首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Activation of caspase 3 in HL-60 cells exposed to hydrogen peroxide   总被引:8,自引:0,他引:8  
Recent studies have suggested that hydrogen peroxide (H2O2), a reactive compound formed endogenously in the breakdown of superoxide, may mediate the induction of apoptosis in various cell types in response to external stimuli. However, the role of H2O2 in the apoptotic pathway has not been clearly established. The purpose of this study was to determine if H2O2 treatment could induce apoptosis through the activation of caspases. Doses of H2O2 ranging from 10 microM to 100 microM, when added to HL-60 cells, resulted in the cleavage of poly(ADP-ribose) polymerase (PARP) from its native 113 Kd form to a processed 89 Kd fragment, indicative of cells undergoing apoptosis. PARP was predominantly in the fragmented form when doses of 20 microM and greater were used. A time course study of changes in PARP processing in H2O2-treated cells revealed that 10 and 50 microM H2O2 required 6 and 3 h, respectively, to specifically degrade PARP, suggesting that the H2O2-induced PARP cleavage is both time and concentration dependent. Since PARP is cleaved by CPP32 (caspase-3), we next determined if H2O2 was capable of effecting changes in CPP32 activity. The caspase activity was assayed using a colorimetric substrate, DEVD-pNa. Results of these experiments showed that H2O2 increased caspase activity at 3 h, corresponding to the time of appearance of fragmented PARP. Also, CPP32 activity and PARP processing were both significantly suppressed by caspase-3 inhibitors. Taken together, these results suggest that H2O2 mediates specific cleavage of PARP and possibly apoptosis by activating caspase 3.  相似文献   

2.
Phenanthroline, a strong iron chelator, prevents both the formation of DNA single-strand breaks and the killing of mouse cells produced by H2O2. These results, taken together with our previous findings, indicate that the DNA damage is produced by hydroxyl radicals formed when H2O2 reacts with chromatin-bound Fe2+ and that this damage is responsible for the killing effect.  相似文献   

3.
The present study is on the growth inhibitory effect of Withania somnifera methanolic leaf extract and its active component, withanolide on HL-60 promyelocytic leukemia cells. The decrease in survival rate of HL-60 cells was noted to be associated with a time dependent decrease in the Bcl-2/Bax ratio, leading to up regulation of Bax. Both the crude leaf extract and the active component activated the apoptotic cascade through the cytochrome c release from mitochondria. The activation of caspase 9, caspase 8 and caspase 3 revealed that caspase was a key mediator in the apoptotic pathway. DNA fragmentation analysis revealed typical ladders as early as 12h indicative of caspase 3 role in the apoptotic pathway. Flow cytometry data demonstrated an increase of sub-G1 peak upon treatment by 51% at 24h, suggesting the induction of apoptotic cell death in HL-60 cells.  相似文献   

4.
Photodynamic therapy induces caspase-3 activation in HL-60 cells   总被引:3,自引:0,他引:3  
Caspases have been shown to play a crucial role in apoptosis induced by various deleterious and physiologic stimuli. In this study, we show for the first time that photodynamic therapy (PDT), using benzoporphyrin derivative monoacid ring A (BPD-MA, verteporfin) as the photosensitizer, induces the complete cleavage and subsequent activation of caspase-3 (CPP32/Yama/Apopain) but not caspase-1 (ICE) in human promyelocytic leukemia HL-60 cells. Poly(ADP-ribose) polymerase (PARP) and the catalytic subunit of DNA dependent protein kinase (DNA PK(CS)) were cleaved within 60 min of light activation of BPD-MA. The general caspase inhibitor Z-Asp-2,6 dichlorobenzoyloxymethylketone (Z-Asp-DCB) blocked PARP cleavage while the serine protease inhibitors 3,4-dichloroisocoumarin (DCI) and N-tosyl-lysyl chloromethyl ketone (TLCK) blocked the cleavage of caspase-3 suggesting that they act upstream of caspase-3 activation. All three inhibitors were able to block DNA fragmentation that was induced by treatment with BPD-MA followed by light application. These studies demonstrate that protease activity, particularly that of caspase-3, is triggered in HL-60 cells treated with lethal levels of BPD-MA and visible light.  相似文献   

