首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
Plants of C. canephora grown in pots under low nitrogen (LN) or high nitrogen (HN) applications were submitted to either cyclic water stress or daily irrigation. Water deficit led to marked decreases in net carbon assimilation rate (A) and, to a lesser extent, in stomatal conductance (gs), regardless of the N treatments. In well-watered plants, A appreciably increased in HN plants relative to LN plants without significant changes in gs. As a whole, changes in internal CO2 concentration predominantly reflected changes in A rather than in gs. Under irrigated conditions, A, but not gs, correlated with leaf N concentration in a curvilinear way. Photosynthetic nitrogen-use efficiency was considerably low, and decreased with increasing leaf N concentration. Limited N, but not water, slightly decreased the maximum photochemical efficiency of photosystem II (PSII). Under continuous irrigation, LN plants had a smaller quantum yield of electron transport (PSII) through slight decreases of photochemical quenching (qp) and capture efficiency of excitation energy by open PSII reaction centres, and increases in Stern-Volmer non-photochemical quenching. Under water-stressed conditions, changes in PSII photochemistry were apparent only in HN plants, with a 25 % decrease in PSII, due mainly to variations in qp. Biochemical constraints, rather than stomatal or photochemical limitations, provoked the decreases in A under limited supply of either N or water.  相似文献   

2.
A comparison of photosynthetic characteristics of 20 cultivars of grapevine ( Vitis vinifera L. ) from Mallorca (Balearic Islands, Spain) and two widespread cultivars, Cabernet Sauvignon and Chardonnay, was made under irrigation as well as in response to drought. Although these cultivars share a common origin, a high variability was found for several photosynthetic characters under irrigation. Interestingly, these variations were significant for gas-exchange parameters (net CO2 assimilation, stomatal conductance and intrinsic water use efficiency) but not for chlorophyll fluorescence parameters (maximum photochemical efficiency, electron transport rate and non-photochemical quenching). Since water stress is the most limiting factor for plant production under the Mediterranean climate, it is presumable that these findings reflect specific selection pressures over physiological characteristics related to a balance between net carbon gain and water use. Some cultivars presented high carbon assimilation at the expense of a high water loss, whereas others were water savers, accompanied by low CO2 assimilation even under irrigation. Escursach was found to be an interesting cultivar, presenting low water consumption at the same time as reasonably high carbon assimilation. These cultivars also showed different responses to drought, which allowed their classification in two main groups: alarmist cultivars, which showed strong reductions of stomatal conductance in response to relatively low decreases of leaf water potential, and luxurious cultivars, showing low reductions of stomatal conductance under water stress.  相似文献   

3.
The response of rice plants to inoculation with an arbuscular mycorrhizal (AM) fungus, Azospirillum brasilense, or combination of both microorganisms, was assayed under well-watered or drought stress conditions. Water deficit treatment was imposed by reducing the amount of water added, but AM plants, with a significantly higher biomass, received the same amount of water as non-AM plants, with a poor biomass. Thus, the water stress treatment was more severe for AM plants than for non-AM plants. The results showed that AM colonization significantly enhanced rice growth under both water conditions, although the greatest rice development was reached in plants dually inoculated under well-watered conditions. Water level did not affect the efficiency of photosystem II, but both AM and A. brasilense inoculations increased this value. AM colonization increased stomatal conductance, particularly when associated with A. brasilense, which enhanced this parameter by 80% under drought conditions and by 35% under well-watered conditions as compared to single AM plants. Exposure of AM rice to drought stress decreased the high levels of glutathione that AM plants exhibited under well-watered conditions, while drought had no effect on the ascorbate content. The decrease of glutathione content in AM plants under drought stress conditions led to enhance lipid peroxidation. On the other hand, inoculation with the AM fungus itself increased ascorbate and proline as protective compounds to cope with the harmful effects of water limitation. Inoculation with A. brasilense also enhanced ascorbate accumulation, reaching a similar level as in AM plants. These results showed that, in spite of the fact that drought stress imposed by AM treatments was considerably more severe than non-AM treatments, rice plants benefited not only from the AM symbiosis but also from A. brasilense root colonization, regardless of the watering level. However, the beneficial effects of A. brasilense on most of the physiological and biochemical traits of rice plants were only clearly visible when the plants were mycorrhized. This microbial consortium was effective for rice plants as an acceptable and ecofriendly technology to improve plant performance and development.  相似文献   

