首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
FXR1, an autosomal homolog of the fragile X mental retardation gene.   总被引:20,自引:2,他引:18       下载免费PDF全文
Fragile X mental retardation syndrome, the most common cause of hereditary mental retardation, is directly associated with the FMR1 gene at Xq27.3. FMR1 encodes an RNA binding protein and the syndrome results from lack of expression of FMR1 or expression of a mutant protein that is impaired in RNA binding. We found a novel gene, FXR1, that is highly homologous to FMR1 and located on chromosome 12 at 12q13. FXR1 encodes a protein which, like FMR1, contains two KH domains and is highly conserved in vertebrates. The 3' untranslated regions (3'UTRs) of the human and Xenopus laevis FXR1 mRNAs are strikingly conserved (approximately 90% identity), suggesting conservation of an important function. The KH domains of FXR1 and FMR1 are almost identical, and the two proteins have similar RNA binding properties in vitro. However, FXR1 and FMR1 have very different carboxy-termini. FXR1 and FMR1 are expressed in many tissues, and both proteins, which are cytoplasmic, can be expressed in the same cells. Interestingly, cells from a fragile X patient that do not have any detectable FMR1 express normal levels of FXR1. These findings demonstrate that FMR1 and FXR1 are members of a gene family and suggest a biological role for FXR1 that is related to that of FMR1.  相似文献   

2.
Fragile X Mental Retardation Syndrome is the most common form of hereditary mental retardation, and is caused by defects in the FMR1 gene. FMR1 is an RNA-binding protein and the syndrome results from lack of expression of FMR1 or expression of a mutant protein that is impaired in RNA binding. The specific function of FMR1 is not known. As a step towards understanding the function of FMR1 we searched for proteins that interact with it in vivo. We have cloned and sequenced a protein that interacts tightly with FMR1 in vivo and in vitro. This novel protein, FXR2, is very similar to FMR1 (60% identity). FXR2 encodes a 74 kDa protein which, like FMR1, contains two KH domains, has the capacity to bind RNA and is localized to the cytoplasm. The FXR2 gene is located on human chromosome 17 at 17p13.1. In addition, FMR1 and FXR2 interact tightly with the recently described autosomal homolog FXR1. Each of these three proteins is capable of forming heteromers with the others, and each can also form homomers. FXR1 and FXR2 are thus likely to play important roles in the function of FMR1 and in the pathogenesis of the Fragile X Mental Retardation Syndrome.  相似文献   

3.
Fragile X syndrome, the most common form of hereditary mental retardation, usually results from lack of expression of the FMR1 gene. The FMR1 protein is a cytoplasmic RNA-binding protein. The RNA-binding activity of FMR1 is an essential feature of FMR1, as fragile X syndrome can also result from the expression of mutant FMR1 protein that is impaired in RNA binding. Recently, we described two novel cytoplasmic proteins, FXR1 and FXR2, which are both very similar in amino acid sequence to FMR1 and which also interact strongly with FMR1 and with each other. To understand the function of FMR1 and the FXR proteins, we carried out cell fractionation and sedimentation experiments with monoclonal antibodies to these proteins to characterize the complexes they form. Here, we report that the FMR1 and FXR proteins are associated with ribosomes, predominantly with 60S large ribosomal subunits. The FXR proteins are associated with 60S ribosomal subunits even in cells that lack FMR1 and that are derived from a fragile X syndrome patient, indicating that FMR1 is not required for this association. We delineated the regions of FMR1 that mediate its binding to 60S ribosomal subunits and the interactions among the FMR1-FXR family members. Both regions contain sequences predicted to have a high propensity to form coiled coil interactions, and the sequences are highly evolutionarily conserved in this protein family. The association of the FMR1, FXR1, and FXR2 proteins with ribosomes suggests they have functions in translation or mRNA stability.  相似文献   