5.
Kwon KB  Kim EK  Shin BC  Seo EA  Park JW  Kim JS  Park BH  Ryu DG 《Life sciences》2003,73(15):1895-1906
Takrisodokyeum (TRSDY), a Chinese herbal medicine, has been known to exert anti-tumoral activity in Korea. However, its molecular mechanism of action is not understood. In this study, we found that TRSDY induced apoptosis in HL-60 cells as evidenced by both a characteristic ladder pattern of discontinuous DNA fragments and an increase of annexin V+/PI- stained cell population. Our data demonstrated that TRSDY-induced apoptotic cell death was accompanied by activation of caspase-3 and cleavages of its substrates, poly(ADP-ribose) polymerase (PARP) and RhoGDP dissociation inhibitor (RhoGDI-2; also called D4-GDI) in a time- and concentration-dependent manner. Caspase-3 inhibitor, but not caspase-1 inhibitor, prevented TRSDY-induced apoptosis. Furthermore, treatment with TRSDY increased the production of intracellular hydrogen peroxide and pretreatment of cells with anti-oxidants conferred complete protection against hydrogen peroxide generation and subsequent caspase-3 activation. Taken together, these results suggest that TRSDY induces hydrogen peroxide generation, which, in turn, causes activation of caspase-3, degradation of PARP and D4-GDI, and eventually leads to apoptotic cell death.  相似文献   

6.
Recent studies have implicated apoptosis as one of the most plausible mechanisms of the chemopreventive effects of selenium compounds, and reactive oxygen species (ROS) as important mediators in apoptosis induced by various stimuli. In the present study, we demonstrate that Se-methylselenocysteine (MSC), one of the most effective selenium compounds at chemoprevention, induced apoptosis in HL-60 cells and that ROS plays a crucial role in MSC-induced apoptosis. The uptake of MSC by HL-60 cells occurred quite early, reaching the maximum within 1 h. The dose-dependent decrease in cell viability was observed by MSC treatment and was coincident with increased DNA fragmentation and sub-G(1) population. 50 microM of MSC was able to induce apoptosis in 48% of cell population at a 24 h time point. Moreover, the release of cytochrome c from mitochondria and the activation of caspase-3 and caspase-9 were also observed. The measurement of ROS by dichlorofluorescein fluorescence revealed that dose- and time-dependent increase in ROS was induced by MSC. N-acetylcysteine, glutathione, and deferoxamine blocked cell death, DNA fragmentation, and ROS generation induced by MSC. Moreover, N-acetylcysteine effectively blocked caspase-3 activation and the increase of the sub-G(1) population induced by MSC. These results imply that ROS is a critical mediator of the MSC-induced apoptosis in HL-60 cells.  相似文献   

7.
Previous studies have shown that under certain conditions some thiol-containing compounds can cause apoptosis in a number of different cell lines. Herein, we investigated the apoptotic pathways in HL-60 cells triggered by dithiothreitol (DTT), used as a model thiol compound, and tested the hypothesis that thiols cause apoptosis via production of hydrogen peroxide (H2O2) during thiol oxidation. The results show that, unlike H2O2, DTT does not induce apoptosis via a mitochondrial pathway. This is demonstrated by the absence of early cytochrome c release from mitochondria into the cytosol, the lack of mitochondrial membrane depolarization at early times, and the minor role of caspase 9 in DTT-induced apoptosis. The first caspase activity detectable in DTT-treated cells is caspase 3, which is increased significantly 1 - 2 h after the start of DTT treatment. This was shown by following the cleavage of both a natural substrate, DFF-45/ICAD, and a synthetic fluorescent substrate, z-DEVD-AFC. Cleavage of substrates of caspases 2 and 8, known as initiator caspases, does not start until 3 - 4 h after DTT exposure, well after caspase 3 has become active and at a time when apoptosis is in late stages, as shown by the occurrence of DNA fragmentation to oligonucleosomal-sized pieces. Although oxidizing DTT can produce H2O2, data presented here indicate that DTT-induced apoptosis is not mediated by production of H2O2 and occurs via a novel pathway that involves activation of caspase 3 at early stages, prior to activation of the common 'initiator' caspases 2, 8 and 9.  相似文献   

