首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cotton fabrics were dyed with dyes generated in situ by laccase-catalyzed oxidative coupling of the colorless 2,5-diaminobenzenesulfonic acid (2,5-DABSA) and 1-hydroxyphenol (catechol). The enzymatic oxidation of the dye intermediates led to cross-coupling reaction products when the reaction was conducted with an excess of catechol. At least fourfold excess of catechol was necessary to achieve satisfactory dye fixation on cotton. Formation of the same colored product using either an equimolar ratio of the reagents or tenfold excess of catechol was observed. Most probably, homo-molecular reactions predominate over the cross-coupling at equimolar ratio of the precursors, while with an excess of catechol, the cross-coupling occurs in higher yield. The reaction was followed using UV-Vis spectroscopy, HPLC, FTIR and MALDI-TOF MS. A reaction pathway for laccase-induced cross-coupling of catechol and 2,5-DABSA yielding a major colored product was proposed.  相似文献   

2.
Oxidation of colourless dye precursors with laccase enzyme provided simultaneous “in situ” generation and fixation of a pigment on amino groups pre-functionalized cotton fabric. Aromatic amine moieties of 2,5-diaminobenzenesulfonic acid introduced onto tosylated cotton were coupled and copolymerised with a phenolic compound catechol into coloured product covalently fixed on the fabric upon oxidation with laccase. The controlled amination of cellulose in a first step and subsequent colouration allowed for up to 95% pigment fixation on the fabric. Electrochemical studies were performed to elucidate the mechanism of the pigment formation. The pigment was further isolated from the acid hydrolysate of the dyed cellulose fabric to confirm the covalent fixation and to further elucidate the pigment structure by means of FTIR, MS, 1H and 13C NMR analysis. An oligomeric pigment has been identified composed by up to six phenolic units.  相似文献   

3.
In iron-limited medium, a siderophore producing soil isolate ofAzotobacter chroococcum showed a high level of hydroxamate with relatively low level of nitrogen fixation. Inclusion of iron in the medium resulted in increased nitrogen fixation with decreased hydroxamate production. Under shake culture conditions, the level of both hydroxamate and catechol type of siderophores decreased after 2 d of incubation in iron-deficient medium. However, under iron-sufficient conditions, both siderophore production and nitrogen fixation increased with time although the level of siderophore was quite low. A number of soil isolates and mutants ofA. chrococcum were tested for nitrogen fixation, hydroxamate and catechol type of siderophore production. Wide variation was observed in the siderophore level and nitrogen fixation in the cultures tested. Nitrogen fixation was higher in the iron-sufficient medium than in iron-limited one while hydroxamate yield was higher in iron-limited medium than in the iron-sufficient one in all the cultures. Inclusion of ammonium acetate in the medium induced catechol synthesis in more than 60% of the cultures.  相似文献   

4.
Jarvis, S. C. and Hatch, D. J. 1985. The effects of aluminiumon the growth of white clover dependent upon fixation of atmosphericnitrogen.–J. exp. Bot. 36: 1075–1086. The effects of aluminium (Al3 +) on the growth of white cloverdependent upon symbiotic fixation of atmospheric nitrogen wereexamined at concentrations that may be encountered in solutionsfrom soils of low pH. Well established plants were grown inflowing solution culture with carefully maintained concentrationsof Al and of P and with pH held constant at a value (4.5) atwhich insoluble precipitates are unlikely to form. After 3 weeksof treatment, there were major visual differences between treatmentsin both shoots and roots. Although added Al at 25, 50 and 100mmol m–3 reduced dry weight, the differences between theplants were not significant. There were, however, some considerabledifferences in P and Ca contents between the treatments. Muchof the Al held by the roots was displaced when plants were transferredto solutions containing either scandium or gallium. As wellas the effects on the plant, Al had a considerable influenceon the fixation of atmospheric nitrogen. At concentrations of50 and 100 mmol m–3 Al3+ nodule initiation was reducedand there was a much reduced nodule nitrogenase activity perunit of root. Even at 25 mmol m–3 Al3+, when nodule numberswere not reduced, nitrogenase activity was adversely affected. Key words: —Aluminium, Trifolium repens, nitrogen fixation  相似文献   

