首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The 10D1 Ag is a 90-kDa homodimeric molecule specifically expressed on a subpopulation of human T cells, and is involved in an alternative pathway of T cell activation. In the present study, we have examined the expression and function of the 10D1 Ag on human thymocytes. Three-color FMF analysis showed that the 10D1 Ag was highly expressed on minor but distinct subpopulations of double-negative and CD4 single-positive thymocytes, and weakly on a part of double-positive thymocytes, but not on CD8 single-positive thymocytes. In double-negative thymocytes, the vast majority of 10D1+ cells were immature thymocytes of CD7+2+3- phenotype. Interestingly, 10D1 mAb could induce the proliferation of CD4 single-positive thymocytes in the presence of goat anti-mouse Ig to cross-link the 10D1 Ag. The treatment of thymocytes with OKT4 mAb plus C but not with OKT8 mAb plus C totally abrogated the proliferative response induced by 10D1 mAb, indicating that the 10D1-responsible thymocytes were of CD4+8- phenotype. This 10D1 mAb-induced thymocyte proliferation was perfectly dependent on the endogenous IL-2/IL-2R system since a complete inhibition was observed with anti-IL-2 and anti-IL-2R mAb. The proliferating CD4 single positive thymocytes predominantly expressed the IL-2R alpha (p55) but not a detectable level of the IL-2R beta (p75). These results indicate that, although the 10D1 Ag can be detected on the CD7+2+3-4-8- thymocytes, its functional expression is restricted to a minor more mature CD4+ thymocyte population as well as in peripheral blood T cells, and the implications of these findings are discussed.  相似文献   

2.
Leukocyte common antigen-related molecule (LAR) is a receptor-like protein tyrosine phosphatase (PTPase) with two PTPase domains. In the present study, we detected the expression of LAR in the brain, kidney, and thymus of mice using anti-LAR PTPase domain subunit monoclonal antibody (mAb) YU1. In the thymus, LAR was expressed on CD4(-)CD8(-) and CD4(-)CD8(low) thymocytes. The development of thymocytes in CD45 knockout mice is blocked partially in the maturation of CD4(-)CD8(-) to CD4(+)CD8(+). We postulated that LAR regulates Lck and Fyn in the immature thymocytes. Transfection of wild-type LAR activated extracellular signal-regulated kinase signal transduction pathway in CD45-deficient Jurkat cells stimulated with anti-CD3 mAb. LAR mutants, with Cys to Ser mutation in the catalytic center of PTPase D1, bound to tyrosine-phosphorylated Lck and Fyn, and LAR PTPase domain 2 was tyrosine phosphorylated by Fyn tyrosine kinase. The phosphorylated LAR was associated with Fyn Src homology 2 domain. Moreover, LAR dephosphorylated phosphorylated tyrosine residues in both the COOH terminus and kinase domain of Fyn in vitro. Our results indicate that Lck and Fyn would be substrates of LAR in immature thymocytes and that each LAR PTPase domain plays distinct functional roles in phosphorylation and dephosphorylation.  相似文献   

3.
Recent studies have focused on the potential role of accessory molecules such as CD2, CD28, Thy-1, or TAP in the delivery of activating signals to thymocytes through antigen-independent pathways. To better understand the molecular interactions involved in the expansion of early thymic immigrants, rat mAb were raised against murine thymocyte-surface molecules and screened for their capacity to trigger thymocyte proliferation. One of these mAb (H194-112, IgG2a) was found to recognize a novel heterodimeric thymocyte-activating molecule (THAM) of Mr = 110,000 to 128,000. Flow cytometric analyses and staining patterns on frozen thymus sections subdivided adult thymocytes in three subsets expressing THAM at either low (10%), moderate (80%), or high (5 to 8%) cell-surface density; these cell groups were found to correspond, respectively, to the medullary, the cortical, and the immature CD4-CD8-, J11d+ thymocytes, in which the T cell precursor pool is included. Moreover, most (90%) day 16 fetal thymocytes were also found to upregulate THAM cell-surface expression. The THAMhigh cells were localized in the subcapsular area of the neonatal thymus and scattered throughout the adult organ. Cross-linked mAb H194-112 induced the proliferation of both immature and mature thymocytes in the presence of either PMA or IL-1 and IL-2. The observation that early thymocytes up-regulate THAM along with the IL-2R suggests that this molecule might be involved in an important activation pathway during thymocyte differentiation.  相似文献   