4.
The combined effects of ultraviolet-B (UV-B, 280–320 nm) radiation and water stress were investigated on the water relations of greenhouse grown soybean [ Glycine max (L.) Merr. cv. Essex]. On a weighted (Caldwell 1971), total daily dose basis, plants received either 0 or 3 000 effective J m2 UV-BBE supplied by filtered FS-40 sunlamps. The latter dose simulated the solar UV-B radiation anticipated at College Park, Maryland, U.S.A. (39°N latitude) in the event that the global stratospheric ozone column is reduced by 25%. Plants were either well-watered or preconditioned by drought stress cycles. Diurnal measurements of water potential and stomatal conductance were made on the youngest fully expanded leaf. Various internal water relations parameters were determined for detached leaves. Plants were monitored before, during and after water stress. There were no significant differences in leaf water potential or stomatal conductance between treatments before plants were preconditioned to water stress. However, drought stress resulted in significantly lower midday and afternoon leaf water potentials and lower leaf conductances as compared to well-watered plants. UV-B radiation had no additional effect on leaf water potential; however, UV did result in lower leaf conductances in plants preconditioned to water stress. Turgid weight:dry weight ratio, elastic modulus, bound water and relative water content were unaffected by UV-B radiation. Osmotic potentials at full and zero turgor were significantly lower in the drought stressed treatments as compared to well-watered plants.  相似文献   

5.
Under drought conditions, arbuscular mycorrhizal (AM) fungi alter water relationships of plants and improve their resistance to drought. In a factorial greenhouse experiment, we tested the effects of the AM symbiosis and precipitation regime on the performance (growth, gas exchange, nutrient status and mycorrhizal responsiveness) of Boswellia papyrifera seedlings. A continuous precipitation regime was imitated by continuous watering of plants to field capacity every other day during 4 months, and irregular precipitation by pulsed watering of plants where watering was switched every 15 days during these 4 months, with 15 days of watering followed by 15 days without watering. There were significantly higher levels of AM colonization under irregular precipitation regime than under continuous precipitation. Mycorrhizal seedlings had higher biomass than control seedlings. Stomatal conductance and phosphorus mass fraction in shoot and root were also significantly higher for mycorrhizal seedlings. Mycorrhizal seedlings under irregular watering had the highest biomass. Both a larger leaf area and higher assimilation rates contributed to higher biomass. Under irregular watering, the water use efficiency increased in non-mycorrhizal seedlings through a reduction in transpiration, while in mycorrhizal seedlings irregular watering increased transpiration. Because assimilation rates increased even more, mycorrhizal seedlings achieved an even higher water use efficiency. Boswellia seedlings allocated almost all carbon to the storage root. Boswellia seedlings had higher mass fractions of N, P, and K in roots than in shoots. Irregular precipitation conditions apparently benefit Boswellia seedlings when they are mycorrhizal. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2258-3) contains supplementary material, which is available to authorized users.  相似文献   

6.
Effects of nitrogen (N) nutrition level on photosynthesis of wheat were studied using method of quick drying of detached leaves, under rapid water stress. The results showed that in the case, leaf water potential (Ψw), net photosynthetic rate (Pn) and stomatal conductance (Gs) of high N (HN) leaves decreased more quickly than that of low N (LN) leaves. Therefore, the difference of Pn between HN and LN leaves became less and less with increasing water stress. Under severe water stress, the Pn of HN leaves were lower than that of LN leaves. The intercellular concentration of CO2 (Ci) of HN leaves were lower than that of LN leaves, and the value of stomatal limitation of photosynthesis (Ls) of HN leaves were higher during rapid water stress. However, the mesophllous conductance of CO2 (Gm) and photosynthetic activity of mesophyll of HN leaves were still higher than that of LN leaves.  相似文献   

