首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two Epstein-Barr virus (EBV) types, EBV-1 and EBV-2, are known to differ in their EBNA-2 genes, which are 64 and 53% identical in their nucleotide and predicted amino acid sequences, respectively. Restriction endonuclease maps and serologic analyses detect few other differences between EBV-1 and EBV-2 except in the EBNA-3 gene family. We determined the DNA sequence of the AG876 EBV-2 EBNA-3 coding region and have compared it with known B95-8 EBV-1 EBNA-3 sequences to delineate the extent of divergence between EBV-1 and EBV-2 isolates in their EBNA-3 genes. The B95-8 and AG876 EBV isolates had nucleotide and amino acid identity levels of 90 and 84%, 88 and 80%, and 81 and 72% for the EBNA-3A, -3B, and -3C genes, respectively. In contrast, nucleotide sequence identity in the noncoding DNA adjacent to the B95-8 and AG876 EBNA-3 open reading frames was 96%. We used the polymerase chain reaction to demonstrate that five additional EBV-1 isolates and six additional EBV-2 isolates have the type-specific differences in their EBNA-3 genes predicted from the B95-8 or AG876 sequences. Thus, EBV-1 and EBV-2 are two distinct wild-type EBV strains that have significantly diverged at four genetic loci and have maintained type-characteristic differences at each locus. The delineation of these sequence differences between EBV-1 and EBV-2 is essential to ongoing molecular dissection of the biologic properties of EBV and of the human immune response to EBV infection. The application of these data to the delineation of epitopes recognized in the EBV-immune T-cell response is also discussed.  相似文献   

2.
Human herpesvirus 6 is closely related to human cytomegalovirus.   总被引:32,自引:18,他引:14       下载免费PDF全文
A sequence of 21,858 base pairs from the genome of human herpesvirus 6 (HHV-6) strain U1102 is presented. The sequence has a mean composition of 41% G + C, and the observed frequency of CpG dinucleotides is close to that predicted from this mononucleotide composition. The sequence contains 17 complete open reading frames (ORFs) and part of another at the 5' end of the sequence. The predicted protein products of two of these ORFs have no recognizable homologs in the genomes of other sequenced human herpesviruses (i.e., Epstein-Barr virus [EBV], human cytomegalovirus [HCMV], herpes simplex virus [HSV], and varicella-zoster virus [VZV]). However, the products of nine other ORFs are clearly homologous to a set of genes that is conserved in all other sequenced herpesviruses, including homologs of the alkaline exonuclease, the phosphotransferase, the spliced ORF, and the major capsid protein genes. Measurements of similarity between these homologous sequences showed that HHV-6 is clearly most closely related to HCMV. The degree of relatedness between HHV-6 and HCMV was commensurate with that observed in comparisons between HSV and VZV or EBV and herpesvirus saimiri and significantly greater than its relatedness to EBV, HSV, or VZV. In addition, the gene for the major capsid protein and its 5' neighbor are reoriented with respect to the spliced ORFs in the genomes of both HHV-6 and HCMV relative to the organization observed in EBV, HSV, and VZV. Three ORFs in HHV-6 have recognizable homologs only in the genome of HCMV. Despite differences in gross composition and size, we conclude that the genomes of HHV-6 and HCMV are closely related.  相似文献   

3.
The herpes simplex virus (HSV) genome contains both cis- and trans-acting elements which are important in viral DNA replication. The cis-acting elements consist of three origins of replication: two copies of oriS and one copy of oriL. It has previously been shown that five cloned restriction fragments of HSV-1 DNA together can supply all of the trans-acting functions required for the replication of plasmids containing oriS or oriL when cotransfected into Vero cells (M. D. Challberg, Proc. Natl. Acad. Sci. USA, 83:9094-9098, 1986). These observations provide the basis for a complementation assay with which to locate all of the HSV sequences which encode trans-acting functions necessary for origin-dependent DNA replication. Using this assay in combination with the data from large-scale sequence analysis of the HSV-1 genome, we have now identified seven HSV genes which are necessary for transient replication of plasmids containing either oriS or oriL. As shown previously, two of these genes encode the viral DNA polymerase and single-stranded DNA-binding protein, which are known from conventional genetic analysis to be essential for viral DNA replication in infected cells. The functions of the products of the remaining five genes are unknown. We propose that the seven genes essential for plasmid replication comprise a set of genes whose products are directly involved in viral DNA synthesis.  相似文献   

