首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
In the developing nervous system, functional neural networks are constructed with intricate coordination of neuronal migrations and axonal projections. We have previously reported a ventral tangential migration of a special type of cortical neurons, lot cells, in the mouse embryo. These neurons originate from the ventricular zone of the entire neocortex, tangentially migrate in the surface layer of the neocortex into the ventral direction, align in the future pathway of the lateral olfactory tract (LOT) and eventually guide the projection of LOT axons. In this study, we developed an organotypic culture system to investigate the regulation of this cell migration in the developing telencephalon. Our data show that the neocortex contains the signals that direct lot cells ventrally, that the ganglionic eminence excludes lot cells by repelling the migration and that lot cells are attracted to netrin 1, an axon guidance factor. Furthermore, we demonstrate that mutations in the genes encoding netrin 1 and its functional receptor Dcc lead to inappropriate distribution of lot cells and subsequent partial disruption of LOT projection. These results suggest that netrin 1 regulates the migration of lot cells and LOT projections, possibly by ensuring the correct distribution of these guidepost neurons.  相似文献   

2.
In this study we use a taxon-based approach to examine previous, as well as new findings on several topics pertaining to the peripheral olfactory components in teleost fishes. These topics comprise (1) the gross anatomy of the peripheral olfactory organ, including olfactory sensory neuron subtypes and their functional parameters, (2) the ultrastructure of the olfactory epithelium, and (3) recent findings regarding the development of the nasal cavity and the olfactory epithelium. The teleosts are living ray-finned fish, and include descendants of early-diverging orders (e.g., salmon), specialized descendants (e.g., goldfish and zebrafish), as well as the Acanthopterygii, numerous species with sharp bony rays, including perch, stickleback, bass and tuna. Our survey reveals that the olfactory epithelium lines a multi-lamellar olfactory rosette in many teleosts. In Acanthopterygii, there are also examples of flat, single, double or triple folded olfactory epithelia. Diverse species ventilate the olfactory chamber with a single accessory nasal sac, whereas the presence of two sacs is confined to species within the Acanthopterygii. Recent studies in salmonids and cyprinids have shown that both ciliated olfactory sensory neurons (OSNs) and microvillous OSNs respond to amino acid odorants. Bile acids stimulate ciliated OSNs, and nucleotides activate microvillous OSNs. G-protein coupled odorant receptor molecules (OR-, V1R-, and V2R-types) have been identified in several teleost species. Ciliated OSNs express the G-protein subunit Gαolf/s, which activates cyclic AMP during transduction. Localization of G protein subunits Gα0 and Gαq/11 to microvillous or crypt OSNs, varies among different species. All teleost species appear to have microvillous and ciliated OSNs. The recently discovered crypt OSN is likewise found broadly. There is surprising diversity during ontogeny. In some species, OSNs and supporting cells derive from placodal cells; in others, supporting cells develop from epithelial (skin) cells. In some, epithelial cells covering the developing olfactory epithelium degenerate, in others, these retract. Likewise, there are different mechanisms for nostril formation. We conclude that there is considerable diversity in gross anatomy and development of the peripheral olfactory organ in teleosts, yet conservation of olfactory sensory neuron morphology. There is not sufficient information to draw conclusions regarding the diversity of teleost olfactory receptors or transduction cascades.  相似文献   

3.
In mammals, conventional odorants are detected by OSNs located in the main olfactory epithelium of the nose. These neurons project their axons to glomeruli, which are specialized structures of neuropil in the olfactory bulb. Within glomeruli, axons synapse onto dendrites of projection neurons, the mitral and tufted (M/T) cells. Genetic approaches to visualize axons of OSNs expressing a given odorant receptor have proven very useful in elucidating the organization of these projections to the olfactory bulb. Much less is known about the development and connectivity of the lateral olfactory tract (LOT), which is formed by axons of M/T cells connecting the olfactory bulb to central neural regions. Here, we have extended our genetic approach to mark M/T cells of the main olfactory bulb and their axons in the mouse, by targeted insertion of IRES-tauGFP in the neurotensin locus. In NT-GFP mice, we find that M/T cells of the main olfactory bulb mature and project axons as early as embryonic day 11.5. Final innervation of central areas is accomplished before the end of the second postnatal week. M/T cell axons that originate from small defined areas within the main olfactory bulb, as visualized by localized injections of fluorescent tracers in wild-type mice at postnatal days 1 to 3, follow a dual trajectory: a branch of tightly packed axons along the dorsal aspect of the LOT, and a more diffuse branch along the ventral aspect. The dorsal, but not the ventral, subdivision of the LOT exhibits a topographical segregation of axons coming from the dorsal versus ventral main olfactory bulb. The NT-GFP mouse strain should prove useful in further studies of development and topography of the LOT, from E11.5 until 2 weeks after birth.  相似文献   

