首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. The RNA genome of HDV encodes two proteins, the small delta antigen and the large delta antigen, which differ only with the latter having an additional 19 amino acids at the C-terminus. Previously, we have shown that dAg24-50, a synthetic peptide corresponding to residues 24-50 of the N-terminal leucine-repeat region of hepatitis delta antigen, binds to the viral RNA and forms an alpha-helical conformation in TFE-containing solution. However, it exhibited low alpha-helicity (less than 5%) in the absence of TFE. In order to obtain biologically active delta antigen peptides with higher structural stability in solution, an N-capping 21-residue polypeptide corresponding to residues 24-38 of hepatitis delta antigen (dAg(Cap24-38am)) was synthesized and, surprisingly, its solution structure was found to be a stable alpha-helix (64%) by circular dichroism and 1H NMR techniques. Moreover, the structure of the capping box shows the characteristic L-shaped bend perpendicular to the helix axis. This structural knowledge provides a molecular basis for understanding the role of the N-terminal leucine-repeat region of hepatitis delta antigen and has a significant potential for the development of diagnostic and therapeutic methods for HDV.  相似文献   

2.
Hepatitis delta virus (HDV) is a satellite virus of the hepatitis B virus (HBV) which provides the surface antigen for the viral coat. Our results show that the N-terminal leucine-repeat region of hepatitis delta antigen (HDAg), encompassing residues 24–50, binds to the autolytic domain of HDV genomic RNA and attenuates its autolytic activity. The solution conformation of a synthetic peptide corresponding to residues 24–50 of HDAg as determined by two-dimensional 1H NMR and circular dichroism techniques is found to be an -helix. The local helix content of this peptide was analyzed by NOEs and coupling constants. Mutagenesis studies indicate that Lys38, Lys39, and Lys40 within this -helical peptide may be directly involved in RNA binding. A structural knowledge of the N-terminal leucine-repeat region of HDAg thus provides a molecular basis for understanding its role in the interaction with RNA.  相似文献   

3.
Y P Xia  M M Lai 《Journal of virology》1992,66(11):6641-6648
Two forms of hepatitis delta antigen (HDAg) have different roles in the replication cycle of hepatitis delta virus (HDV); the small forms trans activates HDV RNA replication, whereas the large form suppresses it but is needed for virion assembly. To understand the mechanism of these regulatory activities, we studied the possible HDAg oligomerization and its role in HDV replication. In this report, we provide direct biochemical evidence for the in vitro and in vivo formation of homodimers and heterodimers between these two HDAg species. By deletion mutagenesis, we showed that this protein interaction is mediated by the leucine zipper-like sequence residing in the N-terminal one-third of HDAg. Furthermore, site-specific mutants with various substitutions on two of the leucine residues in this stretch of sequence had reduced or no ability to form HDAg dimers. Correspondingly, the small HDAg with mutations in the leucine zipper-like sequence had reduced abilities to trans activate HDV RNA replication. Similar mutations on the leucine zipper-like sequence of the large HDAg also resulted in loss of the ability of large HDAg to inhibit HDV RNA replication. The in vivo biological activities of both forms of HDAg (trans activation and trans-dominant inhibition of HDV RNA replication, respectively) correlated with the extent of HDAg oligomerization in vitro. Thus, we conclude that the small HDAg participates in HDV RNA replication as an oligomer form and that the large HDAg inhibits HDV RNA replication as a result of its complex formation with small HDAg. A "black sheep" model for the mechanism of trans-dominant inhibition by the large HDAg is presented.  相似文献   

