally. In this sense, additive partitioning might be useful since it quantifies the contribution of alpha and beta to total diversity across different scales. We applied this approach using an unbalanced design across four hierarchical scales (80 sites, 22 subregions, six ecoregions, and the Caribbean basin). Reef-fish species were compiled from the Reef Environmental Education Foundation (REEF) database and distributions were confirmed with published data. Permutation tests were used to compare observed values to those expected by chance. The primary objective was to identify patterns of reef-fish diversity across multiple spatial scales under different scenarios, examining factors such as fisheries and demographic connectivity. Total diversity at the Caribbean scale was attributed to β-diversity (nearly 62% of the species), with the highest β-diversity at the site scale. α¯-diversity was higher than expected by chance in all scenarios and at all studied scales. This suggests that fish assemblages are more homogenous than expected, particularly at the ecoregion scale. Within each ecoregion, diversity was mainly attributed to alpha, except for the Southern ecoregion where there was a greater difference in species among sites. β-components were lower than expected in all ecoregions, indicating that fishes within each ecoregion are a subsample of the same species pool. The scenario involving the effects of fisheries showed a shift in dominance for β-diversity from regions to subregions, with no major changes to the diversity patterns. In contrast, demographic connectivity partially explained the diversity pattern. β-components were low within connectivity regions and higher than expected by chance when comparing between them. Our results highlight the importance of ecoregions as a spatial scale to conserve local and regional coral reef-fish diversity.  相似文献   

9.
Several ecological and evolutionary processes can drive changes in diversity at different spatial scales. To determine the scale at which these processes are most influential, we hypothesized that (i) broad‐scale differences between ecoregions had greater influence on ant species richness and species turnover than local differences among fragments within ecoregions; and (ii) the degree of dissimilarity in ant species composition is larger between Tropical Dry Forest fragments and the surrounding vegetations than among Tropical Dry Forests located in different ecoregions, indicating that extant Tropical Dry Forests are relicts of a broader distribution of this vegetation. To examine ant diversity patterns, we built a nested hierarchical design on three spatial scales, ranging from fragments (local scale), Tropical Dry Forest + surroundings vegetation (landscape scale) and Brazilian ecoregions (regional scale). We used 450 sampling units (45 sampling units × two fragments × five ecoregions = 450). A null model based on the sample was used to identify variations in the random distribution across spatial scales. Spatial partitioning of ant diversity showed that observed β1 diversity (between fragments) and β2 diversity (among ecoregions) were higher than expected by chance. When the partitioning was analysed separately for each region, the observed β1 diversity (Tropical Dry Forest and surrounding vegetation) was higher than expected by the null hypothesis in all ecoregions of Brazil. Based on species composition and diversity patterns, we stress the importance of creating more protected areas throughout the coverage area of Tropical Dry Forests, favouring a more efficient conservation process.  相似文献   

10.
Mobile species will migrate considerable distances to find habitats suitable for meeting life history requirements, and stream‐dwelling salmonids are no exception. In April–October 2014, we used radio‐telemetry to examine habitat use and movement of 36 Colorado River cutthroat trout Oncorhynchus clarkii pleuriticus (CRCT) in a 14.9‐km fragment of Milk Creek, a relatively low‐elevation stream in the Rocky Mountains (Colorado). We also used a network of data loggers to track stream temperature across time and space. Our objectives were to (1) characterize distribution and movement of CRCT, (2) evaluate seasonal differences in distribution and movement of CRCT, and (3) explore the relationship between stream temperature and distribution and movement of CRCT. During the course of our study, median range of CRCT was 4.81 km (range = 0.14–10.94) and median total movement was 5.94 km (range = 0.14–26.02). Median location of CRCT was significantly further upstream in summer than in spring, whereas range and movement of CRCT were greater in spring than in summer. Twenty‐six of the 27 CRCT tracked through mid‐June displayed a potamodromous (freshwater migratory) life history, migrating 1.8–8.0 km upstream during the spring spawning season. Four of the seven CRCT tracked through July migrated >1.4 km in summer. CRCT selected relatively cool reaches during summer months, and early‐summer movement was positively correlated with mean stream temperature. Study fish occupied stream segments in spring and fall that were thermally unsuitable, if not lethal, to the species in summer. Although transmitter loss limited the scope of inference, our findings suggest that preferred habitat is a moving target in Milk Creek, and that CRCT move to occupy that target. Because mobile organisms move among complementary habitats and exploit seasonally‐unsuitable reaches, we recommend that spatial and temporal variability be accounted for in delineations of distributional boundaries.  相似文献   