7.
Young Carapa guianensis plants were examined under well-watered (control) and water-deficit conditions with the aim to evaluate possible relationship between diurnal changes in leaflet gas exchange with lipid peroxidation and adjustments in antioxidative responses. Treatment comparisons were assessed when leaflet water potential (Ψw) in water-stressed plants reached around ?2.5 ± 0.5 MPa at pre-dawn. Regardless of watering regime, the highest net CO2 assimilation rate and stomatal conductance were recorded until 9:00 h. Control plants showed diurnal increases in transpiration, while it was strongly decreased in water-stressed plants. Diurnal decreases in intercellular to ambient CO2 concentration ratio were just observed in stressed plants. Regardless of watering regime, non-significant changes (P > 0.05) in Ψw and relative water content were registered throughout the day; however, both variables were significantly lower (P < 0.05) in stressed plants. Malondialdehyde concentration did not vary throughout the day, but it was higher in stressed plants. Excepting for guaiacol-type peroxidase, the antioxidant enzyme activities varied throughout the day regardless of watering regimes. Nevertheless, increases in antioxidant enzymes were more expressive in water-stressed plants. Despite, a relationship between diurnal changes in A and g s and lipid peroxidation or antioxidant enzymes was unclear regardless of watering regimes. Thus, we conclude that although plants from both watering regimes were able to adjust antioxidant enzymes activities throughout the day, the water-stressed plants were more susceptible to damages to net CO2 assimilation and suffered more expressive oxidative damages to lipids than plants grown under well-watered conditions.  相似文献   

8.
This study examined the effects of the combination of UV radiation and water limitation on the leaf photosynthesis, stomatal conductance, and terpene emissions of four Mediterranean species. 1-year-old seedlings of these Mediterranean species [Daphne gnidium L., Pistacia lentiscus L., Ilex aquifolium L. and Laurus nobilis L.] were grown under one of three UV treatments (without UV, with UVA, or with UVA + UVB) and two watering regimes (high and low water supply). In general, UV treatments did not affect significantly leaf photosynthesis or stomatal conductance, although UVA and UVB radiation in September led to a reduction in leaf stomatal conductance in D. gnidium. Leaf photosynthesis rates did not differ significantly between the two watering treatments, even though, in three of the species, leaf stomatal conductance was significantly higher among the well-watered plants. The effects of UV on terpene emissions were species-specific; D. gnidium had the highest terpene emission rates when grown under UVA + UVB radiation, which was also true for L. nobilis in September. Overall, UV treatments did not have a significant effect on total terpene emission rates in I. aquifolium, but UVB and UVA in July and September, respectively, reduced emission rates in P. lentiscus. A limited water supply reduced the terpene emission rates in D. gnidium, increased emissions in L. nobilis, and did not affect the emission rates in the other two species.  相似文献   

9.
Summary The response of leaf gas exchange to environmental variables were measured at different levels of drought stress for Agropyron desertorum, a naturalized perennial bunchgrass of the semiarid shrub steppes of western North America. Leaf conductance (stomatal plus boundary layer) was more sensitive to changes in water vapor gradient than to changes in leaf temperature. Assimilation was sensitive to both temperature and vapor gradient, and also appeared to be affected by conductance and high transpiration rates. The magnitudes of both assimilation and conductance decreased with increased drought conditions. Diurnal patterns of gas exchange were measured during 3 growing seasons. For a typical spring day with moderate leaf temperature and vapor gradient, diurnal patterns were similar for plants at different levels of soil water availability. Assimilation was relatively constant during most of the day, but conductance decreased during the afternoon. Total daily carbon gain was decreased to a lesser extent than daily water loss as soil water was depleted. Consequently, the ratio of daily carbon gain to daily water loss, i.e. daily water use efficiency, increased with decreased soil water content for diurnals under spring conditions. Diurnal patterns of assimilation for a typical summer day with high leaf temperature and vapor gradient differend from those for a spring day. An afternoon decrease in assimilation was typical during a summer day. Daily carbon gain, water use, and water use efficiency for summer diurnals decreased only under severe drought conditions. Almost complete recovery of assimilation and conductance occurred if leaf microclimate was ameliorated during the afternoon of either spring or summer diurnals. Thus, conditions responsible for a midday depression in assimilation during a single day did not have persistent effects on leaf gas exchange. Daily carbon gain of a typical summer day was restricted by leaf microclimate during the afternoon, but daily water use efficiency was not relatively increased by the amelioration of leaf microclimate.  相似文献   