4.
Hepatitis delta virus (HDV) is a small RNA virus that contains one 1.7-kb single-stranded circular RNA of negative polarity. The HDV particle also contains two isoforms of hepatitis delta antigen (HDAg), small (SHDAg) and large HDAg. SHDAg is required for the replication of HDV, which is presumably carried out by host RNA-dependent RNA polymerases. The localization and the HDAg and host RNA polymerase responsible for HDV replication remain important issues to be addressed. In this study, using recombinant SHDAg fused with a heterologous nucleolar localization sequence (NoLS) to confine its subcellular localization in nucleoli, we aimed to study the effect of SHDAg subcellular localization on HDV RNA replication. The initiation of genomic RNA synthesis from antigenomic template was hardly detectable when SHDAg was fused with the NoLS motif and localized mainly in nucleoli. In contrast, the initiation of antigenomic RNA synthesis was not affected. Drug treatment to release a SHDAg-NoLS mutant from nucleoli could partially restore the replication of HDV genomic RNA from antigenomic RNA. This also recovered the cointeraction between SHDAg and RNA polymerase II. These data strongly suggest that nuclear polymerase (RNA polymerase II) is involved in the synthesis of genomic RNA and that the synthesis of antigenomic RNA can occur in nucleoli. Our results support the idea that the replication of HDV genomic RNA or antigenomic RNA is likely to be carried out by different machineries in different subcellular localizations.  相似文献   

5.
Li YJ  Stallcup MR  Lai MM 《Journal of virology》2004,78(23):13325-13334
Hepatitis delta virus (HDV) contains a circular RNA which encodes a single protein, hepatitis delta antigen (HDAg). HDAg exists in two forms, a small form (S-HDAg) and a large form (L-HDAg). S-HDAg can transactivate HDV RNA replication. Recent studies have shown that posttranslational modifications, such as phosphorylation and acetylation, of S-HDAg can modulate HDV RNA replication. Here we show that S-HDAg can be methylated by protein arginine methyltransferase (PRMT1) in vitro and in vivo. The major methylation site is at arginine-13 (R13), which is in the RGGR motif of an RNA-binding domain. The methylation of S-HDAg is essential for HDV RNA replication, especially for replication of the antigenomic RNA strand to form the genomic RNA strand. An R13A mutation in S-HDAg inhibited HDV RNA replication. The presence of a methylation inhibitor, S-adenosyl-homocysteine, also inhibited HDV RNA replication. We further found that the methylation of S-HDAg affected its subcellular localization. Methylation-defective HDAg lost the ability to form a speckled structure in the nucleus and also permeated into the cytoplasm. These results thus revealed a novel posttranslational modification of HDAg and indicated its importance for HDV RNA replication. This and other results further showed that, unlike replication of the HDV genomic RNA strand, replication of the antigenomic RNA strand requires multiple types of posttranslational modification, including the phosphorylation and methylation of HDAg.  相似文献   

6.
The large hepatitis delta antigen (HDAg) has been found to be essential for the assembly of the hepatitis delta virion. Furthermore, in a cotransfection experiment, the large HDAg itself, without the hepatitis delta virus (HDV) genome and small HDAg, could be packaged into hepatitis B surface antigen (HBsAg) particles. By deletion analysis, it was shown that the amino-terminal leucine zipper domain was dispensable for packaging. The large HDAg could also help in copackaging of the small HDAg into HBsAg particles without the need for HDV RNA. This process was probably mediated through direct interaction of the two HDAgs as a mutated large HDAg whose leucine zipper domain was deleted such that it could not help in copackaging of the small HDAg. This mutated large HDAg did not suppress HDV replication, suggesting that this effect is probably also via protein interaction. These results indicated that functional domains of the large HDAg responsible for packaging with HBsAg particles and for the trans-negative effect on HDV replication can be separated.  相似文献   

7.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

8.
The genetic origin, structure, and biochemical properties of the delta antigen (HDAg) of a human hepatitis delta virus (HDV) were investigated. A cDNA fragment containing the open reading frame encoding the HDAg was transcribed into RNA and used for in vitro translation in rabbit reticulocyte lysates. The HDAg open reading frame was also inserted into an expression vector containing a simian virus 40 T-antigen promoter and expressed into COS 7 cells. In both systems, a protein species of 26 kilodaltons was synthesized from this open reading frame and could be specifically immunoprecipitated with antisera obtained from patients with delta hepatitis. A similar protein was also synthesized from antigenomic-sense monomeric HDV RNA in both systems, although the efficiency of translation was lower than that of the isolated open reading frame. This protein was found to be phosphorylated at the serine residues. Immunoperoxidase studies with anti-HDV sera demonstrated that the HDAg was expressed mainly in the nuclei of the transfected COS 7 cells. Moreover, the HDAg was shown to bind the genomic RNA of HDV. These studies indicate that HDAg is encoded by the antigenomic-sense RNA of HDV and is a nuclear phosphoprotein associated with an RNA-binding activity.  相似文献   