11.
Synopsis To better understand patterns of fish assemblage composition in Wisconsin streams in relation to major environmental gradients, I carried out multivariate direct gradient analysis (canonical correspondence analysis) of two large independent datasets on fish species abundance in Wisconsin streams. Analysis of the two datasets yielded similar results, suggesting that observed patterns and relationships were real. Stream sites were distributed along fish species-environment gradients, but segregation into distinct stream temperature and geographic groups was also evident. The strongest gradient in both datasets was related to summer water temperature patterns, and encompassed a transition from small, coldwater streams dominated by salmonids, cottids, certain cyprinids, and few other species, to both small and large, warmwater streams dominated by a high diversity of different cyprinids, catostomids, ictalurids, centrarchids, and percids. A second gradient in both datasets was complex but largely geographic. Within it, sites from each of the four ecoregions that occupy Wisconsin formed fairly discrete groups. The strongest differences were between sites in the two southern Wisconsin ecoregions, the Driftless Area and the Southeastern Wisconsin Till Plains, that were dominated by certain cyprinids, ictalurids, and centrarchids, and sites in the two northern Wisconsin ecoregions, the North Central Hardwood Forests and the Northern Lakes and Forests, that were dominated by a different set of cyprinids and ictalurids, plus some petromyzontids, salmonids, catostomids, and percids. Sites from the Driftless Area that were mostly higher-gradient (steep stream slope) and had many riffle-dwelling species could also be distinguished from sites in the Southeastern Wisconsin Till Plains that were mostly lower-gradient and had many pool-dwelling species. The patterns of fish assemblage composition among sites and the associated fish species-environment relationships that were revealed by the analyses provided a framework for developing an ecologically meaningful hierarchical classification of Wisconsin stream sites based on stream thermal regime, ecoregion, stream size, and stream gradient.  相似文献   

12.
Species distributions can be analysed under two perspectives: the niche‐based approach, which focuses on species–environment relationships; and the dispersal‐based approach, which focuses on metapopulation dynamics. The degree to which each of these two components affect species distributions may depend on habitat fragmentation, species traits and phylogenetic constraints. We analysed the distributions of 36 stream insect species across 60 stream sites in three drainage basins at high latitudes in Finland. We used binomial generalised linear models (GLMs) in which the predictor variables were environmental factors (E models), within‐basin spatial variables as defined by Moran's eigenvector maps (M models), among‐basin variability (B models), or a combination of the three (E + M + B models) sets of variables. Based on a comparative analysis, model performance was evaluated across all the species using Gaussian GLMs whereby the deviance accounted for by binomial GLMs was fitted on selected explanatory variables: niche position, niche breadth, site occupancy, biological traits and taxonomic relatedness. For each type of model, a reduced Gaussian GLM was eventually obtained after variable selection (Bayesian information criterion). We found that niche position was the only variable selected in all reduced models, implying that marginal species were better predicted than non‐marginal species. The influence of niche position was strongest in models based on environmental variables (E models) or a combination of all types of variables (E + M + B models), and weakest in spatial autocorrelation models (M models). This suggests that species–environment relationships prevail over dispersal processes in determining stream insect distributions at a regional scale. Our findings have clear implications for biodiversity conservation strategies, and they also emphasise the benefits of considering both the niche‐based and dispersal‐based approaches in species distribution modelling studies.  相似文献   

13.
1. Fish and invertebrate assemblage data collected from 670 stream sites in Minnesota (U.S.A.) were used to calculate concordance across three nested spatial scales (statewide, ecoregion and catchment). Predictive taxa richness models, calibrated using the same data, were used to evaluate whether concordant communities exhibited similar trends in human‐induced taxa loss across all three scales. Finally, we evaluated the strength of the relationship between selected environmental variables and the composition of both assemblages at all three spatial scales. 2. Significant concordance between fish and invertebrate communities occurred at the statewide scale as well as in six of seven ecoregions and 17 of the 21 major catchments. However, concordance was not consistently indicative of significant relationships between rates of fish and invertebrate taxa loss at those same scales. 3. Fish and invertebrate communities were largely associated with different environmental variables, although the composition of both communities was strongly correlated with stream size across all three scales. 4. Predictive taxa‐loss models for fish assemblages were less sensitive and precise than models for invertebrate assemblages, likely because of the relatively low number of common fish taxa in our data set. Both models, however, distinguished reference from non‐reference sites. 5. The importance of concordance, geographic context and scale are discussed in relation to the design and interpretation of stream integrity indicators. In particular, our findings suggest that community concordance should not be viewed as a substitute for an evaluation of how assemblages respond to environmental stressors.  相似文献   