4.
In a previous study, we raised a mAb (MTS 35) reacting with a plasma membrane Ag expressed on both cortical thymocytes and a subset of thymic medullary epithelial cells. In view of the shared expression of this molecule, we have defined it as thymic shared Ag-1 (TSA-1). Considering its selective reactivity with cortical, but not medullary thymocytes, the relevance of TSA-1 as a marker of immature T cells was investigated in detail in this study, using multicolor flow cytometric analysis. TSA-1 was found on all immature thymocyte subsets (CD3-4-8-, CD3-4+8-, CD3-4-8+, CD3-4+8+, CD3low4+8+). Conversely, CD3high4+8- and CD3high4-8+ thymocytes, early thymic migrants and peripheral T cells were TSA-1-. More refined gating and analysis of the transitional CD3intermediate/high4+8+ thymocytes, proposed candidates for negative selection, demonstrated that approximately one half were TSA-1-. In fact, there was a directly inverse relationship between TSA-1 and CD3 expression on thymocytes. In the periphery, TSA-1 was detected on B lymphocytes. TSA-1 is PI-linked and has a molecular mass of 17 kDa nonreduced, or 12 to 13 kDa reduced. Through cross-correlation analysis, this molecule was distinct from H-2K, PNA-R, CD5, CD11a/18, Thy-1, HSA, Ly6A/E, Ly6C, ThB, CD25, CD44. Hence TSA-1 appears to be a unique marker which exquisitely separates mature from immature thymocytes.  相似文献   

5.
Stem cell Ag 1 and 2 (Sca-1 and Sca-2), so named due to their expression by mouse bone marrow stem cells, were evaluated for expression by populations of cells within the thymus. Immunohistochemical analysis demonstrated that Sca-1 was expressed by cells in the thymic medulla and by some subcapsular blast cells, as well as by the thymic blood vessels and capsule. Sca-2 expression, which was limited to the thymic cortex, could be associated with large cycling thymic blast cells. Both Sca-1 and Sca-2 were expressed on a sub-population of CD4-CD8- thymocytes, and this subpopulation was entirely contained within the Ly-1lo progenitor fraction of cells. Sca-1 expression by a phenotypically mature subset of CD4+CD8- thymocytes was also noted. Conversely, Sca-2 expression was observed on a phenotypically immature or nonmature subpopulation of CD4-CD8- thymocytes. MEL-14, an antibody that defines functional expression of a lymphocyte homing molecule, identified a small population of thymocytes that contained all four major thymic subsets. Sca-2 split the MEL-14hi thymocyte subset into two Sca-2+ non-mature/immature phenotype fractions and two Sca-2- mature phenotype fractions. In peripheral lymphoid organs, Sca-1 identified a sub-population of mature T lymphocytes that is predominantly CD4+CD8-, in agreement with the thymic distribution of Sca-1. Peripheral T cells of the CD4-CD8+ phenotype were predominantly Sca-1-. In contrast, Sca-2 did not appear to stain peripheral T lymphocytes, but recognized only a subset of B lymphocytes which could be localized by immunohistochemistry to germinal centers. Thus, expression of Sca-1 is observed throughout T cell ontogeny, whereas Sca-2 is expressed by some subsets of thymocytes, including at least one half of thymic blasts, but not by mature peripheral T lymphocytes.  相似文献   