5.
The effect of cyclic anaerobic–aerobic conditions on the biodegradative capability of the mixed microbial culture for the azo dye Remazol Brilliant Violet 5R (RBV-5R) was investigated in the sequencing batch reactor (SBR) fed with a synthetic textile wastewater. The SBR had a 12-h cycle time with anaerobic–aerobic periods of 3/9, 6/6 and 9/3 h. General SBR performance was assessed by measurement of catabolic enzymes (catechol 2,3-dioxygenase, azo reductase), chemical oxygen demand (COD), color and amount of aromatic amines. In this study, under steady-state conditions, the anaerobic period of the cyclic SBR was found to allow the reductive decolorization of azo dye. Longer anaerobic periods resulted in higher color removal efficiencies, approximately 71% for the 3-h, 87% for 6-h and 92% for the 9-h duration. Total COD removal efficiencies were over 84% under each of the cyclic conditions and increased as the length of the anaerobic period was increased; however, the highest color removal rate was attained for the cycle with the shortest anaerobic period of 3 h. During the decolorization of RBV-5R, two sulfonated aromatic amines (benzene based and naphthalene based) were formed. Additionally, anaerobic azo reductase enzyme was found to be positively affected with the increasing duration of the anaerobic period; however; it was vice versa for the aerobic catechol 2,3-dioxygenase (C23DO) enzyme.  相似文献   

6.
The purpose of this study was purification and characterization of catechol 1,2-dioxygenase from Geobacillus sp. G27 strain, which degrades α-naphthol by the β-ketoadipate pathway. The catechol 1,2-dioxygenase (C1,2O) was purified using four steps of ammonium sulfate precipitation, DEAE-celullose, Sephadex G-150 and hydroxylapatite chromatographies. The enzyme was purified about 18-fold with a specific activity of 7.42 U mg of protein−1. The relative molecular mass of the native enzyme estimated on gel chromatography of Sephadex G-150 was 96 kDa. The pH and temperature optima for enzyme activity were 7 and 60°C, respectively. A half-life of the catechol 1,2-dioxygenase at the optimum temperature was 40 min. The kinetic parameters of the Geobacillus sp. G27 strain catechol 1,2-dioxygenase were determined. The enzyme had apparent Km of 29 μM for catechol and the cleavage activities for methylcatechols were much less than for catechol and no activity with gentisate or protocatechuate was detected.  相似文献   

7.
Summary Chromaffin tissue was fixed in 4% formaldehyde buffered to pH 5.8 and subsequently dehydrated. The fixing fluid and alcohols were examined for catechol amine and adenosine nucleotide loss by paper and columnar chromatography. Much of these substances was found to escape during fixation and dehydration. The quantitative loss of ATP and catechol amines during formaldehyde fixation was shown to be 30–40%. Dehydration increased the loss to approximately 90%. The relevance of these results to the chromaffin reaction and post-chroming were discussed.  相似文献   

8.
Organisms present in methanogenic freshwater lake sediments from the vicinity of Athens, Georgia, were adapted to mineralize 2,4-dichlorophenol. Repeated addition of 0.5 to 2.7 mmol/liter of phenol, and later of 0.5–6.2 mmol/liter p-hydroxybenzoate (p-OHB), to such enrichments led to the conversion of p-OHB to phenol at a rate of up to 100 mmol p-OHB per liter per day. Subsequently, a spore-forming, obligately anaerobic bacterium, strain JW/Z-1, was isolated which transformed p-OHB to phenol and 3,4-dihydroxybenzoate (3,4-OHB) to catechol (1,2-dihydroxybenzene) stoichiometrically without further metabolism of the phenols. The strain did not transform benzoate, 4-chlorophenol, 2,4-dichlorophenol, 4-chlorobenzoate, o- and m-hydroxybenzoate, 2,4- and 3,5-dihydroxybenzoate, 2,3,4- and 3,4,5-trihydroxybenzoate, or 4-aminobenzoate. Yeast extract was required for growth of strain JW/Z-1 and only high concentrations of casein hydrolysate or tryptone could substitute it, to some extent. Except for sodium acetate, and some amino acids together with a 20-fold increased concentration of vitamins, no single carbohydrate or defined organic compound has been found to support growth of this strain in the presence (or in the absence) of 0.2 to 0.5% (w/v) yeast extract. The fermentation products during growth on yeast extract indicated that the metabolism of amino acid degradation was the major source for growth. The decarboxylating activity was inducible by p-OHB for the decarboxylation of p-OHB, and at a lower rate for 3,4-OHB, and by 3,4-OHB only for 3,4-OHB, suggesting that two different enzyme systems exist. The addition of the aromatic amino acids phenol or benzoate did not induce the decarboxylation activity in cultures growing with yeast extract. Growth was observed at temperatures ranging from 12–41°C (Topt, 33–34°C) and at pH-values ranging from 6.0–10.0 (pHopt, 7.2–8.2). The shortest doubling time observed for strain JW/Z-1 was 3.2 hours.  相似文献   