9.
Hepatitis delta virus (HDV) RNA replicates in the nuclei of virus-infected cells. The mechanism of nuclear import of HDV RNA is so far unknown. Using a fluorescein-labeled HDV RNA introduced into partially permeabilized HeLa cells, we found that HDV RNA accumulated only in the cytoplasm. However, in the presence of hepatitis delta antigen (HDAg), which is the only protein encoded by HDV RNA, the HDV RNA was translocated into the nucleus, suggesting that nuclear import of HDV RNA is mediated by HDAg. Deletion of the nuclear localization signal (NLS) or RNA-binding motifs of HDAg resulted in the failure of nuclear import of HDV RNA, indicating that both the NLS and an RNA-binding motif of HDAg are required for the RNA-transporting activity of HDAg. Surprisingly, any one of the three previously identified RNA-binding motifs was sufficient to confer the RNA-transporting activity. We have further shown that HDAg, via its NLS, interacts with karyopherin α2 in vitro, suggesting that nuclear import of the HDAg-HDV RNA complex is mediated by the karyopherin α2β heterodimer. The nuclear import of HDV RNA may be the first biological function of HDAg in the HDV life cycle.  相似文献   

10.
During the hepatitis delta virus (HDV) RNA replication, synthesis of either the mRNA for the delta antigen (HDAg) or the full-length antigenomic RNA is determined by selective usage of the potent poly(A) signal on the antigenome. To elucidate the regulatory mechanism, HDV cDNA cotransfection system was used to examine the potential effect of the secondary structure of the nascent RNA and that of the HDAg on HDV polyadenylation in transfected cells. We found that when the nascent RNA species could fold itself to form the rodlike structure, the HDV polyadenylation was suppressed 3 to 5 fold by the HDAg. In addition, we observed that the small and the large HDAg exerted a similar suppressive effect on the HDV polyadenylation, though they played different roles in HDV replication. We concluded that the HDV polyadenylation could be regulated by the structure of the nascent antigenomic RNA and by either the small or large HDAg.  相似文献   

11.
Hepatitis delta virus (HDV) replication and packaging require interactions between the unbranched rodlike structure of HDV RNA and hepatitis delta antigen (HDAg), a basic, disordered, oligomeric protein. The tendency of the protein to bind nonspecifically to nucleic acids has impeded analysis of HDV RNA protein complexes and conclusive determination of the regions of HDAg involved in RNA binding. The most widely cited model suggests that RNA binding involves two proposed arginine-rich motifs (ARMs I and II) in the middle of HDAg. However, other studies have questioned the roles of the ARMs. Here, binding activity was analyzed in vitro using HDAg-160, a C-terminal truncation that binds with high affinity and specificity to HDV RNA segments in vitro. Mutation of the core arginines of ARM I or ARM II in HDAg-160 did not diminish binding to HDV unbranched rodlike RNA. These same mutations did not abolish the ability of full-length HDAg to inhibit HDV RNA editing in cells, an activity that involves RNA binding. Moreover, only the N-terminal region of the protein, which does not contain the ARMs, was cross-linked to a bound HDV RNA segment in vitro. These results indicate that the amino-terminal region of HDAg is in close contact with the RNA and that the proposed ARMs are not required for binding HDV RNA. Binding was not reduced by mutation of additional clusters of basic amino acids. This result is consistent with an RNA-protein complex that is formed via numerous contacts between the RNA and each HDAg monomer.  相似文献   