8.
Apoptosis is an active process critical for the homeostasis oforganisms. Enzymes of the caspase family are responsible for executingthis process. We have previously shown that peroxynitrite (ONOO), a biologicalproduct generated from the interaction of nitric oxide and superoxide,induces apoptosis of HL-60 cells. The aim of this study was toelucidate the mechanisms involved in the execution process ofperoxynitrite-induced apoptosis. Proteolytic cleavage ofpoly(ADP-ribose) polymerase, an indication of caspase-3 family proteaseactivation and an early biochemical event accompanying apoptosis, wasobserved in a time-dependent manner during peroxynitrite-induced apoptosis of HL-60 cells. Activation of caspase-3 duringperoxynitrite-induced apoptosis was substantiated by monitoringproteolysis of the caspase-3 proenzyme and by measuring caspase-3activity with a fluorogenic substrate. Furthermore, pretreatment ofHL-60 cells withN-acetyl-Asp-Glu-Val-Asp-aldehyde, aspecific inhibitor of caspase-3, but notN-acetyl-Tyr-Val-Ala-Asp-aldehyde, aspecific inhibitor of caspase-1, decreased peroxynitrite-induced apoptosis. These results suggest that the activation of a caspase-3 family protease is essential for initiating the execution process ofperoxynitrite-induced apoptosis of HL-60 cells.

  相似文献   

9.
Geranylgeranylacetone (GGA) induces apoptosis in human leukemia HL-60 cells in a dose- and time-dependent manner. This effect was completely prevented by the pan-caspase inhibitor z-Val-Ala-Asp(OMe) fluoromethylketone, thereby implicating the caspase cascade in the process. Prior to DNA fragmentation, GGA treatment markedly activated caspase-3(-like) proteases, which might be responsible for the observed apoptosis. In addition, GGA treatment interfered with the processing and membrane localization of Rap1 and Ras, and these changes may be a result of apoptosis. Moreover, nitric oxide donors significantly accentuated the GGA-induced apoptosis, suggesting that the apoptotic pathway induced by GGA might be regulated by a redox-sensitive mechanism. Taken together, these data suggest that the isoprenoid, GGA, is an effective inducer of apoptotic cell death in HL-60 cells.  相似文献   

10.
11.
Zinc (Zn), an endogenous regulator of apoptosis, and has abilities both to induce apoptosis and inhibit the induction of apoptosis via the modulation of caspase activity. Due to the multifunctions of Zn, the intracellular Zn level is strictly regulated by a complex system in physiological and pathological conditions. The commitment of Zn to the regulation of apoptosis is not fully understood. In the present study, we investigated the role of intracellular Zn level in the induction of apoptosis in human leukemia cells (HL-60 cells) using a Zn ionophore [pyrithione (Py)]. Treatment of HL-60 cells with Zn for 6 h in the presence of Py (1 micro m) exhibited cytotoxicity in a Zn dose-dependent manner (25-200 micro m). Necrotic cells, assayed by trypan blue permeability, increased in number in a Zn dose-dependent fashion (50-100 micro m), but the appearance of apoptotic cells, assayed by formation of a DNA ladder and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling method, peaked at 25 micro m, suggesting the dependence of intracellular Zn level on the execution of apoptosis. In fact, treatment with Py resulted in increases in intracellular Zn levels, and N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine, a cell-permeable Zn chelator, inhibited DNA ladder formation induced by Py/Zn treatment (1 micro m Py and 25 micro m Zn). Py/Zn treatment activated the caspases, as assessed by the proteolysis of poly(ADP-ribose) polymerase (PARP), which is a substrate of caspase, and activated p38 mitogen-activated protein kinase (p38MAPK), which is a transducer of apoptotic stimuli to the apparatus of the apoptosis execution. Z-Asp-CH2-DCB, a broad-spectrum inhibitor of caspase, attenuated proteolysis of PARP and DNA ladder formation by Py/Zn, indicating that apoptosis induced by Py/Zn is mediated by caspase activation. The p38MAPK-specific inhibitor SB203580 also inhibited induction of apoptosis by Py/Zn. Although SB203580 suppressed the proteolysis of PARP, Z-Asp-CH2-DCB did not inhibit the phosphorylation of p38MAPK, raising the possibility that apoptosis triggered by Py/Zn might be mediated by the p38MAPK/caspase pathway.  相似文献   

12.

