首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Herbivore damage by chewing insects activates jasmonate (JA) signalling that can elicit systemic defense responses in rice. Few details are known, however, concerning the mechanism, whereby JA signalling modulates nutrient status in rice in response to herbivory. (15NH4)2SO4 labelling experiments, proteomic surveys, and RT‐qPCR analyses were used to identify the roles of JA signalling in nitrogen (N) uptake and allocation in rice plants. Exogenous applications of methyl jasmonate (MeJA) to rice seedlings led to significantly reduced N uptake in roots and reduced translocation of recently‐absorbed 15N from roots to leaves, likely occurring as a result of down‐regulation of glutamine synthetase cytosolic isozyme 1–2 and ferredoxin–nitrite reductase. Shoot MeJA treatment resulted in a remobilization of endogenous unlabelled 14N from leaves to roots, and root MeJA treatment also increased 14N accumulation in roots but did not affect 14N accumulation in leaves of rice. Additionally, proteomic and RT‐qPCR experiments showed that JA‐mediated plastid disassembly and dehydrogenases GDH2 up‐regulation contribute to N release in leaves to support production of defensive proteins/compounds under N‐limited condition. Collectively, our results indicate that JA signalling mediates large‐scale systemic changes in N uptake and allocation in rice plants.  相似文献   

4.
5.
BAK1 is a co-receptor of brassinosteroid (BR) receptor BRI1, and plays a well-characterized role in BR signalling. BAK1 also physically interacts with the flagellin receptor FLS2 and regulates pathogen resistance. The role of BAK1 in mediating Nicotiana attenuata's resistance responses to its specialist herbivore, Manduca sexta, was examined here. A virus-induced gene-silencing system was used to generate empty vector (EV) and NaBAK1-silenced plants. The wounding- and herbivory-induced responses were examined on EV and NaBAK1-silenced plants by wounding plants or simulating herbivory by treating wounds with larval oral secretions (OS). After wounding or OS elicitation, NaBAK1-silenced plants showed attenuated jasmonic acid (JA) and JA-isoleucine bursts, phytohormone responses important in mediating plant defences against herbivores. However, these decreased JA and JA-Ile levels did not result from compromised MAPK activity or elevated SA levels. After simulated herbivory, NaBAK1-silenced plants had EV levels of defensive secondary metabolites, namely, trypsin proteinase inhibitors (TPIs), and similar levels of resistance to Manduca sexta larvae. Additional experiments demonstrated that decreased JA levels in NaBAK1-VIGS plants, rather than the enzymatic activity of JAR proteins or Ile levels, were responsible for the reduced JA-Ile levels observed in these plants. Methyl jasmonate application elicited higher levels of TPI activity in NaBAK1-silenced plants than in EV plants, suggesting that silencing NaBAK1 enhances the accumulation of TPIs induced by a given level of JA. Thus NaBAK1 is involved in modulating herbivory-induced JA accumulation and how JA levels are transduced into TPI levels in N. attenuata.  相似文献   

6.
To determine the impact of genotypic variation in secondary metabolite production on antiherbivore resistance and plant fitness, we genetically silenced biosynthetic genes for nicotine, trypsin proteinase inhibitors (TPI), and jasmonate (JA) production in two accessions of Nicotiana attenuata : one from Utah (UT) which responds to herbivory with JA-induced nicotine and TPI production, and one from Arizona (AZ) which is TPI-deficient but also produces JA-induced nicotine. Transient silencing of JA biosynthesis increased Manduca sexta larval growth on wild type (WT) plants of both accessions, but not on TPI-deficient UT or nicotine-deficient AZ lines, demonstrating that JA-mediated resistance to M. sexta requires TPIs in the UT and nicotine in the naturally TPI-deficient AZ accession. When transplanted into a native UT population, AZ and UT plants, rendered equally able or unable to produce nicotine and TPIs by stable transformation, received significantly different levels of herbivory. Both accessions differed in their resistance depending on the type of herbivores: resistance to rare, voracious herbivores (Saltatoria and Mammalia) was greater in AZ than UT lines, and dependent on nicotine production, while resistance to small, abundant herbivores (Coleoptera and Thysanoptera) was greater in UT lines, and dependent on TPI production. AZ lines produced more flowers and seed capsules than UT lines independently of TPI production costs. This fitness advantage was lost when accessions did not produce nicotine. We conclude that these two accessions have developed different survival strategies and thus differ in the cost-benefit functions of their JA-mediated defences.  相似文献   