4.
Mutations in the X-linked gene FMR1 cause fragile X syndrome, the leading cause of inherited mental retardation. Two autosomal paralogs of FMR1 have been identified, and are known as FXR1 and FXR2. Here we describe and compare the genomic structures of the mouse and human genes FMR1, FXR1, and FXR2. All three genes are very well conserved from mouse to human, with identical exon sizes for all but two FXR2 exons. In addition, the three genes share a conserved gene structure, suggesting they are derived from a common ancestral gene. As a first step towards exploring this hypothesis, we reexamined the Drosophila melanogaster gene Fmr1, and found it to have several of the same intron/exon junctions as the mammalian FXRs. Finally, we noted several regions of mouse/human homology in the noncoding portions of FMR1 and FXR1. Knowledge of the genomic structure and sequence of the FXR family of genes will facilitate further studies into the function of these proteins.  相似文献   

5.
脆性X相关基因I(FXR1)发现于1995年,位于3号染色体3q28。其产物脆性X相关蛋白1(FXR1P)与脆性X智障蛋白1 (FMR1P)、脆性X相关蛋白2(FXR2P)形成一个RNA结合蛋白家族。目前认为这三种蛋白能输送mRNA分子并调控其翻译过程。FXR1的翻译产物(FXR1P)分子中存在两个KH结构域和一个RGG结构域,这两种结构域与FXR1P分子的RNA结合作用有关。FXR1P的表达具有较高的组织特意性,在横纹肌中表达最高。合适的动物模型对于一种蛋白的功能研究具有十分重要的意义,目前,FXR1敲除的各种动物模型如小鼠、斑马鱼、非洲爪蟾的近亲Xenopus tropicalis已经在不同的实验室建立。本文主要介绍了FXR1P的结构特点、功能及其实验动物模型。  相似文献   

6.
Mutations that abolish expression of an X-linked gene, FMR1, result in the pathogenesis of fragile X syndrome, the most common form of inherited mental retardation. To understand the normal function of the FMR1 protein, we have produced fly strains bearing deletions in a Drosophila homolog of FMR1 (dfmr1). Since fragile X patients show a number of abnormal behaviors including sleep problems, we investigated whether a loss-of-function mutation of dfmr1 affect circadian behavior. Here we show that under constant darkness (DD), a lack of dfmr1 expression causes arrhythmic locomotor activity, but in light:dark cycles, their behavioral rhythms appear normal. In addition, the clock-controlled eclosion rhythm is normal in DFMR1-deficient flies. These results suggest that DFMR1 plays a critical role in the circadian output pathway regulating locomotor activity in Drosophila.  相似文献   

7.
Fragile X mental retardation proteins (FMRP) are RNA-binding proteins that interact with a subset of cellular RNAs. Several RNA-binding domains have been identified in FMRP, but the contribution of these individual domains to FMRP function in an animal model is not well understood. In this study, we have generated flies with point mutations in the KH domains of the Drosophila melanogaster fragile X gene (dfmr1) in the context of a genomic rescue fragment. The substitutions of conserved isoleucine residues within the KH domains with asparagine are thought to impair binding of RNA substrates and perhaps the ability of FMRP to assemble into mRNP complexes. The mutants were analyzed for defects in development and behavior that are associated with deletion null alleles of dfmr1. We find that these KH domain mutations result in partial loss of function or no significant loss of function for the phenotypes assayed. The phenotypes resulting from these KH domain mutants imply that the capacities of the mutant proteins to bind RNA and form functional mRNP complexes are not wholly disrupted and are consistent with biochemical models suggesting that RNA-binding domains of FMRP can function independently.  相似文献   