Background

Morphine has been shown to affect the function of immune system, but the precise mechanism remains to be elucidated. The present study was aimed to clarify the mechanism for the morphine-induced immune suppression by analyzing the direct effect of morphine on human CD3+ T cells.

Methods

To identify genes up-regulated by action of morphine on the opioid receptor expressed in CD3+ T cells, PCR-select cDNA subtraction was performed by the use of total RNA from human CD3+ T cells treated with morphine in the presence and absence of naloxone.

Results

We show that p53 and damage-specific DNA binding protein 2 (ddb2) genes are up-regulated by morphine in a naloxone-sensitive manner. Furthermore, the results indicate that DNA damage, quantified by apurinic–apyrimidinic site counting assay and phosphorylation of Ser-15 in P53 protein, is induced in CD3+ T cells by morphine in a naloxone-sensitive manner.

General significance

Because it was shown that only the κ opioid receptor gene is expressed in CD3+ T cells in the opioid receptor family, the present study suggests that morphine induces DNA damage through the action on the κ opioid receptor, which leads to immune suppression by activation of P53-mediated signal transduction.  相似文献   

13.
Flavonoids were demonstrated to possess several biological effects including antitumor, antioxidant, and anti-inflammatory activities in our previous studies. However, the effect of glycosylation on their biological functions is still undefined. In the present study, the apoptosis-inducing activities of three structure-related flavonoids including aglycone quercetin (QUE), and glycone rutin (RUT; QUE-3-O-rutinoside), and glycone quercitrin (QUI; QUE-3-O-rhamnoside) were studied. Both RUT and QUI are QUE glycosides, and possess rutinose and rhamnose at the C3 position of QUE, respectively. Results of the MTT assay showed that QUE, but not RUT and QUI, exhibits significant cytotoxic effect on HL-60 cells, accompanied by the dose- and time-dependent appearance of characteristics of apoptosis including an increase in DNA ladder intensity, morphological changes, apoptotic bodies, and an increase in hypodiploid cells by flow cytometry analysis. QUE, but not RUT or QUI, caused rapid and transient induction of caspase 3/CPP32 activity, but not caspase 1 activity, according to cleavage of caspase 3 substrates poly(ADP-ribose) polymerase (PARP) and D4-GDI proteins, and the appearance of cleaved caspase 3 fragments being detected in QUE- but not RUT- or QUI-treated HL-60 cells. A decrease in the anti-apoptotic protein, Mcl-1, was detected in QUE-treated HL-60 cells, whereas other Bcl-2 family proteins including Bax, Bcl-2, Bcl-XL, and Bag remained unchanged. The caspase 3 inhibitor, Ac-DEVD-FMK, but not the caspase 1 inhibitor, Ac-YVAD-FMK, attenuated QUE-induced cell death. Results of DCHF-DA assay indicate that no significant increase in intracellular peroxide level was found in QUE-treated cells, and QUE inhibited the H(2)O(2)-induced intracellular peroxide level. Free radical scavengers N-acetyl-cysteine (NAC) and catalase showed no prevention of QUE-induced apoptosis. In addition, QUE did not induce apoptosis in an mature monocytic cell line THP-1, as characterized by a lack of DNA ladders, caspase 3 activation, PARP cleavage, and an Mcl-1 decrease, compared with those in HL-60 cells. Our experiments provide evidence to indicate that the addition of rutinose or rhamnose attenuates the apoptosis-inducing activity of QUE, and that the caspase 3 cascade but not free radical production is involved.  相似文献   