10.
The relationships between the vulnerability of stem xylem to cavitation, stomatal conductance, stomatal density, and leaf and stem water potential were examined in six hybrid poplar (P38P38, Walker, Okanese, Northwest, Assiniboine and Berlin) and balsam poplar (Populus balsamifera) clones. Stem xylem cavitation resistance was examined with the Cavitron technique in well-watered plants grown in the greenhouse. To investigate stomatal responses to drought, plants were subjected to drought stress by withholding watering for 5 (mild drought) and 7 (severe drought) days and to stress recovery by rewatering severely stressed plants for 30 min and 2 days. The clones varied in stomatal sensitivity to drought and vulnerability to stem xylem cavitation. P38P38 reduced stomatal conductance in response to mild stress while the balsam poplar clone maintained high leaf stomatal conductance under more severe drought stress conditions. Differences between the severely stressed clones were also observed in leaf water potentials with no or relatively small decreases in Assiniboine, P38P38, Okanese and Walker. Vulnerability to drought-induced stem xylem embolism revealed that balsam poplar and Northwest clones reached loss of conductivity at lower stem water potentials compared with the remaining clones. There was a strong link between stem xylem resistance to cavitation and stomatal responsiveness to drought stress in balsam poplar and P38P38. However, the differences in stomatal responsiveness to mild drought suggest that other drought-resistant strategies may also play a key role in some clones of poplars exposed to drought stress.  相似文献   

11.
The relevance of inbreeding depression to the persistence of plant populations can depend upon whether stress magnifies inbreeding depression for fitness-related traits. To examine whether drought stress exacerbates inbreeding depression in gas exchange traits and biomass, we grew selfed and outcrossed progeny of inbred lines from two populations of Impatiens capensis in a greenhouse experiment under water-limited and moist soil conditions. Drought stress did not magnify the degree of inbreeding depression for any of the traits measured. In fact, in one population there was a trend for stronger inbreeding depression under well-watered, benign conditions. Furthermore, significant inbreeding depression for carbon assimilation rate and stomatal conductance was only detected in the lines from one population. In contrast, inbreeding depression for biomass was detected within both populations and differed among lines. Drought stress exerted significant selection on physiological traits, favoring increased carbon assimilation rates and decreased stomatal conductance in drought-stressed plants. Patterns of selection did not differ between inbred and outcrossed plants but did differ marginally between populations. Thus, estimates of selection were not biased by the mixed mating system per se, but may be biased by combining individuals from populations with different histories of selection and inbreeding.  相似文献   

12.
We exposed cuttings of two poplar species, Populus cathayana Rehder and Populus przewalskii Maximowicz, from Sect. Tacamahaca Spach to two watering regimes (well-watered and water-stressed conditions) and to two nutrient regimes (with or without fertilization) in a greenhouse to determine how fertilization affects the growth, morphology and physiology of poplars under different water conditions. Under stress conditions, changes in early growth and dry matter allocation, and decrease in gas exchange and the related functions are usually observed. Moreover, the measurement of carbon isotope composition (δ13C) provides an integrated measurement of water use efficiency. And abscisic acid (ABA) is a phytohormone which plays a prominent role in various physiological and biochemical processes related to environmental stresses. So we determine these characteristics and related parameters, and our results showed the following: (1) Fertilization promoted the growth of poplars under well-watered conditions, while under water-stressed conditions its effect on growth was negative. (2) Fertilization increased δ13C, total N concentration, chlorophyll a/b and intrinsic efficiency of photosystem II (Fv/Fm) but decreased relative water content of leaves, stomatal conductance, transpiration rate and C/N ratio under both well-watered and water-stressed conditions. (3) Fertilization appeared to increase net photosynthesis rate and decrease ABA content under well-watered conditions, while it decreased net photosynthesis rate and increased ABA content under water-stressed conditions. Moreover, compared to P. cathayana, collected from a lower altitude region, P. przewalskii, collected from a high-altitude region, has a slower growth rate and stronger adaptability to drought stress, which perhaps resulted from its chronic adaptability to the low water availability of high-altitude region; but to the nutrient stress, there was no difference between the two species.  相似文献   