7.
Stitz M  Baldwin IT  Gaquerel E 《PloS one》2011,6(10):e25925
A plant's inducible defenses against herbivores as well as certain developmental processes are known to be controlled by the jasmonic acid (JA) pathway. We have previously shown that ectopically expressing Arabidopsis thaliana JA O-methyltransferase in Nicotiana attenuata (35S-jmt) strongly reduces the herbivory-elicited jasmonate bursts by acting as metabolic sink that redirects free JA towards methylation; here we examine the consequences of this metabolic sink on N. attenuata's secondary metabolism and performance in nature. In the glasshouse, 35S-jmt plants produced fewer seed capsules due to shorter floral styles, which could be restored to wild type (WT) levels after hand-pollination, and were more susceptible to Manduca sexta larvae attack. When transplanted into the Great Basin Desert in Utah, 35S-jmt plants grew as well as WT empty vector, but were highly attacked by native herbivores of different feeding guilds: leaf chewers, miners, and single cell feeders. This greater susceptibility was strongly associated with reduced emissions of volatile organic compounds (hexenylesters, monoterpenes and sesquiterpenes) and profound alterations in the production of direct defenses (trypsin proteinase inhibitors [TPI], nicotine, diterpene glycosides [DTGs] and phenylpropanoid-polyamine conjugates) as revealed by a combination of targeted and metabolomics analyses of field collected samples. Complementation experiments with JA-Ile, whose formation is outcompeted in 35S-jmt plants by the methylation reaction, restored the local TPI activation to WT levels and partially complemented nicotine and DTG levels in elicited but not systemic leaves. These findings demonstrate that MeJA, the major JA metabolite in 35S-jmt plants, is not an active signal in defense activation and highlights the value of creating JA sinks to disrupt JA signaling, without interrupting the complete octadecanoid pathway, in order to investigate the regulation of plants' defense metabolism in nature.  相似文献   

8.
Jasmonic acid (JA) is part of a long-distance signal-transduction pathway that effects increases in de-novo nicotine synthesis in the roots of Nicotiana sylvestris Speg et Comes (Solanaceae) after leaf wounding. Elevated nicotine synthesis increases whole-plant nicotine pools and makes plants more resistant to herbivores. Leaf wounding rapidly increases JA pools in damaged leaves, and after a 90-min delay, root JA pools also increase. The systemic response in the roots could result from either: (i) the direct transport of JA from wounded leaves, or (ii) JA synthesis or its release from conjugates in roots in response to a second, systemic signal. We synthesized [2-14C]JA, and applied it to a single leaf in a quantity (189 μg) known to elicit both a whole-plant nicotine and root JA response equivalent to that found in plants subjected to leaf wounding. We quantified radioactive material in JA, and in metabolites both more and less polar than JA, from treated and untreated leaves and roots of plants in eight harvests after JA application. [2-14C]Jasmonic acid was transported from treated leaves to roots at rates and in quantities equivalent to the wound-induced changes in endogenous JA pools. The [2-14C]JA that had been transported to the roots declined at the same rate as endogenous JA pools in the roots of plants after leaf wounding. Most of the labeled material applied to leaves was metabolized or otherwise immobilized at the application site, and the levels of [2-14C]JA in untreated leaves did not increase over time. We measured the free JA pools before and after four different hydrolytic extractions of root and shoot tissues to estimate the size of the potential JA conjugate pools, and found them to be 10% or less of the free JA pool. We conclude that the direct transport of wound-induced JA from leaves to roots can account for the systemic increase in root JA pools after leaf wounding, and that metabolism into less polar structures determines the duration of this systemic increase. However, the conclusive falsification of this hypothesis will require the suppression of all other signalling pathways which could have shoot-to-root transport kinetics similar to that of endogenous JA. Received: 14 April 1997 / Accepted: 9 June 1997  相似文献   