14.
1. Landscape classifications group tracts of land based on similar physico‐chemical attributes that may affect the biological characteristics of streams at local scales. We tested the ability of five landscape models to account for variation in algal and macroinvertebrate biomass, brook trout (Salvelinus fontinalis) growth and macroinvertebrate community composition from 132 riffles in 15 catchments in the Big Horn Mountains, Wyoming. 2. A model created by the U.S. Forest Service (FS) combined catchment and ecoregion approaches to classify the landscape. Our model used digital elevations to create a landscape classification for streams (DEM). The last three models were based on: (1) standard ecoregions (Ecoregion), (2) the type of underlying bedrock (Geology) and (3) the geographical distance between sites (Site Proximity model). 3. Overall, the Ecoregion and Geology models performed better than the two catchment models (FS and DEM) in predicting local biological characteristics. The Geology model was best at predicting differences in algal and macroinvertebrate biomass, the Site Proximity and Ecoregion models were best at predicting patterns of similarity in macroinvertebrate community composition, and the Site Proximity, Ecoregion, Geology, and FS models, in order from best to worst, accounted for significant variation in brook trout growth. The Site Proximity model performed well because of the effects of spatial autocorrelation. The DEM was consistently one of the worst models at predicting local biological characteristics because it failed to include important attributes (e.g. dominant geology). Calcareous geology was positively associated with greater macroinvertebrate biomass and faster brook trout growth, but it was inversely related to algal biomass. 4. None of the models accounted for a large amount of variation in local biological characteristics. Single‐scale, landscape classifications may never accurately predict variation in local biological characteristics because: (1) landscapes show a high degree of spatial heterogeneity, (2) local effects are stronger than landscape attributes and (3) there are too many intervening levels between landscape and local scales in the nested hierarchy of streams. However, landscape classifications did account for significant variation in biological characteristics. Thus, they would be a valuable management tool as part of a multi‐scale, hierarchical technique for classifying stream ecosystems.  相似文献   

15.
We hypothesize that foraging stream salmonids move during summer because (1) they monitor habitat conditions at a reach scale (100s of m), and (2) dominant fish move when conditions in their present foraging location become sub-optimal relative to conditions at other locations in the reach. To test these ideas, we quantified temporal variation in foraging habitat quality between late spring and early fall in a reach of a small Rocky Mountain brook charr, Salvelinus fontinalis, stream, predicted optimal-foraging fish distributions within the reach, and experimentally manipulated access to foraging sites and measured fish responses. Our results show that high-quality foraging sites were located at certain places in the reach during one period, but at different places during others, consistent with the hypothesis that fish movement is required if dominant fish are to occupy high-quality foraging sites throughout summer. The optimal foraging model was able to predict foraging locations within study pools, but not the exact location of individual fish within the pools or the reach. However, empirical evidence suggests that fish were distributed in order to maximize energy intake at the reach scale. Finally, dominant fish excluded from their preferred foraging location either left the pools (three of six cases), or began to occupy focal points of the next largest fish which, in turn, exited the pool (two of six cases). If habitat selection was occurring only within habitat units, then large fish, when excluded from their preferred locations, would select the next best locations within the pool. Taken together, these results suggest that charr use summertime movements to both monitor habitat conditions at a large spatial scale, and to gain access to optimal foraging locations even as conditions change temporally.  相似文献   

16.
We assessed the importance of spatial scales (catchment, stream network, and sample reach) on the effects of agricultural land-use on lotic diatom assemblages along a land-use gradient in the agricultural Willamette Valley Ecoregion of Oregon. Periphyton, water chemistry, and physical habitat conditions were characterized for 25 wadeable streams during a dry season (July to September, 1997). Additional water chemistry samples were collected in the following wet season (February 1998) to assess seasonal effects of land-use on stream water chemistry. Percent agricultural land-use in the study catchments ranged from 10% to 89% with an average of 52%. Partial canonical correspondence analysis (CCA) with the first axis constrained by % agricultural land-use showed that % agricultural land-use at 3 spatial scales explained between 3.7%–6.3% of variability in the diatom species dataset. Monte Carlo Permutation tests indicated that the variance explained by % agricultural land-use was only significant at the spatial scale of the stream network with 10- and 30-m band width (p<0.05, 999 permutations). In addition to the effects of % agricultural land-use, partial CCAs with a forward selection option showed that water chemistry (e.g., SiO2), reach-scale stream channel dimensions (e.g., width, depth, and slope), reach-scale in-stream habitats (substrates and filamentous algal cover in stream beds), and riparian vegetative buffer were all important with relation to diatom species assemblages. Percent of obligately nitrogen-heterotrophic taxa was the only diatom autecological metric that showed a significant but weak correlation with % agricultural land-use along the stream network (r=0.50), but not at catchment or sample reach scale. Correlation between % agricultural land-use and water chemistry variables varied among the spatial scales and between seasons. Physical habitat variables (log10 erodible substrate diameters and stream reach slope) were significantly correlated with % agricultural land-use along the stream network but not at catchment or sample reach scale. Our data suggest that spatial scales are important in assessing effects of land-use on stream conditions but the spatial scale effects may vary between seasons. Direct linkages between agricultural land-use and lotic diatom assemblages were weak during summer base-flow time regardless of the spatial scales. Summer sampling may underestimate the effects of catchment land-use on stream conditions in areas where seasonal patterns are so distinctive as in the Willamette Valley.  相似文献   