14.
Lethal toxin (LT) from Clostridium sordellii (strain IP82) inactivates in glucosylating the small GTPases Ras, Rap, Ral and Rac. In the present study we show that LT-IP82 induces cell death via an intrinsic apoptotic pathway in the myeloid cell-line HL-60. LT-IP82 was found to disrupt mitochondrial homeostasis as characterized by a decrease in mitochondrial transmembrane potential and cardiolipin alterations, associated with the release of cytochrome c in the cytosol. Time-course studies of caspase activation revealed that caspase-9 and caspase-3 were activated before caspase-8. Moreover, although LT-IP82-induced cell death was abrogated by caspase-inhibitors, these inhibitors did not suppress mitochondrial alterations, indicating that caspase activation occurs downstream of mitochondria. Protection of mitochondria by Bcl-2 overexpression prevented mitochondrial changes as well as apoptosis induction. Furthermore, evidence is provided that LT-IP82-induced apoptosis is not a consequence of cortical actin disorganization, suggesting that Rac inactivation does not initiate the apoptotic process. Cell exposure to LT-IP82 leads to a co-localization of the toxin with a mitochondrial marker within 2 h. Therefore, we suggest that LT-IP82 could act at the mitochondrion level independently of its enzymatic effect on small GTPases.  相似文献   

15.
We studied the effect of doxorubicin on the production of hydrogen peroxide by PC3 human prostate cancer cells, using a sensitive assay based on aminotriazole-mediated inhibition of catalase. PC3 cells exposed to increasing concentrations of doxorubicin had an increase in intracellular hydrogen peroxide that was concentration-dependent up to 1 microM doxorubicin. The apparent hydrogen peroxide concentration in the PC3 cells was 13 +/- 4 pM under basal steady-state conditions and increased to 51 +/- 13 pM after exposure to 1 microM doxorubicin for 30 min. The level of hydrogen peroxide in the medium as measured by Amplex Red did not increase as a result of doxorubicin treatment. PC3 cells overexpressing catalase were no more resistant to doxorubicin cytotoxicity as compared to non-transduced wild-type cells; therefore, the exact role of hydrogen peroxide in anthracycline cytotoxicity remains unproven. This study demonstrates that a specific oxidative event associated with the exposure of PC3 human prostate cancer cells to anthracyclines results in an increase in intracellular hydrogen peroxide.  相似文献   

16.
Ceruloplasmin enhances DNA damage induced by hydrogen peroxide in vitro   总被引:3,自引:0,他引:3  
Ceruloplasmin (Cp) was found to promote the oxidative damage to DNA, as evidenced by the formation of 8-hydroxy-2'-deoxyguanosine and strand breaks, when incubated with H2O2 in vitro. The capacity of Cp to enhance oxidative damage to DNA was inhibited by hydroxyl radical scavengers such as sodium azide and mannitol, a metal chelator, diethylenetriaminepenta-acetic acid, and catalase. Although the oxidized protein resulted in an increase in the content of carbonyl groups, the ferroxidase activity and the proteolytic susceptibility were not significantly altered. The release of a portion of Cu from Cp was observed, and conformational alterations were indicated by the changes in fluorescence spectra. Based on these results, we suggest that damage to DNA is mediated in the H2O2/Cp system via the generation of ·OH by released Cu2+ and/or loosely bound Cu exposed from oxidatively damaged Cp through the conformational change. The release of Cu from Cp during oxidative stress could enhance the formation of reactive oxygen species and could also potentiate cellular damage.  相似文献   

17.
Apoptosis has been associated with oxidative stress in biological systems. Caspases have been considered to play a pivotal role in the execution phase of apoptosis. However, which caspases function as executioners in reactive oxygen species (ROS)-induced apoptosis is not known. The present study was performed to identify the major caspases acting in ROS-induced apoptosis. Treatment of HL-60 cells with 50 μM hydrogen peroxide (H2O2) for 4 h induced the morphological changes such as condensed and/or fragmented nuclei, increase in caspase-3 subfamily protease activities, reduction of the procaspase-3 and a DNA fragmentation. To determine the role of caspases in H2O2-induced apoptosis, caspase inhibitors, acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone(Ac-YVAD-cmk), acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) and acetyl-Val-Glu-lle-Aspaldehyde (Ac-VEID-CHO), selective for caspase-1 subfamily, caspase-3 subfamily and caspase-6, respectively, were loaded into the cells using an osmotic lysis of pinosomes method. Of these caspase inhibitors, only Ac-DEVD-CHO completely blocked morphological changes, caspase-3 subfamily protease activation and DNA ladder formation in H2O2-treated HL-60 cells. This inhibitory effect was dose-dependent. These results suggest that caspase-3, but not caspase-1 is required for commitment to ROS-triggered apoptosis.  相似文献   