9.
Defense responses of plants are activated not only in the wounded tissues but also in the remote parts of the plants. Two different methyl jasmonate (MeJA) treatments were conducted, i.e., MeJA solution spraying of entire rosettes leaves and pasting leaf surface with lanolin squares containing MeJA. Glucosinolate profiles in leaves were similar using the two methods of MeJA treatment except for indole glucosinolates. The glucosinolate profiles in local and systemic leaves showed that the accumulation of glucosinolates in systemic leaves were delayed comparing with those in local treated leaves. Comparative proteomics were used to investigate the molecular processes underlying the glucosinolate changes in response to local and systemic MeJA induction. A total of 83 unique proteins were detected as differentially expressed between the local and systemic leaves. Functional analysis showed that redirection of metabolism from growth to defense was differentially regulated in local and systemic MeJA induction. The higher contents of indole glucosinolates in systemic leaves might arise from the induction of a long-distance signal produced in local leaves as well as from JA synthesized in systemic leaves.  相似文献   

10.
11.
Trypsin proteinase inhibitors (TPIs) of Nicotiana attenuata are major antiherbivore defenses that increase dramatically in leaves after attack or methyl jasmonate (MeJA) elicitation. To understand the elicitation process, we characterized the proteolytic fragmentation and release of TPIs from a multidomain precursor by proteases in MeJA-elicited and unelicited plants. A set of approximately 6-kD TPI peptides was purified from leaves, and their posttranslational modifications were characterized. In MeJA-elicited plants, the diversity of TPI structures was greater than the precursor gene predicted. This elicited structural heterogeneity resulted from differential fragmentation of the linker peptide (LP) that separates the seven-domain TPI functional domains. Using an in vitro fluorescence resonance energy transfer assay and synthetic substrates derived from the LP sequence, we characterized proteases involved in both the processing of the TPI precursor and its vacuolar targeting sequence. Although both a vacuolar processing enzyme and a subtilisin-like protease were found to participate in a two-step processing of LP, only the activity of the subtilisin-like protease was significantly increased by MeJA elicitation. We propose that MeJA elicitation increases TPI precursor production and saturates the proteolytic machinery, changing the processing pattern of TPIs. To test this hypothesis, we elicited a TPI-deficient N. attenuata genotype that had been transformed with a functional NaTPI gene under control of a constitutive promoter and characterized the resulting TPIs. We found no alterations in the processing pattern predicted from the sequence: a result consistent with the saturation hypothesis.  相似文献   

12.
We examined performance of herbivores on plants lacking either jasmonate (JA, asLOX3) or ethylene (ET, mETR1) signaling or both (mETR1asLOX3). Plant defenses against Manduca sexta caterpillars were strongly impaired in JA-deficient asLOX3 plants; however, making asLOX3 plants ethylene insensitive did not further increase the performance of the larvae on a mETR1asLOX3 genetic cross. This result demonstrates the dominant role of JA over ET in the regulation of plant defenses against herbivores. However, ET-insensitivity combined with otherwise normal levels of JA in mETR1 plants promoted faster caterpillar growth, which correlated with reduced accumulation of the alkaloidal direct defense nicotine in mETR1 compared to WT plants. Our data points to an important accessory function of ET in the activation of JA-regulated plant defenses against herbivores at the level of alkaloid biosynthesis in the roots and/or accumulation in the leaves.Key words: herbivory, jasmonic acid and ethylene crosstalk, Nicotiana attenuata, nicotine, trypsin proteinase inhibitors (TPIs)  相似文献   