6.
The human CD1 locus encodes three nonpolymorphic MHC class I-like cell surface glycoproteins, CD1a-c, which are expressed primarily by immature thymocytes. A mAb and antipeptide antiserum were utilized to determine the tissue distribution of a fourth CD1 molecule, CD1d. Within the lymphoid lineage, CD1d was expressed on B cells but not on thymocytes. Immunoperoxidase staining of fresh frozen intestinal tissues demonstrated that the majority of intestinal epithelial cells, with the exception of cells at the base of some crypts, expressed CD1d. The CD1d staining was observed in the cytoplasm and along the basolateral membranes of the epithelial cells. The intestinal epithelial cell expression of CD1d was confirmed by immunoblotting with a CD1d antipeptide antiserum. Further immunoperoxidase studies indicated that CD1d, unlike murine CD1, was also expressed by nonlymphoid tissues outside of the gastrointestinal tract. The expression of CD1d outside the lymphoid and myeloid lineages clearly distinguishes this molecule from CD1a-c and suggests that it may serve a distinct function. The prominent expression of CD1d by intestinal epithelial cells suggests that this molecule may be an important ligand for T lymphocytes within the gut-associated lymphoid tissue.  相似文献   

7.
We have examined transmembrane signaling events via the TCR/CD3 complex (TCR/CD3) at various stages of T cell development for evidence of developmental regulation. Engagement of TCR/CD3 induced defective activation of phospholipase C (PLC) in thymocytes relative to peripheral blood T lymphocytes. The defect in PLC activation via TCR/CD3 was restricted to immature thymocytes (CD3low, CD4+CD8+). Mature thymocytes (CD3high, CD4+CD8-/CD8+CD4-) were similar to PBL in signaling via TCR/CD3. Both immature and mature thymocytes expressed a similar profile of PLC isoenzyme mRNA species, indicating that the defect in signaling in immature thymocytes was not due to altered expression of PLC isoenzymes. Activation of tyrosine phosphorylation pathways implicated in the coupling of TCR/CD3 to PLC was impaired in immature thymocytes, as evidenced by depressed phosphorylation of CD3 zeta subunit after stimulation with anti TCR/CD3 mAb. This was associated with lower levels of p59fyn tyrosine kinase and minimal or undetectable stimulus-induced kinase activation in immature thymocytes relative to mature thymocytes. We conclude that the capacity to signal via TCR/CD3 is regulated during T cell development by mechanisms acting at the level of TCR/CD3-associated tyrosine phosphorylation pathways.  相似文献   

8.
The rearrangement of TCR genes during thymic ontogeny creates a repertoire of T cell specificities that is refined to ensure the deletion of autoreactive clones and the MHC restriction of T cell responses. Signals delivered via the accessory molecules CD2, CD4, and CD8 have a crucial role in this phase of T cell differentiation. Recently, CD28 has been identified as a signal transducing molecule on the surface of most mature T cells. Perturbation of the CD28 molecule stimulates a novel pathway of T cell activation regulating the production of a variety of lymphokines including IL-2. We have studied the expression and function of CD28 during thymic ontogeny, and in resting and activated PBL. A variable percentage of resting thymocytes were CD28+ (3 to 25%, n = 8), but it was found in high density only on mature CD3+(bright) CD4/CD8 cells. Both unseparated thymocytes and isolated CD3-CD28-/dull cells proliferated when stimulated with PMA plus IL-2 or PMA plus ionomycin. PMA treatment also rapidly up-regulated CD28 expression in the CD3- subset as these cells became CD3-CD28+(bright). Despite the ability of PMA to induce high density CD28 expression in CD3- cells, CD3- thymocytes did not proliferate in response to PMA plus anti-CD28 mAb, in contrast to unseparated cells. CD3+ thymocytes stimulated with immobilized anti-CD3 mAb also failed to proliferate in culture. However, the addition of either IL-2 or anti-CD28 mAb supported proliferation, suggesting that only CD3+ cells could respond to CD28 signaling. The comitogenic effect of anti-CD3 and anti-CD28 mAb was IL-2 dependent as it was abrogated by an anti-IL-2R mAb. Interestingly, the expression of CD28 on the cell surface of CD3+ cells was also inducible, as flow cytometric analysis demonstrated a 10-fold increase in cell surface CD28 by 24 to 48 h after anti-CD3 stimulation of both CD3+ thymocytes and peripheral blood T cells. This increase was accounted for by a commensurate increase in CD28 mRNA levels. Together, these results suggest that CD28 is an inducible T cell antigen in both CD3- and CD3+ cells. In addition, stimulation of the CD28 pathway can provide a second signal to support the growth of CD3+ thymocytes stimulated through the TCR/CD3 complex, and may therefore represent a mechanism for positive selection during thymic ontogeny.  相似文献   