9.
The monohydroxo-bridged dicopper(II) complex (1), its reduced dicopper(I) analogue (2) and the trans-μ-1,2-peroxo-dicopper(II) adduct (3) with the macrocyclic N-donor ligand [22]py4pz (9,22-bis(pyridin-2′-ylmethyl)-1,4,9,14,17,22,27,28,29,30- decaazapentacyclo -[22.2.114,7.111,14.117,20]triacontane-5,7(28),11(29),12,18,20(30), 24(27),25-octaene), have been prepared and characterized, including a 3D structure of 1 and 2. These compounds represent models of the three states of the catechol oxidase active site: met, deoxy (reduced) and oxy. The dicopper(II) complex 1 catalyzes the oxidation of catechol model substrates in aerobic conditions, while in the absence of dioxygen a stoichiometric oxidation takes place, leading to the formation of quinone and the respective dicopper(I) complex. The catalytic reaction follows a Michaelis–Menten behavior. The dicopper(I) complex binds molecular dioxygen at low temperature, forming a trans-μ-1,2-peroxo-dicopper adduct, which was characterized by UV–Vis and resonance Raman spectroscopy and electrochemically. This peroxo complex stoichiometrically oxidizes a second molecule of catechol in the absence of dioxygen. A catalytic mechanism of catechol oxidation by 1 has been proposed, and its relevance to the mechanisms earlier proposed for the natural enzyme and other copper complexes is discussed. Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

10.
Plasmid-carrying Pseudomonas putida strains degrade naphthalene through different biochemical pathways. The influence of various combinations of host bacteria and plasmids on growth characteristics and competitiveness of P. putida strains was studied in chemostat culture at a low dilution rate (D=0.05 h−1) with naphthalene as the sole source of carbon and energy. Under naphthalene limitation, the plasmid-bearing strains degrading naphthalene that use catechol 1,2-dioxygenase for catechol oxidation (ortho pathway), were the most competitive. The strains bearing plasmids that control naphthalene catabolism via catechol 2,3-dioxygenase (meta pathway), were less competitive. Under these conditions the strain carrying plasmid pBS4, which encodes for naphthalene catabolism via gentisic acid, was the least competitive. Received: 24 February 1997 / Received revision: 22 May 1997 / Accepted: 25 May 1997  相似文献   

11.
An inhibitory effect of cadmium on the growth and ligninolytic activity of the wood-rotting basidiomycetesPhanerochœte chrysosporium, Pleurotus ostreatus, Pycnoporus cinnabarinus andStereum hirsutum was observed. Delayed decolorization of the polymeric dye Poly R-478 was observed in samples with 0.10 mmol/L Cd. Addition of 0.25 mmol/L Cd to the cultivation medium strongly reduced the activity of both Mn-dependent and Mn-independent peroxidases ofStereum hirsutum, while the activity of laccase was not affected to a similar extent. The maximum of MnP activity in these samples was found during the exponential phase of growth whereas control samples showed the highest activity after the onset of the stationary phase (days 15–21). Cadmium at concentrations higher than 0.50 mmol/L significantly inhibited the activity of all enzymes tested in bothS. hirsutum andP. chrysosporium.  相似文献   