8.
Deshpande G  Calhoun G  Schedl P 《Genetics》2006,174(3):1287-1298
The FMR family of KH domain RNA-binding proteins is conserved from invertebrates to humans. In humans, inactivation of the X-linked FMR gene fragile X is the most common cause of mental retardation and leads to defects in neuronal architecture. While there are three FMR family members in humans, there is only a single gene, dfmr1, in flies. As in humans, inactivation of dfmr1 causes defects in neuronal architecture and in behavior. dfmr1 has other functions in the fly in addition to neurogenesis. Here we have analyzed its role during early embryonic development. We found that dfmr1 embryos display defects in the rapid nuclear division cycles that precede gastrulation in nuclear migration and in pole cell formation. While the aberrations in nuclear division are correlated with a defect in the assembly of centromeric/centric heterochromatin, the defects in pole cell formation are associated with alterations in the actin-myosin cytoskeleton.  相似文献   

9.
The fragile X syndrome, an X-linked disease, is the most frequent cause of inherited mental retardation. The syndrome results from the absence of expression of the FMR1 gene (fragile mental retardation 1) owing to the expansion of a CGG trinucleotide repeat located in the 5' untranslated region of the gene and the subsequent methylation of its CpG island. The FMR1 gene product (FMRP) is a cytoplasmic protein that contains two KH domains and one RGG box, characteristics of RNA-binding proteins. FMRP is associated with mRNP complexes containing poly(A)+mRNA within actively translating polyribosomes and contains nuclear localization and export signals making it a putative transporter (chaperone) of mRNA from the nucleus to the cytoplasm. FMRP is the archetype of a novel family of cytoplasmic RNA-binding proteins that includes FXR1P and FXR2P. Both of these proteins are very similar in overall structure to FMRP and are also associated with cytoplasmic mRNPs. Members of the FMR family are widely expressed in mouse and human tissues, albeit at various levels, and seem to play a subtle choreography of expression. FMRP is most abundant in neurons and is absent in muscle. FXR1P is strongly expressed in muscle and low levels are detected in neurons. The complex expression patterns of the FMR1 gene family in different cells and tissues suggest that independent, however similar, functions for each of the three FMR-related proteins might be expected in the selection and metabolism of tissue-specific classes of mRNA. The molecular mechanisms altered in cells lacking FMRP still remain to be elucidated as well as the putative role(s) of FXR1P and FXR2P as compensatory molecules.  相似文献   

10.
Sam68 is a member of a growing family of proteins that contain a single KH domain embedded in a larger conserved domain of approximately 170 amino acids. Loops 1 and 4 of this KH domain family are longer than the corresponding loops in other KH domains and contain conserved residues. KH domains are protein motifs that are involved in RNA binding and are often present in multiple copies. Here we demonstrate by coimmunoprecipitation studies that Sam68 self-associated and that cellular RNA was required for the association. Deletion studies demonstrated that the Sam68 KH domain loops 1 and 4 were required for self-association. The Sam68 interaction was also observed in Saccharomyces cerevisiae by the two-hybrid system. In situ chemical cross-linking studies in mammalian cells demonstrated that Sam68 oligomerized in vivo. These Sam68 complexes bound homopolymeric RNA and the SH3 domains of p59fyn and phospholipase Cgamma1 in vitro, demonstrating that Sam68 associates with RNA and signaling molecules as a multimer. The formation of the Sam68 complex was inhibited by p59fyn, suggesting that tyrosine phosphorylation regulates Sam68 oligomerization. Other Sam68 family members including Artemia salina GRP33, Caenorhabditis elegans GLD-1, and mouse Qk1 also oligomerized. In addition, Sam68, GRP33, GLD-1, and Qk1 associated with other KH domain proteins such as Bicaudal C. These observations indicate that the single KH domain found in the Sam68 family, in addition to mediating protein-RNA interactions, mediates protein-protein interactions.  相似文献   

11.
Loss of Fragile X mental retardation protein (FMRP) function causes the highly prevalent Fragile X syndrome [1 and 2]. Identifying targets for the RNA binding FMRP is a major challenge and an important goal of research into the pathology of the disease. Perturbations in neuronal development and circadian behavior are seen in Drosophila dfmr1 mutants. Here we show that regulation of the actin cytoskeleton is under dFMRP control. dFMRP binds the mRNA of the Drosophila profilin homolog and negatively regulates Profilin protein expression. An increase in Profilin mimics the phenotype of dfmr1 mutants. Conversely, decreasing Profilin levels suppresses dfmr1 phenotypes. These data place a new emphasis on actin misregulation as a major problem in fmr1 mutant neurons.  相似文献   