9.
In addition to TCR-derived signals, costimulatory signals derived from stimulation of the CD28 molecule by its natural ligand, B7, have been shown to be required for CD4+8- T cell activation. We investigate the ability of B7 to provide costimulatory signals necessary to drive proliferation and differentiation of virgin CD4-8+ T-cells that express a transgenic TCR specific for the male (H-Y) Ag presented by H-2Db class I MHC molecules. Virgin male-specific CD4-8+ T cells can be activated either with B7 transfected chinese hamster ovary (CHO) cells and T3.70, a mAb specific for the transgenic TCR-alpha chain that is associated with male-reactivity, or by male dendritic cells (DC). Activated CD4-8+ T cells proliferated in the absence of exogenously added IL-2. IL-2 activity was detected in supernatants of CD4-8+T3.70+ cells that were stimulated with T3.70 and B7+CHO cells. The response of CD4-8+T3.70+ cells to T3.70/B7+CHO or to male DC stimulation were inhibited by CTLA4Ig, a fusion protein comprising the extracellular portion of CTLA4 and human IgG C gamma 1. It has been previously shown that CTLA4Ig binds B7 with high affinity. Staining with CTLA4Ig revealed that DC express about 50 times more B7 than CD4-8+ T cells. CTLA4Ig also specifically blocked the proliferation of male-reactive cells in vivo. We have also used an in vitro deletion assay whereby immature CD4+8+ thymocytes expressing the transgenic male-specific TCR are deleted by overnight incubation with either immobilized T3.70 or male DC to investigate the participation of the CD28/B7 pathway in the negative selection of immature thymocytes. Staining with B7Ig established that both immature murine CD4+8+ and mature CD4-8+ thymocytes express a high level of CD28. However, despite the high expression of CD28 on CD4+8+ thymocytes, it was found that deletion of CD4+8+ thymocytes expressing the male-specific TCR by the T3.70 mAb was not inhibited by B7+CHO cells. Furthermore, the deletion of these thymocytes by DC also was not inhibited by CTLA4Ig. These findings provide evidence that although signaling through CD28 can costimulate a primary anti-male response in mature CD4-8+ T cells, the CD28/B7 pathway does not appear to participate in the negative selection of immature CD4+8+ thymocytes.  相似文献   