12.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

13.
14.
Characterizations of genetic variations among hepatitis delta virus (HDV) isolates have focused principally on phylogenetic analysis of sequences, which vary by 30 to 40% among three genotypes and about 10 to 15% among isolates of the same genotype. The significance of the sequence differences has been unclear but could be responsible for pathogenic variations associated with the different genotypes. Studies of the mechanisms of HDV replication have been limited to cDNA clones from HDV genotype I, which is the most common. To perform a comparative analysis of HDV RNA replication in genotypes I and III, we have obtained a full-length cDNA clone from an HDV genotype III isolate. In transfected Huh-7 cells, the functional roles of the two forms of the viral protein, hepatitis delta antigen (HDAg), in HDV RNA replication are similar for both genotypes I and III; the short form is required for RNA replication, while the long form inhibits replication. For both genotypes, HDAg was able to support replication of RNAs of the same genotype that were mutated so as to be defective for HDAg production. Surprisingly, however, neither genotype I nor genotype III HDAg was able to support replication of such mutated RNAs of the other genotype. The inability of genotype III HDAg to support replication of genotype I RNA could have been due to a weak interaction between the RNA and HDAg. The clear genotype-specific activity of HDAg in supporting HDV RNA replication confirms the original categorization of HDV sequences in three genotypes and further suggests that these should be referred to as types (i.e., HDV-I and HDV-III) rather than genotypes.  相似文献   

15.
16.
RNA editing at adenosine 1012 (amber/W site) in the antigenomic RNA of hepatitis delta virus (HDV) allows two essential forms of the viral protein, hepatitis delta antigen (HDAg), to be synthesized from a single open reading frame. Editing at the amber/W site is thought to be catalyzed by one of the cellular enzymes known as adenosine deaminases that act on RNA (ADARs). In vitro, the enzymes ADAR1 and ADAR2 deaminate adenosines within many different sequences of base-paired RNA. Since promiscuous deamination could compromise the viability of HDV, we wondered if additional deamination events occurred within the highly base paired HDV RNA. By sequencing cDNAs derived from HDV RNA from transfected Huh-7 cells, we determined that the RNA was not extensively modified at other adenosines. Approximately 0.16 to 0.32 adenosines were modified per antigenome during 6 to 13 days posttransfection. Interestingly, all observed non-amber/W adenosine modifications, which occurred mostly at positions that are highly conserved among naturally occurring HDV isolates, were found in RNAs that were also modified at the amber/W site. Such coordinate modification likely limits potential deleterious effects of promiscuous editing. Neither viral replication nor HDAg was required for the highly specific editing observed in cells. However, HDAg was found to suppress editing at the amber/W site when expressed at levels similar to those found during HDV replication. These data suggest HDAg may regulate amber/W site editing during virus replication.  相似文献   

17.
S B Hwang  M M Lai 《Journal of virology》1993,67(12):7659-7662
Hepatitis delta antigen (HDAg) consists of two protein species of 195 and 214 amino acids, respectively, which are identical in sequence except that the large HDAg has additional 19 amino acids at its C terminus and is prenylated. Previous studies have shown that the large HDAg and the surface antigen of hepatitis B virus (HBsAg) together can form empty hepatitis delta virus (HDV) particles. To understand the molecular mechanism of HDV virion morphogenesis, we investigated the possible direct protein-protein interaction between HDAg and HBsAg. We constructed recombinant baculoviruses expressing the major form of HBsAg and various mutant HDAgs and used these proteins for far-Western protein binding assays. We demonstrated that HBsAg interacted specifically with the large HDAg but not with the small HDAg. Using mutant HDAgs which have defective or aberrant prenylation, we showed that this interaction required isoprenylates on the cysteine residue of the C terminus of the large HDAg. Isoprenylation alone, without the remainder of the C-terminal amino acids of the large HDAg, was insufficient to mediate interaction with HBsAg. This study demonstrates a novel role of prenylates in HDV virion assembly.  相似文献   