4.
The guidepost neurons for the lateral olfactory tract, which are called lot cells, are the earliest‐generated neurons in the neocortex. They migrate tangentially and ventrally further down this tract, and provide scaffolding for the olfactory bulb axons projecting into this pathway. The molecular profiles of the lot cells are largely uncharacterized. We found that lot cells specifically express metabotropic glutamate receptor subtype‐1 at a very early stage of development. This receptor is functionally competent and responds to a metabotropic glutamate receptor agonist with a transient increase in the intracellular calcium ion concentration. When the glutamatergic olfactory bulb axons were electrically stimulated, lot cells responded to the stimulation with a calcium increase mainly via ionotropic glutamate receptors, suggesting potential neurotransmission between the axons and lot cells during early development. Together with the finding that lot cells themselves are glutamatergic excitatory neurons, our results provide another notable example of precocious interactions between the projecting axons and their intermediate targets. © 2012 Wiley Periodicals, Inc. Develop Neurobiol, 2012  相似文献   

5.
During embryonic development, olfactory sensory neurons extend axons that form synapses with the dendrites of projection neurons in glomeruli of the olfactory bulb (OB). The glycosyltransferase beta3GnT1 regulates the expression of 1B2-reactive lactosamine glycans that are mosaically distributed among glomeruli. In newborn beta3GnT1-/- mice, lactosamine expression is lost, and many glomeruli fail to form. To determine the role of lactosamine in OB targeting, we analyzed the trajectories of specific OR axon populations and their reactivity with 1B2 in beta3GnT1-/- mice. mI7 axons and P2 axons, both of which are weakly 1B2+ in wild-type mice, fail to grow to their normal positions in the glomerular layer during early postnatal development and never recover in adult mutant mice. In contrast, many M72 axons, which are always lactosamine negative in wild-type mice, survive but are misguided to the extreme anterior OB in neonatal mutant mice and persist as heterotypic glomeruli, even in adult null mice. These results show that the loss of lactosamine differentially affects each OR population. Those that lose their normal expression of lactosamine fail to form stable connections with mitral and tufted cells in the OB, disappear during early postnatal development, and do not recover in adults. Neurons that are normally lactosamine negative, survive early postnatal degeneration in beta3GnT1-/- mice but extend axons that converge on inappropriate targets in the mutant OB.  相似文献   

6.
7.
Olfactory sensory neurons (OSNs) in the nose form precise connections with neurons in the brain. However, mechanisms that account for the formation of such precise neuronal connections are incompletely understood. Recent studies implicate the function of Wnt growth factors in the formation of neuronal connections. To assess the role of Wnt signaling in the olfactory system, we examined the expression of beta-galactosidase (beta-gal) in the TOPGAL mouse, a transgenic strain in which beta-gal expression reports the activation of the canonical Wnt signaling pathway. In the olfactory epithelium, no beta-gal expression was observed at any developmental stages. In the olfactory bulb (OB), beta-gal expression was observed in a population of cells located at the interface of the olfactory nerve layer and the glomerular layer. The beta-gal expression was developmentally regulated with the peak expression occurring at late embryonic and early postnatal stages and a greatly reduced expression in adulthood. Further, forced OSN regeneration and subsequent reinnervation of the OB led to a reactivation of beta-gal expression in mature animals. The temporal coincidence between the peak of beta-gal expression and formation of OSN connections, together with the spatial localization of these cells, suggests a potential role of these cells and canonical Wnt signaling in the formation of OSN connections in the OB during development and regeneration.  相似文献   