10.
IL-10, a novel growth cofactor for mature and immature T cells   总被引:27,自引:0,他引:27  
We identified a new cytokine, B cell-derived T cell growth factor (B-TCGF), that is produced by a murine B cell lymphoma and induces proliferation of mature and immature thymocytes in the presence of IL-2 and IL-4. Both adult and day 15 fetal thymocytes (CD4-8-, CD4+8-, CD4-8+) proliferate strongly in the presence of IL-2, IL-4, and B-TCGF. B-TCGF alone does not stimulate thymocyte proliferation. B-TCGF appears to be identical to a novel cytokine whose cDNA was recently isolated at our institution, cytokine synthesis-inhibitory factor (CSIF; IL-10). rIL-10 has B-TCGF activity, and mAb specific for IL-10 inhibit the B-TCGF activity present in CH12 supernatants. Further studies have shown that day 15 fetal thymocytes cultured in the presence of IL-10, IL-2, and IL-4 remain CD4- and CD8- but exhibit increased CD3 expression. Adult CD4- CD8- thymocytes cultured under the same conditions proliferate whether they are CD3+ or CD3-. The CD3- population becomes enriched in CD3+ cells after 4 days of culture. IL-10 is secreted by day 15 fetal thymocytes, adult thymocytes, and adult splenocytes when stimulated via their TCR. IL-10 is strongly homologous to the EBV gene BCRFI, and BCRFI has CSIF activity. In contrast to IL-10, BCRFI does not exhibit detectable thymocyte-stimulating activity, suggesting the existence of at least two functional epitopes on the IL-10 molecule.  相似文献   

11.
An in vitro assay was used for assessing the participation of various cell surface molecules and the efficacy of various cell types in the deletion of Ag-specific immature thymocytes. Thymocytes from mice expressing a transgenic TCR specific for the male Ag presented by the H-2Db class I MHC molecule were used as a target for deletion. In H-2d transgenic mice, cells bearing the transgenic TCR are not subjected to thymic selection as a consequence of the absence of the restricting H-2Db molecule but, nevertheless, express this TCR on the vast majority of immature CD4+8+ thymocytes. In this report we show that CD4+8+ thymocytes from H-2d TCR-transgenic mice are preferentially killed upon in vitro culture with male APC; DC were particularly effective in mediating in vitro deletion when compared with either B cells or T cells. Deletion of CD4+8+ thymocytes by DC was H-2b restricted and could be inhibited by mAb to either LFA-1 alpha or CD8. Partial inhibition was observed with mAb to ICAM-1, whereas mAb to CD4 and LFA-1 beta were without effect. These results are the first direct evidence of LFA-1 involvement in negative selection and provide further direct support for the participation of CD8/class I MHC interactions in this process. Like the requirements for deletion, activation of mature male-specific CD4-8+ T cells from female H-2b TCR-transgenic mice was also largely dependent on Ag presentation by DC and required both LFA-1/ICAM and CD8/class I MHC interactions; these results support the view that activation and deletion may represent maturation stage-dependent consequences of T cells encountering the same APC. Finally, our results also support the hypothesis that negative selection (deletion) does not require previous positive selection because deletion was observed under conditions where positive selection had not occurred.  相似文献   

12.
The 8B4/20 Ag is a 120-kDa molecule whose expression on human thymocytes varies according to the differentiation stage: high density on immature CD3-/low thymocytes, reduced density on CD3medium and double-positive thymocytes, and absent on CD3high and single-positive thymocytes and on circulating T cells. In this paper we present immunological and biochemical evidence demonstrating that 8B4/20 Ag is a variant of CD43. We show that 8B4/20-expressing molecules, which are a subset of the CD43 molecules on thymocytes, are heterogeneous in charge, suggesting varying sialylation levels. The 8B4/20 epitope was mapped to the peripherally exposed N-terminal region of CD43, and the 8B4/20 antigenic determinant was characterized by requirement for the sialic acid exocyclic polyhydroxyl side chain, a feature shared with ligands of CD22. Altogether, 8B4/20-CD43 expression pattern and biochemical characteristics suggest its participation in carbohydrate-based interactions in the thymus. We therefore used specific Ab to mimic putative 8B4/20 interactions with natural ligand and examined the effect on isolated thymocytes. Treatment with 8B4/20 had no effect on in vitro apoptosis of isolated thymocytes. In contrast, 8B4/20 ligation enhanced the conversion of isolated thymocytes to differentiated phenotypes. Increased numbers were found in 8B4/20-treated cultures of CD3high and single-positive thymocytes and decreased numbers of CD3-/low and double-positive thymocytes, strongly suggesting that engagement of 8B4/20 delivers a positive signal that favors completion of the thymocyte maturation program. The ability of 8B4/20 mAb to drive thymocyte maturation in vitro suggests that CD43 molecules bearing the 8B4/20 epitope participate in early events of thymic selection.  相似文献   