4.
5.
DNA sequence analysis was carried out on the 1-kilobase SacI-EcoRI region of the EcoRI J fragment of four strains of Epstein-Barr virus (EBV) (MABA, P3HR-1, FF41, and NPC-5), and the sequences were compared with the prototype sequence from strain B95-8. Ten single-base changes which grouped the strains into two families (1 and 2) were found. Restriction endonuclease polymorphisms predicted from the sequences were used to classify the EBV DNA from a further 26 EBV-positive cell lines into these two families. The EBNA-2 types (A or B) of the strains were found to correlate with the J region type; EBNA-2 type A DNA regularly contained J region sequence type 1, while EBNA-2 type B DNA generally carried J region sequence type 2. These data are consistent with the notion of there being two distinct families of EBV with discrete, conserved differences in DNA sequence.  相似文献   

6.
7.
8.
In the long unique region of the genome of herpes simplex virus type 1 (HSV-1), the genes for DNA polymerase and the major DNA binding protein are arranged in a head to head manner, with an origin of DNA replication (termed OriL) located between them. This paper reports an 8400 base pair DNA sequence containing both genes and the origin, obtained mostly by M13/dideoxy analysis of plasmid cloned fragments. Amino acid sequences of the two proteins were deduced. Homologues of both genes were detected in the genome sequence of the distantly related Epstein-Barr virus (EBV). Arrangement of these HSV-1 and EBV genes differs in genome location and in relative orientation. A part of HSV-1 DNA polymerase was found to be similar to a sequence in adenovirus 2 DNA polymerase, but the significance of this is unclear. Since a DNA sequence in the locality of OriL deletes on plasmid cloning, this region was analysed using virus DNA. A palindrome with 72-residue arms was found, which shows great similarity to the better characterized origin, OriS.  相似文献   

9.
10.
The blood of the frog X.laevis contains 2 albumins of 68,000 and 74,000 daltons which are encoded in the liver by two related mRNAs. When an amplified X.laevis DNA library was screened with cloned albumin cDNA only 68,000 dalton albumin gene sequences were isolated. Hybridisation of the albumin cDNA to Southern-blots of Eco R1 digested X.laevis DNA showed that the sequences present in the recombinants did not account for all the fragments which hybridised on the Southern-blots. This indicated that 74K albumin gene sequences exist but that they are not present in the amplified DNA library. A X.laevis genomic library was therefore constructed and screened for albumin genes without amplification. Both 68K and 74K albumin gene sequences were isolated. Recombinants containing 74K albumin gene sequences grew extremely poorly and this probably explains why the 74K albumin sequences were ot isolated from the amplified library. Characterisation of the cloned DNA indicates that there is one sequence coding for the 68K albumin but two different sequences coding for the 75K albumin.  相似文献   

11.
12.
By analyses of short DNA sequences, we have deduced the overall arrangement of genes in the (A + T)-rich coding sequences of herpesvirus saimiri (HVS) relative to the arrangements of homologous genes in the (G + C)-rich coding sequences of the Epstein-Barr virus (EBV) genome and the (A + T)-rich sequences of the varicella-zoster virus (VZV) genome. Fragments of HVS DNA from 13 separate sites within the 111 kilobase pairs of the light DNA coding sequences of the genome were subcloned into M13 vectors, and sequences of up to 350 bases were determined from each of these sites. Amino acid sequences predicted for fragments of open reading frames defined by these sequences were compared with a library of the protein sequences of major open reading frames predicted from the complete DNA sequences of VZV and EBV. Of the 13 short amino acid sequences obtained from HVS, only 3 were recognizably homologous to proteins encoded by VZV, but all 13 HVS sequences were unambiguously homologous to gene products encoded by EBV. The HVS reading frames identified by this method included homologs of the major capsid polypeptides, glycoprotein H, the major nonstructural DNA-binding protein, thymidine kinase, and the homolog of the regulatory gene product of the BMLF1 reading frame of EBV. Locally as well as globally, the order and relative orientation of these genes resembled that of their homologs on the EBV genome. Despite the major differences in their nucleotide compositions and in the nature and arrangements of reiterated DNA sequences, the genomes of the lymphotropic herpesviruses HVS and EBV encode closely related proteins, and they share a common organization of these coding sequences which differs from that of the neurotropic herpesviruses, VZV and herpes simplex virus.  相似文献   