17.
Aim We used published inventories of trematodes in Littorina littorea (L.) and Hydrobia ulvae (Pennant) in European seas to search for two basic biogeographical patterns in the spatial occurrence of various trematode species: (1) do parasite distribution and richness patterns in the two host snails overlap with known ecoregions of free‐living organisms; and (2) does trematode species richness in the snails follow latitudinal or longitudinal gradients? Location North East Atlantic. Methods We used multidimensional scaling (MDS), analysis of similarity (ANOSIM) and analysis of variance (ANOVA) to test whether there were overlaps of parasite distribution and richness with known ecoregions of free‐living organisms. In addition, we used linear regression analyses to test whether trematode richness in snails (corrected for sampling effort) was correlated with the latitude or longitude of the sampling sites. Results When corrected for sampling effort, mean trematode species richness per site did not differ among the different ecoregions in L. littorea. In contrast, in H. ulvae, mean species richness was much lower for sites from the Celtic Sea compared with sites from the Baltic Sea and the North Sea. Based on the results of MDS analyses, trematode species composition was distinct among ecoregions; in particular, communities from the Baltic Sea differed markedly from communities in the Celtic Sea, for both snail species. Latitude and longitude were not significantly correlated with parasite species richness in either snail species. Most trematode species had restricted distributions, and only three species in L. littorea and five species in H. ulvae occurred at more than 50% of the sites. Main conclusions There is more structure in the large‐scale distribution of trematodes in gastropods than one would expect from the large‐scale dispersal capabilities of their bird and fish final hosts. We propose mechanisms based both on limited dispersal via fish and bird final hosts and on gradients in environmental factors to explain the observed patterns.  相似文献   

18.
19.
Experimental studies have shown that many species show preferences for different climatic conditions, or may die in unsuitable conditions. Climate envelope models have been used frequently in recent years to predict the presence and absence of species at large spatial scales. However, many authors have postulated that the distributions of species at smaller spatial scales are determined by factors such as habitat availability and biotic interactions. Climatic effects are often assumed by modellers to be unimportant at fine resolutions, but few studies have actually tested this. We sampled the distributions of 20 beetle species of the family Carabidae across three study sites by pitfall trapping, and at the national scale from monitoring data. Statistical models were constructed to determine which of two sets of environmental variables (temperature or broad habitat type) best accounted for the observed data at the three sites and at the national (Great Britain) scale. High‐resolution temperature variables frequently produced better models (as determined by AIC) than habitat features when modelling the distributions of species at a local scale, within the three study sites. Conversely, habitat was always a better predictor than temperature when describing species’ distributions at a coarse scale within Great Britain. Northerly species were most likely to occur in cool micro‐sites within the study sites, whereas southerly species were most likely to occur in warm micro‐sites. Effects of microclimate were not limited to species at the edges of their distribution, and fine‐resolution temperature surfaces should therefore ideally be utilised when undertaking climate‐envelope modelling.  相似文献   

20.
Aquatic ecoregions, based on regional landscape features, have been proposed as a model for aquatic resource management. The model assumes the existence of a typical biota associated with a given ecoregion and serves as the basis for biological assessment, reference site designation, and determination of stream potential, based on this biotic assemblage. Contrasting models for predicting stream ecosystem structure focus on the importance of local site conditions, including the regular and predictable changes that occur as a function of area draining to a site. In this study, a classification of 429 stream sites over an area of approximately 20000km2 in the St. Croix River basin delineated three major species groups: redhorse/spotfin shiner; brook charr/sculpin; and mixed species. Numerical analyses revealed no relationship between the species communities and ecoregions. In contrast, there was a strong association between the species communities and the area draining to the site. Our study highlights the importance of accommodating the inherent structure associated with site drainage area when imposing a regionally-based ecological classification upon stream ecosystems. This structure is expressed in the systematic changes to the physical habitat that occur with increasing drainage area and are reflected by the species community at the site. Management models that currently incorporate ecoregions in the classification or prediction of stream ecosystem structure would benefit from the inclusion of specific components that incorporate drainage area measurements.now at Environment Protection Authority  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号