13.
Various clones of tea [Camellia sinensis (L.) O. Kuntze] such as TTL-1, TTL-2, TTL-4, TTL-5, TTL-6, UPASI-2 and UPASI-3 planted in the field were subjected to soil moisture stress conditions by withholding irrigation. A control set of the same clones were maintained by watering regularly. The soil water content of the irrigated and non irrigated plants was monitored through the soil moisture status. The extent of effect of drought on tea plants were monitored through various physiological parameters such as shoot weight, leaf water potential, chlorophyll and carotenoid content, chlorophyll fluorescence (Fv/Fm), net photosynthetic rate, transpiration rate, stomatal conductance and biochemical parameters such as extent of proline accumulation and free radical generation. These parameters were studied on the 30 d of non irrigation and on the 5 d during recovery from drought. The plants recovered when re-irrigated after 30 d of non-irrigation, which suggests that permanent wilting did not occur due to non-irrigation up to 30 d. On the 30 d of non-irrigation the clones TTL-1, TTL-6 and UPASI-2 showed lesser reduction of shoot weight, leaf water potential, chlorophyll fluorescence, photosynthetic rate, transpiration rate and stomatal conductance and increased proline and lesser lipid peroxidation as compared to the other clones. From these results it can be concluded that the clones TTL-1, TTL-6 and UPASI-2 are comparatively more drought tolerant than the clones TTL-2, TTL-4, TTL-5 and UPASI-3.  相似文献   

14.
Cechin  I. 《Photosynthetica》1998,35(2):233-240
In two hybrids of sorghum (Sorghum bicolor Moench.), C51 and C42, high nitrogen concentration (HN) increased net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) of well watered (HW) plants. Water stressing (LW plants) resulted in low PN, gs, and E in both hybrids, but the values were still higher in HN plants as compared to low nitrogen-grown (LN) plants. Intercellular CO2 concentration (Ci) increased in droughted plants. This increase was much higher in LN plants as compared to HN plants. Instantaneous water use efficiency was lower in LN plants as a consequence of a greater effect of water stress on photosynthesis. Leaf water potential was reduced by water stress in all treatments. Analysis of chlorophyll a fluorescence at room temperature showed that photosystem 2 (PS2) was rather tolerant to the water stress imposed. Water stress caused a slight decrease in the efficiency of excitation capture by open PS2 reaction centres (Fv/Fm). The in vivo quantum yield of PS2 photochemistry (PS2) and the photochemical quenching coefficient (qP) were slightly reduced, while the nonphotochemical quenching coefficient (qN) was increased under the water stress. However, in hybrid C42 these characters were little or not affected by the water stress.  相似文献   

15.
Physiological parameters of mycorrhizal symbiosis by Helianthemum almeriense and Terfezia claveryi in orchards were characterized under water deficit conditions. Our orchard included 40 mycorrhizal and 40 nonmycorrhizal plants. Only mycorrhizal plants survived at the beginning of the experimental period, indicating dependency on fungal symbionts in roots for survival. Drought stress significantly affected the mycorrhizal colonization percentage which was 70% in nonirrigated mycorrhizal and 48% in irrigated mycorrhizal plants. No significant differences in plant growth were observed between nonirrigated and irrigated mycorrhizal plants before and after drought stress. Stomatal conductance was more sensitive to water stress than shoot water potential. It decreased more than two-fold under drought-stress compared to control mycorrhizal plants under irrigation/light saturating conditions, indicating important stomatal closure with water deficit. Plants’ water use efficiency improved with drought with stomatal conductance values below 0.3 mol?m?2?s?1. The ability to maintain open stomata and photosynthesis under drought increased carbon supply for growth, and ascocarp fruiting which requires current photosynthates. Basically, H. almeriense shows a conservative water use strategy based mainly on avoiding drought stress by reducing stomatal conductance as soil water potential decreases and atmospheric conditions dry. The results show that mycorrhizal H. almeriense plants maintain good physiological parameters with low soil matric potentials, thus making them an alternative agricultural crop in arid/semi-arid areas.  相似文献   