13.
A 3240-base-pair DNA fragment spanning the pyridine nucleotide transhydrogenase (pnt) genes of Escherichia coli has been sequenced. The sequence contains two open-reading frames, pntA and pntB of 1506 and 1386 base pairs, coding for the transhydrogenase alpha and beta subunits, respectively. The coding sequences are preceded by a promoter-like structure and are most likely co-transcribed. Each coding sequence is preceded by a Shine-Dalgarno sequence. The amino-terminal amino acid sequences were determined from the purified alpha and beta subunits of the transhydrogenase. These sequences agree with those predicted from the nucleotide sequences of the pntA and pntB genes. The predicted relative molecular masses of 53906 (alpha) and 48667 (beta) are close to the values obtained by analysis of the subunits by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Several hydrophobic regions large enough to span the cytoplasmic membrane were observed in each subunit. These results indicate that transhydrogenase is an intrinsic membrane protein.  相似文献   

14.
Lin CL  Li H  Wang Y  Zhu FX  Kudchodkar S  Yuan Y 《Journal of virology》2003,77(10):5578-5588
Herpesviruses utilize different origins of replication during lytic versus latent infection. Latent DNA replication depends on host cellular DNA replication machinery, whereas lytic cycle DNA replication requires virally encoded replication proteins. In lytic DNA replication, the lytic origin (ori-Lyt) is bound by a virus-specified origin binding protein (OBP) that recruits the core replication machinery. In this report, we demonstrated that DNA sequences in two noncoding regions of the Kaposi's sarcoma-associated herpesvirus (KSHV) genome, between open reading frames (ORFs) K4.2 and K5 and between K12 and ORF71, are able to serve as origins for lytic cycle-specific DNA replication. The two ori-Lyt domains share an almost identical 1,153-bp sequence and a 600-bp downstream GC-rich repeat sequence, and the 1.7-kb DNA sequences are sufficient to act as a cis signal for replication. We also showed that an AT-palindromic sequence in the ori-Lyt domain is essential for the DNA replication. In addition, a virally encoded bZip protein, namely K8, was found to bind to a DNA sequence within the ori-Lyt by using a DNA binding site selection assay. The binding of K8 to this region was confirmed in cells by using a chromatin immunoprecipitation method. Further analysis revealed that K8 binds to an extended region, and the entire region is 100% conserved between two KSHV ori-Lyt's. K8 protein displays significant similarity to the Zta protein of Epstein-Barr virus (EBV), which is a known OBP of EBV. This notion, together with the ability of K8 to bind to the KSHV ori-Lyt, suggests that K8 may function as an OBP in KSHV.  相似文献   

15.
We report the sequence of a 7800 base pair region of herpes simplex virus type 1 DNA, representing approximately 0.16 to 0.20 map units in the genome. This contains sequences transcribed into a leftward oriented set of five 3' coterminal mRNAs, together with two rightward transcribed flanking genes. One of the leftward genes encodes the virus's alkaline exonuclease, but the other gene products are uncharacterized. The amino acid sequence of one encoded protein suggested that it is a membrane embedded species. The DNA sequence is densely utilised, with two predicted out-of-frame overlaps of coding sequences, and probably six occurrences of promoter elements within coding sequences. Homologues of five of the genes were found for the distantly related Epstein-Barr virus, with a similar overall relative arrangement.  相似文献   