8.
Total action potentials (AP) of lateral olfactory tract (LOT) have been studied on 200 um sections of olfactory cortex of rat brain. Over-threshold stimulation of a proximal end of LOT was accompanied by five waves at descending phase of AP. The increase in stimulation frequency from 1 to 3 to 10 Hz led to a decrease in amplitudes of all LOT AP components. The data obtained suggest that the composition of LOT fibers is heterogeneous.  相似文献   

9.
10.
During development, olfactory bulb axons navigate a complex microenvironment composed of myriad molecules to construct a bundle called the lateral olfactory tract. The axons themselves also express thousands of different molecules. In the present study, we produced and characterized six monoclonal antibodies that label the lateral olfactory tract and its surroundings in a unique pattern. The labeling profiles suggested that the antigen molecules recognized by each antibody are heterogeneously distributed around the developing lateral olfactory tract. We developed an efficient screening method to identify the antigen molecules by combining expression of a cDNA library in COS-7 cells and the subsequent immunohistochemical staining of the cells. The systematic screening successfully identified specific cDNA clones for all of the monoclonal antibodies, which highly probably coded for the antigen molecules, and therefore unveiled the molecular nature of local components that embrace the developing lateral olfactory tract in mice.  相似文献   

11.
Neuronal migration is integral to the development of the cerebral cortex and higher brain function. Cortical neuron migration defects lead to mental disorders such as lissencephaly and epilepsy. Interaction of neurons with their extracellular environment regulates cortical neuron migration through cell surface receptors. However, it is unclear how the signals from extracellular matrix proteins are transduced intracellularly. We report here that mouse embryos lacking the Ras family guanine nucleotide exchange factor, C3G (Rapgef1, Grf2), exhibit a cortical neuron migration defect resulting in a failure to split the preplate into marginal zone and subplate and a failure to form a cortical plate. C3G-deficient cortical neurons fail to migrate. Instead, they arrest in a multipolar state and accumulate below the preplate. The basement membrane is disrupted and radial glial processes are disorganised and lack attachment in C3G-deficient brains. C3G is activated in response to reelin in cortical neurons, which, in turn, leads to activation of the small GTPase Rap1. In C3G-deficient cells, Rap1 GTP loading in response to reelin stimulation is reduced. In conclusion, the Ras family regulator C3G is essential for two aspects of cortex development, namely radial glial attachment and neuronal migration.  相似文献   

12.
How brain connectivity has evolved to integrate the mammalian-specific neocortex remains largely unknown. Here, we address how dorsal thalamic axons, which constitute the main input to the neocortex, are directed internally to their evolutionary novel target in mammals, though they follow an external path to other targets in reptiles and birds. Using comparative studies and functional experiments in chick, we show that local species-specific differences in the migration of previously identified "corridor" guidepost neurons control the opening of a mammalian thalamocortical route. Using in?vivo and ex vivo experiments in mice, we further demonstrate that the midline repellent Slit2 orients migration of corridor neurons and thereby switches thalamic axons from an external to a mammalian-specific internal path. Our study reveals that subtle differences in the migration of conserved intermediate target neurons trigger large-scale changes in thalamic connectivity, and opens perspectives on Slit functions and the evolution of brain wiring.  相似文献   

13.
Summary The synaptic organization of the plexiform layer of the prepyriform cortex in the rat has been studied with the electron microscope both in the normal and after ipsilateral olfactory bulb removal. Survival times ranged from six hours to three months.In normal preparations synaptic contacts occur mainly on dendritic branches, spines or lateral projections. Gray's Type I contacts are most frequent and Type II contacts usually contain flattened vesicles after formalin fixation.Degeneration of the presynaptic bags begins within 24 hours after the lesion and some degenerated bags are still seen after three months survival. During this time degenerated bags are apparently removed by astroglia but the spine tips appear to be unaffected by the phagocytosis. Glia or other processes may come to occupy the denervated sites. The evidence for possible reestablishment of new contacts is considered.The severed axons show a characteristic mode of degeneration and at three months some appear to be phagocytosed by oligodendroglia which also contain lamellated inclusion bodies.This study represents a part of a thesis accepted in fulfillment of requirements for the degree of Doctor of Philosophy at the University of London (England), June 1966.This investigation was supported in part by a U.S. Public Health Service Fellowship NB 20-844 from the N.I.N.D.S. while the author was a postdoctoral fellow at the Anatomy Department, University College, London, England, and by grants NB 02896 and NB 04053 from the N.I.N.D.S. The author gratefully acknowledges this support and would also like to thank Professors J. Z. Young and E. G. Gray for encouragement and advice throughout the course of this study.  相似文献   