12.
 We purified two catechol oxidases from Lycopus europaeus and Populus nigra which only catalyze the oxidation of catechols to quinones without hydroxylating tyrosine. The molecular mass of the Lycopus enzyme was determined to 39 800 Da and the mass of the Populus enzyme was determined to 56 050 Da. Both catechol oxidases are inhibited by thiourea, N-phenylthiourea, dithiocarbamate, and cyanide, but show different pH behavior using catechol as substrate. Atomic absorption spectroscopic analysis found 1.5 copper atoms per protein molecule. Using EPR spectroscopy we determined 1.8 Cu per molecule catechol oxidase. Furthermore, EPR spectroscopy demonstrated that catechol oxidase is a copper enzyme of type 3. The lack of an EPR signal is due to strong antiferromagnetic coupling that requires a bridging ligand between the two copper ions in the met preparation. Addition of H2O2 to both enzymes leads to oxy catechol oxidase. In the UV/Vis spectrum two new absorption bands occur at 345 nm and 580 nm. In accordance with the oxy forms of hemocyanin and tyrosinase the absorption band at 345 nm is due to an O2 2–σ*)→Cu(II) (d x2–y2 ) charge transfer (CT) transition. The absorption band at 580 nm corresponds to the second O2 2–v*)→Cu(II) (d x2–y2 ) CT transition. The UV/Vis bands in combination with the resonance Raman spectra of oxy catechol oxidase indicate a μ-η2 : η2 binding mode for dioxygen. The intense resonance Raman peak at 277 cm–1, belonging to a Cu-N (axial His) stretching mode, suggests that catechol oxidase has six terminal His ligands, as known for molluscan and arthropodan hemocyanin. Received: 30 July 1998 / Accepted: 26 October 1998  相似文献   

13.
A Pseudomonas sp. strain NGK 1 (NCIM 5120) was immobilized in various matrices, namely, alginate, agar (1.8 × 1011 cfu g−1 beads) and polyacrylamide (1.6 × 1011 cfu g−1 beads). The degradation of naphthalene was studied, by freely suspended cells (4 × 1010 cfu ml−1) and immobilized cells in batches, with shaken culture and continuous degradation in a packed-bed reactor. Free cells brought about the complete degradation of 25 mmol naphthalene after 3 days of incubation, whereas, a maximum of 30 mmol naphthalene was degraded by the bacteria after 3–4 days of incubation with 50 mmol and 75 mmol naphthalene, and no further degradation was observed even after 15 days of incubation. Alginate-entrapped cells had degraded 25 mmol naphthalene after 3.5 days of incubation, whereas agar- and polyacrylamide-entrapped cells took 2.5 days; 50 mmol naphthalene was completely degraded by the immobilized cells after 6–7 days of incubation. Maximum amounts of 55 mmol, 70 mmol and 67 mmol naphthalene were degraded, from an initial 75 mmol naphthalene, by the alginate-, agar- and polyacrylamide-entrapped cells after 15 days of incubation. When the cell concentrations were doubled, 25 mmol and 50 mmol naphthalene were degraded after 2 and 5.5 days of incubation by the immobilized cells. Complete degradation of 75 mmol naphthalene occurred after 10 days incubation with agar- and polyacrylamide-entrapped␣cells, whereas only 60 mmol naphthalene was degraded by alginate-entrapped cells after 15 days of␣incubation. Further, with 25 mmol naphthalene, alginate-, agar- and polyacrylamide-entrapped cells (1.8 × 1011 cfu g−1 beads) could be reused 18, 12 and 23 times respectively. During continuous degradation in a packed-bed reactor, 80 mmol naphthalene 100 ml−1 h−1 was degraded by alginate- and polyacrylamide-entrapped cells whereas 80 mmol naphthalene 125 ml−1␣h−1 was degraded by agar-entrapped cells. Received: 21 October 1997 / Received revision: 15 January 1998 / Accepted: 18 January 1998  相似文献   

14.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown as simulated swards for 71 d in flowing nutrientsolutions with roots at 11 C and shoots at 20/15 C, day/night,under natural illumination. Root temperatures were then changedto 3, 5, 7, 11, 13, 17 or 25 C and the total N2, fixation over21 d was measured in the absence of a supply mineral N. Alltreatments were subsequently supplied with 10 mmol m–2NO2 in the flowing solutions for 14 d, and the relativeuptake of N by N2, fixation and NO3 uptake was compared.Net uptake of K+ was measured on a daily basis. Root temperature had little effect on root d. wt over the 35-dexperimental period, but shoot d. wt increased by a factor of3.5 between 3 and 25 C, with the sharpest increase occurringat 7–11 C. Shoot: root d. wt ratios increased from 25to 68 with increasing temperature at 7–25 C. N2-fixationper plant (in the absence of NO2 ) increased with roottemperature at 3–13C, but showed little change above13 C. The ratios of N2 fixation: NO2 uptake over 14d (mol N: mol N) were 0.47–0.77 at 3–7 C, 092–154at 11–17 C, and 046 at 25 C, reflecting the dominanceof NO3 uptake over N2 fixation at extremes of high andlow root temperature. The total uptake of N varied only slightlyat 11–25 –C (095–110 mmol N plant–1),the decline in N2 fixation as root temperature increased above11 C was compensated for by the increase in NO 3 uptake.The % N in shoot dry matter declined with decreasing root temperature,from 32% at 13 C to 15% at 3 C. In contrast, concentrationsof N expressed on a shoot water content basis showed a modestdecrease with increasing temperature, from 345 mol m–3at 3 C to 290 mol m–3 at 25 C. Trifolium repens L, white clover, root temperature, N2 fixation, potassium uptake, nitrate uptake, flowing solution culture  相似文献   