13.
We have investigated the role of the CD2 and the CD28 Ag-independent pathways of activation on CD3low thymocytes. We previously showed that anti-CD28 mAb synergized with anti-CD2 mAb directed against epitopes T11.1 and T11.2, in the activation of purified resting T cells or unseparated thymocytes. Proliferation induced via CD2 plus CD28 was mediated via an IL-2-dependent pathway and was not affected by prior modulation of the CD3-TCR complex. Here, we show that a subset of CD3low thymocytes, although unresponsive to CD3 activation, can be activated to proliferate through the CD2 or the CD28 pathways, in the presence of exogenous IL-2. The mitogenic combination of mAb to CD2 and CD28 induces a proliferation of thymocytes which, in absence of exogenous lymphokines, is restricted to the more mature intrathymic subpopulation, CD1a-. However, CD3low thymocytes can also be triggered through the CD2 plus CD28 activation pathways but require at least addition of exogenous IL-2 to proliferate. This study demonstrates that a fraction of immature CD3low thymocytes possesses functional CD2 and CD28 surface molecules at a time when CD3 is not yet functional.  相似文献   

14.
Recent evidence suggests that the zeta-subunit of the TCR complex plays a critical role in transducing signals initiated by the Ag receptor heterodimer. Because thymic maturation involves specific interactions between the TCR complex and thymic stromal cells, the zeta-subunit has been postulated to also play a role in this process. To assess the potential for zeta to contribute to thymocyte maturation, we have used an anti-zeta mAb (TIA-2) to quantitate its expression in mature (CD3bright) and immature (CD3dim and CD3-) populations of human thymocytes. Using both flow cytometric and immunoblotting analysis, we found that the relative expression of TCR-zeta varied directly with the surface expression of CD3. Importantly, TCR-zeta was detected in the majority of CD3- thymocytes, indicating that its expression precedes the surface appearance of CD3:TCR. In thymocytes, TCR-zeta was found to be constitutively phosphorylated on tyrosine residues. The relative expression of phospho-zeta varied directly with the maturational stage of the thymocyte, with the mature (CD3bright), single positive cells accounting for most of the phospho-zeta found in the human thymus. The expression of phospho-zeta could be significantly increased by activating thymocytes with mAb reactive with either CD3 or CD2. These results suggest that TCR-zeta is functionally linked to the major thymocyte activation receptors.  相似文献   

15.
We investigated the expression and function of Fas on human thymocytes prepared from fetal and pediatric tissue specimens and from SCID-hu Thy/Liv grafts. Unlike mouse thymocytes, human thymocytes exhibited a pattern of Fas expression skewed to immature cells, in that the highest expression was seen on double negative thymocytes and on intrathymic T progenitor cells. Fas expression was intermediate on double positive human thymocytes, and low or negative on mature single positive CD4 and CD8 medullary thymocytes. In spite of this relatively abundant surface expression, cross-linking of Fas with agonist mAb was incapable of triggering an apoptotic signal in human thymocytes. Apoptotic signaling was not enhanced by treatment with cycloheximide, nor by restoring a cosignaling milieu by addition of thymic stromal cells. Mouse thymocytes were induced to apoptosis by cross-linked recombinant soluble human Fas ligand both in vitro and in vivo, though human thymocytes were also resistant to this mode of receptor ligation. Membrane-bound Fas ligand also induced apoptotic death in murine thymocytes but not in human thymocytes. Human thymocytes were as sensitive as Jurkat cells, however, to apoptosis induced by TNF-alpha, suggesting that these cells have a signaling defect before activation of the earliest caspases. These data demonstrate a durable and specific resistance of human thymocytes to apoptosis induced through Fas receptor engagement, and reveal significant species-specific differences in the biology of thymocyte-programmed cell death.  相似文献   