16.
Overexpression of genes that respond to drought stress is a seemingly attractive approach for improving drought resistance in crops. However, the consequences for both water-use efficiency and productivity must be considered if agronomic utility is sought. Here, we characterize two tomato (Solanum lycopersicum) lines (sp12 and sp5) that overexpress a gene encoding 9-cis-epoxycarotenoid dioxygenase, the enzyme that catalyzes a key rate-limiting step in abscisic acid (ABA) biosynthesis. Both lines contained more ABA than the wild type, with sp5 accumulating more than sp12. Both had higher transpiration efficiency because of their lower stomatal conductance, as demonstrated by increases in delta(13)C and delta(18)O, and also by gravimetric and gas-exchange methods. They also had greater root hydraulic conductivity. Under well-watered glasshouse conditions, mature sp5 plants were found to have a shoot biomass equal to the wild type despite their lower assimilation rate per unit leaf area. These plants also had longer petioles, larger leaf area, increased specific leaf area, and reduced leaf epinasty. When exposed to root-zone water deficits, line sp12 showed an increase in xylem ABA concentration and a reduction in stomatal conductance to the same final levels as the wild type, but from a different basal level. Indeed, the main difference between the high ABA plants and the wild type was their performance under well-watered conditions: the former conserved soil water by limiting maximum stomatal conductance per unit leaf area, but also, at least in the case of sp5, developed a canopy more suited to light interception, maximizing assimilation per plant, possibly due to improved turgor or suppression of epinasty.  相似文献   

17.
We studied photosynthetic capacity, growth, sap flow, and water-use efficiency in young trees of ‘Pink Lady’ apple (Malus domestica) that were exposed to 60 d of moisture stress. Three irrigation schemes were tested in the greenhouse: well-watered control; drought; or alternate deficit irrigation (ADI). Compared with the drought-stressed plants, those treated via ADI showed better height growth, larger scion diameters, and greater total leaf area, as well as significantly increased gains in dry biomass and rootstock diameters. However, their performance was still significantly lower than that demonstrated by continuously well-watered plants. Sap flow was greater under ADI than under drought, but less than under control conditions. The average rate of net photosynthesis, total amount of irrigation water applied, and dry biomass gain had highly significant and positive linear correlations with long-term water-use efficiency (WUEL). The same was true between average stomatal conductance and WUEL. By contrast, instantaneous water-use efficiency (WUEI) was very significantly and negatively correlated with WUEL. In addition, values for WUEL were much higher from well-watered plants when compared with either drought-stressed trees or those treated per ADI. Therefore, our results indicate that, although ‘Pink Lady’ apple normally has high WUE, it still consumes a large amount of water. Therefore, the practice of ADI following a period of long-term drought could be used to improve growth and WUEL by this cultivar.  相似文献   

18.
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.  相似文献   

19.
Arbuscular mycorrhizal fungi alleviate drought stress in their host plants via the direct uptake and transfer of water and nutrients through the fungal hyphae to the host plants. To quantify the contribution of the hyphae to plant water uptake, a new split-root hyphae system was designed and employed on barley grown in loamy soil inoculated with Glomus intraradices under well-watered and drought conditions in a growth chamber with a 14-h light period and a constant temperature (15 degrees C; day/night). Drought conditions were initiated 21 days after sowing, with a total of eight 7-day drying cycles applied. Leaf water relations, net photosynthesis rates, and stomatal conductance were measured at the end of each drying cycle. Plants were harvested 90 days after sowing. Compared to the control treatment, the leaf elongation rate and the dry weight of the shoots and roots were reduced in all plants under drought conditions. However, drought resistance was comparatively increased in the mycorrhizal host plants, which suffered smaller decreases in leaf elongation, net photosynthetic rate, stomatal conductance, and turgor pressure compared to the non-mycorrhizal plants. Quantification of the contribution of the arbuscular mycorrhizal hyphae to root water uptake showed that, compared to the non-mycorrhizal treatment, 4 % of water in the hyphal compartment was transferred to the root compartment through the arbuscular mycorrhizal hyphae under drought conditions. This indicates that there is indeed transport of water by the arbuscular mycorrhizal hyphae under drought conditions. Although only a small amount of water transport from the hyphal compartment was detected, the much higher hyphal density found in the root compartment than in the hyphal compartment suggests that a larger amount of water uptake by the arbuscular mycorrhizal hyphae may occur in the root compartment.  相似文献   

20.
Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号