15.
The uptake of 15N-labelled nitrogen nutrients (ammonium, urea,nitrate) was studied during the decline of a bloom of nitrogen-fixingcyanobacteria in the Baltic Sea. This was done by sampling anorth-south transect of stations, representing different stagesof the bloom. Comparison with nitrogen fixation data showedthat this process was of minor importance, and that the nitrogenuptake was dominated by regenerated nitrogen, mainly ammonium.From time series incubations for studying nutrient uptake, itappears that the regeneration of ammonium was substantial, butthat the production of urea or nitrate was slow. The integrateddaily uptake was calculated for the 0–15 m interval atfour stations and values ranged between 6 and 21 mmol N m–2day–1, of which the regenerated nutrients, ammonium andurea, constituted 71–93%. Nitrate was of minor importanceand the highest nitrate uptake rates were found close to thethermocline (at 15 m) and in the southern part of the Baltic.Comparison with carbon fixation data reported from simultaneousmeasurements at two stations gave C/N uptake ratios of 4.9 and2.1 for integrated daily uptake. Contrary to earlier findings,the concentration of DON increased with increasing salinity(from 15 to 17 µmol l–1). This was correlated withthe declination of the bloom and is suggested to be a resultof a gradual release of less easily utilized DON from the degradationof cyanobacteria. The C/N ratio of DOM was high, 21–23.  相似文献   

16.
A Gram-positive bacterial strain capable of aerobic biodegradation of 4-fluorophenol (4-FP) as the sole source of carbon and energy was isolated by selective enrichment from soil samples collected near an industrial site. The organism, designated strain IF1, was identified as a member of the genus Arthrobacter on the basis of 16S ribosomal RNA gene sequence analysis. Arthrobacter strain IF1 was able to mineralize 4-FP up to concentrations of 5 mM in batch culture. Stoichiometric release of fluoride ions was observed, suggesting that there is no formation of halogenated dead-end products during 4-FP metabolism. The degradative pathway of 4-FP was investigated using enzyme assays and identification of intermediates by gas chromatography (GC), GC–mass spectrometry (MS), high-performance liquid chromatography, and liquid chromatography–MS. Cell-free extracts of 4-FP-grown cells contained no activity for catechol 1,2-dioxygenase or catechol 2,3-dioxygenase, which indicates that the pathway does not proceed through a catechol intermediate. Cells grown on 4-FP oxidized 4-FP, hydroquinone, and hydroxyquinol but not 4-fluorocatechol. During 4-FP metabolism, hydroquinone accumulated as a product. Hydroquinone could be converted to hydroxyquinol, which was further transformed into maleylacetic acid and β-ketoadipic acid. These results indicate that the biodegradation of 4-FP starts with a 4-FP monooxygenase reaction that yields benzoquinone, which is reduced to hydroquinone and further metabolized via the β-ketoadipic acid pathway.  相似文献   