16.
CD45R is a high molecular weight (p205/220) form of a series of transmembrane glycoproteins, collectively known as CD45 and present in some form on all lymphoid cells. We have proposed that CD45R+ thymocytes, a minority (15 to 30%) of total thymocytes, represent the generative thymic lineage whereas CD45 p180+ thymocytes are destined for intrathymic death. To test this hypothesis, we prepared human thymus fractions enriched for the expression of CD45R by exhaustive depletion of CD45 p180+ cells, as well as progenitor CD3-4-8- "multinegative" thymocytes which are predominantly CD45R+. Northern analysis of RNA extracted from CD45 p180- and multinegative thymus fractions demonstrated that these populations are enriched for cells able to synthesize mRNA encoding IL-2 and IL-2R after mitogenic stimulation, as compared to unfractionated thymus, consistent with the properties expected for generative thymocytes. Postulating that the CD45R glycoprotein might represent an important signal delivery molecule, we analyzed the ability of mAb specific for CD45 epitopes to synergize with suboptimal amounts of PHA and PMA in the stimulation of IL-2 mRNA production by multinegative thymocytes. We found that CD45R-specific mAb synergizes strongly with PHA/PMA to stimulate IL-2 and IL-2R mRNA expression. In contrast, mAb to CD45 common determinants were unable to synergize. Multinegative thymocytes depleted of all CD45 p180+ cells were compared to total multinegative cells and found to synthesize fourfold greater levels of IL-2 mRNA after stimulation with anti-CD45R mAb. This CD45 p180- multinegative subset is enriched for cells expressing a high density of CD45R, and for CD45- thymus cells, suggesting a possible enrichment for nonlymphoid cells which may play a role in the stimulation process. Our results suggest that the extended amino acid insert of CD45R plays a fundamental role in transmembrane signalling, and that CD45R may be a primary signal transducer for developing thymic progenitor cells.  相似文献   

17.
The mitogenic activity of human T-cell leukemia virus type I (HTLV-I) is triggering the proliferation of human resting T lymphocytes through the induction of the interleukin-2 (IL-2)/IL-2 receptor autocrine loop. This HTLV-I-induced proliferation was found to be mainly mediated by the CD2 T-cell antigen, which is first expressed on double-negative lymphoid precursors after colonization of the thymus. Thus, immature thymocytes express the CD2 antigen before that of the CD3-TCR complex. We therefore investigated the responsiveness of these CD2+CD3- immature thymocytes and compared it with that of unseparated thymocytes, containing a majority of the CD2+CD3+ mature thymocytes, and that of the CD2-CD3- prothymocytes. Both immature and unseparated thymocytes were incorporating [3H]thymidine in response to the virus, provided that they were cultivated in the presence of submitogenic doses of phytohemagglutinin. In contrast, the prothymocytes did not proliferate. Downmodulation of the CD2 molecule by incubating unseparated and immature thymocytes with a single anti-CD2 monoclonal antibody inhibited the proliferative response to HTLV-I. These results clearly underline that the expression of the CD2 molecule is exclusively required in mediating the proliferative response to the synergistic effect of phytohemagglutinin and HTLV-I. Immature thymocytes treated with a pair of anti-CD2 monoclonal antibodies were shown to proliferate in response to HTLV-I, even in the absence of exogenous IL-2. We further verified that the proliferation of human thymocytes is consecutive to the expression of IL-2 receptors and the synthesis of IL-2. These observations provide evidence that the mitogenic stimulus delivered by HTLV-I is more efficient than that provided by other conventional mitogenic stimuli, which are unable to trigger the synthesis of endogenous IL-2. Collectively, these results show that the mitogenic activity of HTLV-I is able to trigger the proliferation of cells which are at an early stage of T-cell development. They might therefore represent target cells in which HTLV-I infection could favor the initiation of the multistep lymphoproliferative process leading to adult T-cell leukemia.  相似文献   