14.
The olfactory system is favorable for studying mechanisms of development, plasticity and regeneration. Monoclonal antibodies have been generated which differentially stain olfactory axons and can identify their earliest trajectories in the fetal rat. The developing olfactory pathway also shows differential metabolic activity, as revealed by the 2-deoxyglucose method, and these patterns show plasticity as judged by both physiological and behavioral measures. The sensory neurons undergo dieback and neurogenesis following axonal transection; electrophysiological methods are being used to reveal the membrane mechanisms underlying this unique capacity.  相似文献   

15.
16.
Collaborative role of various fibronectin-binding integrins (α5β1, αvβ1 and αvβ6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of αvβ6 integrin was strongly and specifically upregulated by transforming growth factor-β1 (TGFβ1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFβ1. Based on antibody blocking experiments, both untreated and TGFβ1-treated HaCaT cells used αvβ6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFβ1-treated cells, the untreated cells also needed α5β1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFβ1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on αvβ6 integrin, while αvβ1 and α5β1 integrins played a lesser role both in untreated and TGFβ1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by β1 integrins, and αvβ6 integrin showed a minor role. The migration process appeared to involve a number of β1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

17.
Collaborative role of various fibronectin-binding integrins (alpha5beta1, alphavbeta1 and alphavbeta6) as mediators of cell adhesion and migration on fibronectin was studied using cultured HaCaT keratinocytes. This cell line spontaneously expressed all three fibronectin-binding integrins. In addition, the expression of alphavbeta6 integrin was strongly and specifically upregulated by transforming growth factor-beta1 (TGFbeta1) whereas the amount of other integrins remained practically unchanged on the cell surface. Adhesion, spreading and motility of HaCaT keratinocytes on fibronectin were promoted by TGFbeta1. Based on antibody blocking experiments, both untreated and TGFbeta1-treated HaCaT cells used alphavbeta6 integrin as their main fibronectin receptor for cell spreading. In contrast to TGFbeta1-treated cells, the untreated cells also needed alpha5beta1 integrin for maximal cell spreading on fibronectin. Combinations of antibodies blocking both of these receptors totally prevented spreading of both untreated and TGFbeta1-treated cells. Haptotactic motility of individual HaCaT cells through fibronectin-coated membranes was again mainly dependent on alphavbeta6 integrin, while alphavbeta1 and alpha5beta1 integrins played a lesser role both in untreated and TGFbeta1-treated HaCaT cells. However, unlike haptotaxis, lateral migration of HaCaT cell sheet was mainly mediated by beta1 integrins, and alphavbeta6 integrin showed a minor role. The migration process appeared to involve a number of beta1 integrins that could adaptively replace each other when blocking antibodies were present. Thus, keratinocytes appear to use different fibronectin receptors for different functions, such as cell spreading, haptotaxis and lateral migration. The cells can also adapt to a situation where one receptor is unfunctional by switching to another receptor of the same ligand.  相似文献   

18.
Postnatally, the Purkinje cell degeneration mutant mice lose the main projecting neurons of the main olfactory bulb (OB): mitral cells (MC). In adult animals, progenitor cells from the rostral migratory stream (RMS) differentiate into bulbar interneurons that modulate MC activity. In the present work, we studied changes in proliferation, tangential migration, radial migration patterns, and the survival of these newly generated neurons in this neurodegeneration animal model. The animals were injected with bromodeoxyuridine 2 weeks or 2 months before killing in order to label neuroblast incorporation into the OB and to analyze the survival of these cells after differentiation, respectively. Both the organization and cellular composition of the RMS and the differentiation of the newly generated neurons in the OB were studied using specific markers of glial cells, neuroblasts, and mature neurons. No changes were observed in the cell proliferation rate nor in their tangential migration through the RMS, indicating that migrating neuroblasts are only weakly responsive to the alteration in their target region, the OB. However, the absence of MC does elicit differences in the final destination of the newly generated interneurons. Moreover, the loss of MC also produces changes in the survival of the newly generated interneurons, in accordance with the dramatic decrease in the number of synaptic targets available.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号