17.
In vitro cloning assays for hematopoietic myeloid and erythroid precursor cells have been used as screening systems to investigate the hematotoxic potential of environmental chemicals in humans and mice. Granulocyte-monocyte progenitors (CFU-GM) from human umbilical cord blood and from mouse bone marrow (Balb/c and B6C3F1) were cultured in the presence of lead and the benzene metabolite catechol. Erythroid precursors (BFU-E) from human umbilical cord blood were cultured in the presence of lead. The in vitro exposure of the human and murine cells resulted in a dose-dependent depression of the colony numbers. The concentration–effect relationship was studied. Results showed that: (1) Based on calculated IC50 values, human progenitors are more sensitive to lead and catechol than are murine progenitors. The dose that caused a 50% decrease in colony formation after catechol exposure was 6 times higher for murine cells (IC50 = 24 μmol/L) than for human cord blood cells (IC50 = 4 μmol/L). Lead was 10–15 times more toxic to human hematopoietic cells (IC50 = 61 μmol/L) than to murine bone marrow cells from both mice strains tested (Balb/c, IC50 = 1060 μmol/L; B6C3F1, IC50 = 536 μmol/L). (2) A lineage specificity was observed after exposure to lead. Human erythroid progenitors (hBFU-E) (IC50 = 3.31 μmol/L) were found to be 20 times more sensitive to the inhibitory effect of lead than were myeloid precursors (hCFU-GM) (IC50 = 63.58 μmol/L). (3) Individual differences in the susceptibility to the harmful effect of lead were seen among cord blood samples. (4) Toxicity of lead to progenitor cells occurred at environmentally relevant concentrations. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
Laccases catalyse the oxidation of a wide range of substrates by a radical-catalyzed reaction mechanism, with a corresponding reduction of oxygen to water in a four-electron transfer process. Due to that, laccases are considered environmentally friendly enzymes, and lately there has been great interest in their use for the transformation and degradation of phenolic compounds. In this work, enzymatic oxidation of catechol and L-DOPA using commercial laccase from Trametes versicolor was performed, in continuously operated microreactors. The main focus of this investigation was to develop a new process for phenolic compounds oxidation, by application of microreactors. For a residence time of 72 s and an inlet oxygen concentration of 0.271 mmol/dm3, catechol conversion of 41.3% was achieved, while approximately the same conversion of L-DOPA (45.0%) was achieved for an inlet oxygen concentration of 0.544 mmol/dm3. The efficiency of microreactor usage for phenolic compounds oxidation was confirmed by calculating the oxidation rates; in the case of catechol oxidation, oxidation rates were in the range from 76.101 to 703.935 g/dm3/d (18–167 fold higher, compared to the case in a macroreactor). To better describe the proposed process, kinetic parameters of catechol oxidation were estimated, using data collected from experiments performed in a microreactor. The maximum reaction rate estimated in microreactor experiments was two times higher than one estimated using the initial reaction rate method from experiments performed in a cuvette. A mathematical model of the process was developed, and validated, using data from independent experiments.  相似文献   

19.
Inoue, H. and Katoh, Y. 1987. Calcium inhibitsion-stimulatedstomatal opening in epidermal strips of Commelina communis L.—J.exp. Bot. 38: 142–149. Ca2+ suppressed both the ion-stimulated stomatal opening andH+ extrusion of pre-illuminated epidermal strips isolated fromCommelina communis L. In the absence of Ca2+, the rate of H+release was 18 nmol H+ cm–2 h–1 per epidermal stripunit area in 150 mol m–3 KCL at pH 7?4. Half-maximum inhibitionof stomatal opening was observed with 220 mmol m–3 ofCa2+. The hexavalent dye, ruthenium red, showed concentration-dependentprevention of the inhibition by Ca2+ of the ion-stimulated stomatalopening. The effect of ruthenium red was non-competitive, andthe K1 for the calcium inhibition was found to be 3?6 mmol m–3.The calcium inhibition of H+ extrusion was also prevented byruthenium red. These results suggest that Ca2+ inhibits theactivity of electrogenic H+ translocating ATPase of the guardcell plasma membrane and leads to the suppression of stomatalopening. Key words: Calcium, Commelina communis, ruthenium red, stomata  相似文献   

20.
Carbon (C) fixation and nitrogen (N) assimilation rates havebeen estimated from 14C and 15N techniques for a 12 month periodin a Scottish sea loch. The maximum rate of nitrogen assimilated(29.92 mmol N m–2 day–1) was in April at the mostseaward station; similar high rates were experienced duringMay at the other stations. Carbon fixation rates were maximal(488–4047 mg C m–2day–1) at the time of highphytoplankton biomass (maximum 8.3 mg m–3 chlorophylla) during May, whilst nitrate concentrations remained >0.7µ.mol l–1. C:N assimilation ratios suggest nitrogenlimitation only during the peak of the spring bloom, althoughat times nitrogen (nitrate and ammonium) concentration fellto 0.2 µmol l–1 in the following months. The verticalstability of the water column, influenced by tidal and riverineflushing, varied along the axis of the loch, resulting in markeddifferences between sampling stations. Although ammonium waspreferentially assimilated by phytoplankton, >50% of productionwas supported by nitrate uptake and only during the summer monthswas the assimilation of ammonium quantitatively important.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号