16.
The nucleotide sequences for colicin Ia and colicin Ib structural and immunity genes were determined. The two colicins each consist of 626 amino acid residues. Comparison of the two sequences along their lengths revealed that the two colicins are nearly identical in the N-terminal 426 amino acid residues. The C-terminal 220 amino acid residues of the colicins are only 60% identical, suggesting that this is the region most likely recognized by their cognate immunity proteins. The predicted proteins for the colicin immunity proteins would contain 111 amino acids for the colicin Ia immunity protein and 115 amino acids for the colicin Ib immunity protein. The colicin immunity proteins have no detectable DNA or amino acid homology but do exhibit a conservation of overall hydrophobicity. The colicin immunity genes lie distal to and in opposite orientation to the colicin structural genes. The colicin Ia immunity protein was purified to apparent homogeneity by a combination of isoelectric focusing and preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The N-terminal amino acid sequence of the purified Ia immunity protein was determined and was found to be in perfect agreement with that predicted from the DNA sequence of its structural gene. The Ia immunity protein is not a processed membrane protein.  相似文献   

17.
Identification of an Epstein-Barr virus-coded thymidine kinase.   总被引:17,自引:0,他引:17       下载免费PDF全文
We have demonstrated the presence of an Epstein-Barr virus (EBV)-coded thymidine kinase (TK) by producing biochemically transformed, TK-positive mammalian cell lines using either microinjection of whole EBV virions or calcium phosphate-mediated transfection of the SalI-B restriction endonuclease fragment of EBV DNA. Analysis of these cell lines showed that: (i) EBV DNA was present in the cell lines, (ii) sequences from the SalI-B restriction endonuclease fragment of EBV were expressed, (iii) a TK activity was present and (iv) a protein with antigenic cross-reactivity with the herpes simplex virus (HSV) TK was produced. The identity of the EBV TK gene was determined by demonstrating that a recombinant plasmid, which expressed the protein product of the BXLF1 open reading frame as a fusion protein, could complement TK- strains of E. coli. A comparison of the predicted amino acid sequences of the TK proteins of EBV and HSV-1 revealed significant regions of homology.  相似文献   

18.
Isolation of a genomal clone containing chicken histone genes.   总被引:4,自引:4,他引:0       下载免费PDF全文
We have used enriched chicken histone cDNA to select genomal clones from a chicken library. Because the cDNA probe also contained other sequences, a further screening of positive plagues with negative probes eliminated most non-histone gene clones. One 'positively-selected' genomal clone, lambda CH-01, hybridised with cloned sea-urchin histone genes and also detected histone genes in EcoRI-digested genomal sea-urchin DNA. Limited DNA sequencing of HaeIII fragments identified two sequences within the coding region of chicken histone H2A. A third fragment predicted an amino acid sequence with strong homology to an H1 histone sequence.  相似文献   

19.
Herpes simplex virus (HSV) induces DNA amplification of target genes within the host cell chromosome. To characterize the HSV genes that mediate the amplification effect, combinations of cloned DNA fragments covering the entire HSV genome were transiently transfected into simian virus 40 (SV40)-transformed hamster cells. This led to amplification of the integrated SV40 DNA sequences to a degree comparable to that observed after transfection of intact virion DNA. Transfection of combinations of subclones and of human cytomegalovirus immediate-early promoter-driven expression constructs for individual open reading frames led to the identification of six HSV genes which together were necessary and sufficient for the induction of DNA amplification: UL30 (DNA polymerase), UL29 (major DNA-binding protein), UL5, UL8, UL42, and UL52. All of these genes encode proteins necessary for HSV DNA replication. However, an additional gene coding for an HSV origin-binding protein (UL9) was required for origin-dependent HSV DNA replication but was dispensible for SV40 DNA amplification. Our results show that a subset of HSV replication genes is sufficient for the induction of DNA amplification. This opens the possibility that HSV expresses functions sufficient for DNA amplification but separate from those responsible for lytic viral growth. HSV infection may thereby induce DNA amplification within the host cell genome without killing the host by lytic viral growth. This may lead to persistence of a cell with a new genetic phenotype, which would have implications for the pathogenicity of the virus in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号