18.
It has been suggested that oxidative stress plays a major role in various forms of cell death, including necrosis and apoptosis. We have previously reported that fluoride (NaF) induces apoptosis in HL-60 cells by caspase-3 activation. The main focus of this investigation was to arrive at a possible pathway of the apoptosis induced by NaF upstream of caspase-3, because the mechanism is still unknown. The present study showed that after exposure to NaF, there was an increase in MDA and 4-HNE and a loss of mitochondrial membrane potential (deltaPsi(m)) was also observed in NaF-treated cells.There was a significant increase in cytosolic cytochrome c, which is released from the mitochondria. We have reported a downregulation of Bcl-2 protein in NaF-treated cells. The antioxidants N-acetyl cysteine (NAC), glutathione (GSH) protected the cells from loss of deltaPsi(m), and there was no cytochrome c exit or Bcl-2 downregulation, and we suggest that these antioxidants prevent apoptosis induced by NaF. These results suggested that perhaps NaF induced apoptosis by oxidative stress-induced lipid peroxidation, causing loss of deltaPsi(m), and thereby releasing cytochrome c into the cytosol and further triggering the caspase cascade leading to apoptotic cell death in HL-60 cells.  相似文献   

19.
Treatment of human promyelocytic leukemia HL-60 cells with apigeninidin could induce cytotoxicity (IC50 = ~80 μM), along with apoptotic sub-G1 cells, TUNEL-positive apoptotic DNA fragmentation, activation of the multidomain pro-apoptotic Bcl-2 proteins (Bak and Bax), mitochondrial membrane potential (Δψm) loss, release of mitochondrial cytochrome c and AIF into the cytoplasm, activation of caspase-9, -3, -8, and -7, and cleavage of PARP and lamin B. These induced apoptotic events were accompanied by decrease of Bcl-2 level and increase of Bak and Bax levels. Apigeninidin-induced sub-G1 cells and activation of Bak and Bax were also detected in human acute leukemia Jurkat T cells, but not in Jurkat T cells overexpressing Bcl-2. Pretreatment of HL-60 cells with the pan-caspase inhibitor z-VAD-fmk reduced significantly apigeninidin-induced sub-G1 cells and caspase cascade activation, whereas it failed to suppress Bak and Bax activations, Δψm loss, and release of mitochondrial cytochrome c and AIF. None of FADD and caspase-8 deficiencies affected the sensitivity of Jurkat T cells to apigeninidin-induced cytotoxicity. These results demonstrated that apigeninidin-induced apoptosis was mediated by activation of Bak and Bax, mitochondrial damage and resultant release of not only cytochrome c, causing caspase cascade activation, but also caspase-independent death effector AIF in HL-60 cells.  相似文献   

20.
Glucocorticoids are widely used as anti-inflammatory and chemotherapeutic agents. However, prolonged use of glucocorticoids leads to osteoporosis. This study was designed to examine the mechanism of dexamethasone (DEX)-induced apoptosis in murine osteoblastic MC3T3-E1 cells. Total RNA was extracted from MC3T3-E1 cells treated with 10(-7) M DEX for 6 h. DEX exerted a variety of effects on apoptotic gene expression in osteoblasts. Ribonuclease protection assays (RPA) revealed that DEX upregulated mRNA levels of caspases-1, -3, -6, -8, -11, -12, and bcl-XL. Western blot analysis showed enhanced processing of these caspases, with the appearance of their activated enzymes 8 h after DEX treatment. In addition, DEX also induced the activation of caspase-9. DEX elevated the levels of cleaved poly(ADP-ribose) polymerase and lamin A, a caspase-3 and a caspase-6 substrate, respectively. Expression of bcl-XL protein level was upregulated by DEX. Cytochrome c release was detected in the cytosol of DEX-treated cells. Furthermore, caspase-3 enzyme activity was elevated by 2-fold after DEX treatment for 7 h. Finally, early apoptotic cells were detected in cells treated with DEX for 3 h. Our results demonstrate that DEX-induced apoptosis involves gene activation of a number of caspases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号