13.
Because traits conferring resistance on herbivores can reduce fitness-associated traits, trade-offs may occur between tolerance and resistance responses. We examined these trade-offs in genotypes of Nicotiana attenuata that were transformed to silence trypsin proteinase inhibitor (TPI) production (AS-Natpi), an antiherbivore defense associated with (14%) reductions in seed production, and the jasmonate signal cascade that elicits these defenses (AS-Nalox3), by measuring stalk and axillary branch growth and seed production after two defoliation regimes and Manduca sexta larval attack to bottom or middle and top stalk leaves. Larval attack and defoliation at middle and top leaves depressed seed production and increased axillary branching more than at bottom leaves. AS-Nalox3 and AS-Natpi plants produced significantly longer (two- to fourfold) branches than did wild-type (WT) plants, results that are consistent with resource-based trade-offs between resistance and regrowth. Methyl jasmonate (MeJA) treatment of AS-Nalox3 plants restored WT branch growth, suggesting that jasmonic acid (JA) signalling suppresses regrowth and contributes to apical dominance. These results are consistent with the existence of JA- and resource-mediated trade-offs between regrowth and herbivore resistance traits.  相似文献   

14.
To create a metabolic sink in the jasmonic acid (JA) pathway, we generated transgenic Nicotiana attenuata lines ectopically expressing Arabidopsis (Arabidopsis thaliana) jasmonic acid O-methyltransferase (35S-jmt) and additionally silenced in other lines the N. attenuata methyl jasmonate esterase (35S-jmt/ir-mje) to reduce the deesterification of methyl jasmonate (MeJA). Basal jasmonate levels did not differ between transgenic and wild-type plants; however, after wounding and elicitation with Manduca sexta oral secretions, the bursts of JA, jasmonoyl-isoleucine (JA-Ile), and their metabolites that are normally observed in the lamina, midvein, and petiole of elicited wild-type leaves were largely absent in both transformants but replaced by a burst of endogenous MeJA that accounted for almost half of the total elicited jasmonate pools. In these plants, MeJA became a metabolic sink that affected the jasmonate metabolic network and its spread to systemic leaves, with major effects on 12-oxo-phytodieonic acid, JA, and hydroxy-JA in petioles and on JA-Ile in laminas. Alterations in the size of jasmonate pools were most obvious in systemic tissues, especially petioles. Expression of threonine deaminase and trypsin proteinase inhibitor, two JA-inducible defense genes, was strongly decreased in both transgenic lines without influencing the expression of JA biosynthesis genes that were uncoupled from the wounding and elicitation with M. sexta oral secretions-elicited JA-Ile gradient in elicited leaves. Taken together, this study provides support for a central role of the vasculature in the propagation of jasmonates and new insights into the versatile spatiotemporal characteristics of the jasmonate metabolic network.  相似文献   

15.
Arabidopsis and tomato plants mutated in the F-box protein COI1 mediating jasmonate (JA) responses are more susceptible to herbivores in laboratory trials, but the exact mechanisms of COI1-mediated resistance are not known. We silenced COI1 by transformation with an inverted repeat construct (ir-coi1) in Nicotiana attenuata, a plant the direct and indirect defenses of which against various herbivores have been well studied. ir-coi1 plants are male sterile and impaired in JA-elicited direct [nicotine, caffeoylputrescine and trypsin proteinase inhibitor (TPI) activity] and indirect (cis-alpha-bergamotene emission) defense responses; responses not elicited by JA treatment (ethylene production and flower TPI activity) were unaffected. Larvae of Manduca sexta, a common herbivore of N. attenuata, gained three times more mass feeding on ir-coi1 than on wild-type (WT) plants in glasshouse experiments. By regularly moving caterpillars to unattacked leaves of the same plant, we demonstrate that larvae on WT plants can grow and consume leaves as fast as those on ir-coi1 plants, a result that underscores the role of COI1 in mediating locally induced resistance in attacked leaves, and the importance of herbivore movement in avoiding the induced defenses of a plant. When transplanted into native habitats in the Great Basin Desert, ir-coi1 plants suffer greatly from damage by the local herbivore community, which includes herbivores not commonly found on N. attenuata WT plants. Choice assays with field-grown plants confirmed the increased attractiveness of ir-coi1 plants for both common and unusual herbivores. We conclude that NaCOI1 is essential for induced resistance in N. attenuata, and that ir-coi1 plants highlight the benefits of herbivore movement for avoiding induced defenses.  相似文献   