12.
Xu K  Bogert BA  Li W  Su K  Lee A  Gao FB 《Current biology : CB》2004,14(12):1025-1034
BACKGROUND: Fragile X syndrome is caused by loss-of-function mutations in the fragile X mental retardation 1 (FMR1) gene. How FMR1 affects the function of the central and peripheral nervous systems is still unclear. FMR1 is an RNA binding protein that associates with a small percentage of total mRNAs in vivo. It remains largely unknown what proteins encoded by mRNAs in the FMR1-messenger ribonuclear protein (mRNP) complex are most relevant to the affected physiological processes. RESULTS: Loss-of-function mutations in the Drosophila fragile X-related (dfmr1) gene, which is highly homologous to the human fmr1 gene, decrease the duration and percentage of time that crawling larvae spend on linear locomotion. Overexpression of DFMR1 in multiple dendritic (MD) sensory neurons increases the time percentage and duration of linear locomotion; this phenotype is similar to that caused by reduced expression of the MD neuron subtype-specific degenerin/epithelial sodium channel (DEG/ENaC) family protein Pickpocket1 (PPK1). Genetic analyses indicate that PPK1 is a key component downstream of DFMR1 in controlling the crawling behavior of Drosophila larvae. DFMR1 and ppk1 mRNA are present in the same mRNP complex in vivo and can directly bind to each other in vitro. DFMR1 downregulates the level of ppk1 mRNA in vivo, and this regulatory process also involves Argonaute2 (Ago2), a key component in the RNA interference pathway. CONCLUSIONS: These studies identify ppk1 mRNA as a physiologically relevant in vivo target of DFMR1. Our finding that the level of ppk1 mRNA is regulated by DFMR1 and Ago2 reveals a genetic pathway that controls sensory input-modulated locomotion behavior.  相似文献   

13.
Drosophila FMR1 mutants are models of human fragile X syndrome. They show a loss of locomotor activity rhythm and severe degradation of eclosion timing. We analyzed the circadian behavior of FMR1 mutants (dfmr1(B55)) in two genetic backgrounds, yellow white (yw) and Canton S (CS). The arrhythmic phenotype of circadian locomotor activity in constant darkness (DD) did not significantly change in either genetic background. Surprisingly, eclosion timing was completely restored by backcrossing dfmr1(B55) with yw or CS flies. Morphological analysis of the small ventrally located lateral neurons of FMR1 mutants revealed that the dorsal-projection area was significantly larger in arrhythmic than rhythmic flies. In addition, dfmr1(B55) mutants in both genetic backgrounds had a significantly lower evening peak in the light-dark (LD) cycle. These results indicate that lack of FMR1 does not affect eclosion timing, but alters locomotor activity patterns in both LD and DD conditions by affecting the arborization of small ventrally located lateral neurons. Thus, the FMR1 gene may regulate the circadian-related locomotor activity of Drosophila.  相似文献   

14.
Fragile X syndrome(Fra X), the most common form of inherited mental retardation, is caused by the absence of the evolutionally conserved fragile X mental retardation protein(FMRP). While neuronal functions of FMRP have been intensively studied for the last two decades, its role in non-neuronal cells remains poorly understood. Piwi, a key component of the Piwi-interacting RNA(pi RNA) pathway,plays an essential role in germline development. In the present study, we report that similar to piwi, dfmr1, the Drosophila homolog of human FMR1, is required for transposon suppression in the germlines. Genetic analyses showed that dfmr1 and piwi act synergistically in heterochromatic silencing, and in inhibiting the differentiation of primordial germline cells and transposon expression. Northern analyses showed that roo pi RNA expression levels are reduced in dfmr1 mutant ovaries, suggesting a role of dfmr1 in pi RNA biogenesis.Biochemical analysis demonstrated a physical interaction between d FMRP and Piwi via their N-termini. Taken together, we propose that d FMRP cooperates with Piwi in maintaining genome integrity by regulating heterochromatic silencing in somatic cells and suppressing transposon activity via the pi RNA pathway in germlines.  相似文献   