18.
The positive and negative selection of immature thymocytes that shapes the mature T cell repertoire appears to occur at an intermediate stage of development when the cells express low levels of TCR/CD3. These cells are also CD4+CD8+ and CD28+ (dull), and signals delivered by these three accessory molecules have been implicated in the selection process. We have examined the regulatory function of these accessory molecules on responses of immature thymocytes stimulated through the TCR/CD3 complex. Cross-linking CD4 or CD8 with CD3 strongly enhanced signal transduction via CD3 as assessed by protein tyrosine phosphorylation and calcium mobilization. Subsequent cell proliferation could be induced by soluble anti-CD28 mAb, which was comitogenic for cells stimulated with CD3 x CD4 or CD3 x CD8 cross-linking, but was without effect on cells stimulated with CD3 x CD3 cross-linking. A potential role for CD28 signal transduction in thymic maturation is suggested by the demonstration that the BB-1 molecule, a natural ligand for CD28, is expressed on thymic stromal cells. Taken together, our data suggest a model of thymic development in which CD4 or CD8 may enhance TCR/CD3 signaling upon coligation by an MHC molecule. If the CD28 surface receptor is simultaneously stimulated by a BB-1 expressing stromal cell, this set of interactions could lead to proliferation and positive selection. In the absence of CD28 stimulation the enhanced TCR/CD3 signals might lead to apoptosis and negative selection.  相似文献   

19.
HAb18G/CD147, a glycoprotein of the immunoglobulin super‐family (IgSF), is a T cell activation‐associated molecule. In this report, we demonstrated that HAb18G/CD147 expression on both activated CD4+ and CD8+ T cells was up‐regulated. In vitro cross‐linking of T cells with an anti‐HAb18G/CD147 monoclonal antibody (mAb) 5A12 inhibited T cells proliferation upon T cell receptor stimulation. Such co‐stimulation inhibited T cell proliferation by down‐regulating the expression of CD25 and interleukin‐2 (IL‐2), decreased production of IL‐4 but not interferon‐γ. Laser confocal imaging analysis indicated that HAb18G/CD147 was recruited to the immunological synapse (IS) during T cell activation; triggering HAb18G/CD147 on activated T cells by anti‐HAb18G/CD147 mAb 5A12 strongly dispersed the formation of the IS. Further functional studies showed that the ligation of HAb18G/CD147 with mAb 5A12 decreased the tyrosine phosphorylation and intracellular calcium mobilization levels of T cells. Through docking antibody–antigen interactions, we demonstrated that the function of mAb 5A12 is tightly dependent on its specificity of binding to N‐terminal domain I, which plays pivotal role in the oligomerization of HAb18G/CD147. Taken together, we provide evidence that HAb18G/CD147 could act as a co‐stimulatory receptor to negatively regulate T cell activation and is functionally linked to the formation of the IS.  相似文献   

20.
We have observed that the CD28 molecule was present on the cell surface of a large fraction of resting CD3- thymocytes (40 to 100%). Interestingly, the majority (greater than 90%) of surface CD3-CD28-cells reacted in the cytoplasm with anti-CD28 (CK248, 9.3) and anti-CD3 epsilon chain mAbs (Leu4, OKT3). Along this line, we found that CD28 surface expression could be induced within 18 hr on CD3-CD28- thymocytes using very low doses of phorbol-13-myristate-12-acetate (PMA). This event was accompanied by the appearance of CD25 and CD69 activation antigens but not of CD3/TCR complex. These results were further confirmed by immunoprecipitation studies. It is noteworthy that the T-cell activation pathway initiated via the CD28 molecule is functional in resting CD3- thymocytes in the presence of PMA and/or IL2. Finally, stimulation of CD3- immature thymocytes via CD28 gave rise to a large fraction (about one-third) of CD3-CD8+ cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号