16.
17.
18.
19.
Arbuscular mycorrhizal fungi (AMF) establish symbiotic associations with a majority of terrestrial plants to form underground common mycorrhizal networks (CMNs) that connect neighbouring plants. Because Nicotiana attenuata plants do not respond to herbivory‐elicited volatiles from neighbours, we used this ecological model system to evaluate if CMNs function in interplant transmission of herbivory‐elicited responses. A mesocosm system was designed to establish and remove CMNs linking N. attenuata plants to examine the herbivory‐elicited metabolic and hormone responses in CMNs‐connected “receiver” plants after the elicitation of “donor” plants by wounding (W) treated with Manduca sexta larval oral secretions (OS). AMF colonization increased constitutive jasmonate (JA and JA‐Ile) levels in N. attenuata roots but did not affect well‐characterized JAs‐regulated defensive metabolites in systemic leaves. Interestingly, larger JAs bursts, and higher levels of several amino acids and particular sectors of hydroxygeranyllinalool diterpene glycoside metabolism were elevated in the leaves of W + OS‐elicited “receivers” with CMN connections with “donors” that had been W + OS‐elicited 6 hr previously. Our results demonstrate that AMF colonization alone does not enhance systemic defence responses but that sectors of systemic responses in leaves can be primed by CMNs, suggesting that CMNs can transmit and even filter defence signalling among connected plants.  相似文献   

20.
Jasmonic acid (JA) and methyl jasmonate (MeJA), collectively termed jasmonates, are ubiquitous plant signalling compounds. Several types of stress conditions, such as wounding and pathogen infection, cause endogenous JA accumulation and the expression of jasmonate-responsive genes. Although jasmonates are important signalling components for the stress response in plants, the mechanism by which jasmonate signalling contributes to stress tolerance has not been clearly defined. A comprehensive analysis of jasmonate-regulated metabolic pathways in Arabidopsis was performed using cDNA macroarrays containing 13516 expressed sequence tags (ESTs) covering 8384 loci. The results showed that jasmonates activate the coordinated gene expression of factors involved in nine metabolic pathways belonging to two functionally related groups: (i) ascorbate and glutathione metabolic pathways, which are important in defence responses to oxidative stress, and (ii) biosynthesis of indole glucosinolate, which is a defence compound occurring in the Brassicaceae family. We confirmed that JA induces the accumulation of ascorbate, glutathione and cysteine and increases the activity of dehydroascorbate reductase, an enzyme in the ascorbate recycling pathway. These antioxidant metabolic pathways are known to be activated under oxidative stress conditions. Ozone (O3) exposure, a representative oxidative stress, is known to cause activation of antioxidant metabolism. We showed that O3 exposure caused the induction of several genes involved in antioxidant metabolism in the wild type. However, in jasmonate-deficient Arabidopsis 12-oxophytodienoate reductase 3 (opr3) mutants, the induction of antioxidant genes was abolished. Compared with the wild type, opr3 mutants were more sensitive to O3 exposure. These results suggest that the coordinated activation of the metabolic pathways mediated by jasmonates provides resistance to environmental stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号