15.
16.
17.
We have characterized a recombinant Drosophila melanogaster RNA binding protein, D25, by virtue of its antigenic relationship to mammalian U1 and U2 small nuclear ribonucleoprotein (U snRNP) proteins. Sequence analysis revealed that D25 bears strong similarity to both the human U1 snRNP-A (U1-A) and U2 snRNP-B" (U2-B") proteins. However, at residues known to be critical for the RNA binding specificities of U1-A and U2-B" D25 sequence is more similar to U2-B". Using direct RNA binding assays D25 selected U1 RNA from either HeLa or Drosophila Kc cell total RNA. Furthermore, D25 bound U1 RNA when transfected into mammalian cells. Thus, D25 appears to be a Drosophila homolog of the mammalian U1-A protein, despite its sequence similarity to U2-B".  相似文献   

18.
Fragile X-related 1 protein (FXR1P) is a member of a small family of RNA-binding proteins that includes the Fragile X mental retardation 1 protein (FMR1P) and the Fragile X-related 2 protein (FXR2P). These proteins are thought to transport mRNA and to control their translation. While FMR1P is highly expressed in neurons, substantial levels of FXR1P are found in striated muscles and heart, which are devoid of FMRP and FXR2P. However, little is known about the functions of FXR1P. We have isolated cDNAs for Xenopus Fxr1 and found that two specific splice variants are conserved in evolution. Knockdown of xFxr1p in Xenopus had highly muscle-specific effects, normal MyoD expression being disrupted, somitic myotomal cell rotation and segmentation being inhibited, and dermatome formation being abnormal. Consistent with the absence of the long muscle-specific xFxr1p isoform during early somite formation, these effects could be rescued by both the long and short mRNA variants. Microarray analyses showed that xFxr1p depletion affected the expression of 129 known genes of which 50% were implicated in muscle and nervous system formation. These studies shed significant new light on Fxr1p function(s).  相似文献   

19.
Siah is a mammalian homolog of Drosophila seven in absentia (SINA). Here we report the identification of a new member of the SINA/Siah gene family. This new gene, designated Siaz, was found in zebrafish, and its product is predicted to share extensive amino acid sequence homology with Drosophila SINA. Siaz is maternally inherited, with zygotic expression in all blastomeres starting at the mid-blastula transition. After the 20-somite stage, Siaz expression occurs in a stage-specific manner in particular regions, including the brain, eye, cranial cavity, otic vesicle, optic chiasm and gut.  相似文献   

20.
A synaptic vesicle membrane protein is conserved from mammals to Drosophila   总被引:30,自引:0,他引:30  
T C Südhof  M Baumert  M S Perin  R Jahn 《Neuron》1989,2(5):1475-1481
The structure of synaptobrevin, an intrinsic membrane protein of small synaptic vesicles from mammalian brain, was studied by purification and molecular cloning. Its message in bovine brain encodes a 116 amino acid protein whose sequence reveals it to be the mammalian homolog of Torpedo VAMP-1. Antibody probing demonstrates that the protein is also present in Drosophila, and its Drosophila homolog was cloned. Alignment of the sequences of synaptobrevin/VAMP-1 from the three species shows it to contain four domains, including a highly conserved central region of 63 amino acids that contains 75% invariant residues. The finding that a membrane protein from vertebrate synaptic vesicles is conserved in Drosophila points toward a central role of this protein in neurotransmission and should allow a genetic approach to neurotransmitter release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号