18.
Hepatitis delta antigen (HDAg) is the only protein encoded by hepatitis delta virus (HDV). HDAg has been demonstrated in the nuclei of HDV-infected hepatocytes, and its nuclear transport may be important for the replication of HDV RNA. In this report, we investigated the mechanism of nuclear transport of HDAg. By expressing fusion proteins consisting of the different portions of HDAg and alpha-globin, we have identified a nuclear localization signal (NLS) within the N-terminal one-third of HDAg. It consists of two stretches of basic amino acid domains separated by a short run of nonbasic amino acids. Both of the basic domains are necessary for the efficient nuclear transport of HDAg. The nonbasic spacer amino acids could be removed without affecting the nuclear targeting of HDAg significantly. Thus, the HDAg NLS belongs to a newly identified class of NLS which consists of two discontiguous stretches of basic amino acids. This NLS is separated from a stretch of steroid receptor NLS-like sequence, which is also present but not functioning as an NLS, in HDAg. Furthermore, we have shown that subfragments of HDAg which do not contain the NLS can be passively transported into the nucleus by a trans-acting full-length HDAg, provided that these subfragments contain the region with a leucine zipper sequence. Thus, our results indicate that HDAg forms aggregates in the cytoplasm and that the HDAg oligomerization is probably mediated by the leucine zipper sequence. Therefore, HDAg is likely transported into the nucleus as a protein complex.  相似文献   

19.
Modahl LE  Lai MM 《Journal of virology》2000,74(16):7375-7380
Hepatitis delta virus (HDV) contains two types of hepatitis delta antigens (HDAg) in the virion. The small form (S-HDAg) is required for HDV RNA replication, whereas the large form (L-HDAg) potently inhibits it by a dominant-negative inhibitory mechanism. The sequential appearance of these two forms in the infected cells regulates HDV RNA synthesis during the viral life cycle. However, the presence of almost equal amounts of S-HDAg and L-HDAg in the virion raised a puzzling question concerning how HDV can escape the inhibitory effects of L-HDAg and initiate RNA replication after infection. In this study, we examined the inhibitory effects of L-HDAg on the synthesis of various HDV RNA species. Using an HDV RNA-based transfection approach devoid of any artificial DNA intermediates, we showed that a small amount of L-HDAg is sufficient to inhibit HDV genomic RNA synthesis from the antigenomic RNA template. However, the synthesis of antigenomic RNA, including both the 1.7-kb HDV RNA and the 0.8-kb HDAg mRNA, from the genomic-sense RNA was surprisingly resistant to inhibition by L-HDAg. The synthesis of these RNAs was inhibited only when L-HDAg was in vast excess over S-HDAg. These results explain why HDV genomic RNA can initiate replication after infection even though the incoming viral genome is complexed with equal amounts of L-HDAg and S-HDAg. These results also suggest that the mechanisms of synthesis of genomic versus antigenomic RNA are different. This study thus resolves a puzzling question about the early events of the HDV life cycle.  相似文献   

20.
Hepatitis delta virus (HDV)-associated particles were purified from the serum of an experimentally infected chimpanzee by size chromatography and by density centrifugation. Hepatitis delta antigen (HDAg) was detected after mild detergent treatment at a column elution volume corresponding to 36-nm particles and banded at a density of 1.25 g/ml. The serum had an estimated titer of 10(9) to 10(10) HDV-associated particles and had only a 10-fold excess of hepatitis B surface antigen (HBsAg) not associated with HDAg. Therefore, HDV appears to be much more efficiently packed and secreted than is its helper virus, hepatitis B virus (HBV), which is usually accompanied by a 1,000-fold excess of HBsAg. The protein compositions of the HDAg-containing particles were analyzed by immunoblotting with HDAg-, HBsAg-, and hepatitis B core antigen-specific antisera and monoclonal antibodies to HBV surface gene products. The HBsAg envelope of HDAg contained approximately 95% P24/GP27s, 5% GP33/36s, and 1% P39/GP42s proteins. This protein composition was more similar to that of the 22-nm particles of HBsAg than to that of complete HBV. The significant amount of GP33/36s suggests that the HBsAg component of the HDV-associated particle carries the albumin receptor. Two proteins of 27 and 29 kilodaltons which specifically bound antibody to HDAg but not HBV-specific antibodies were detected in the interior of the 36-nm particle. Since these proteins were structural components of HDAg and were most likely coded for by HDV, they were designated P27d and P29d.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号