共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Jennifer M. O. Geiger Tom A. Ranker Jennifer M. Ramp Neale Susan T. Klimas 《Brittonia》2007,59(2):142-158
Located approximately 4000 km from the nearest continent, the Hawaiian Islands comprise the most isolated archipelago on Earth. This isolation has resulted in a unique flora that includes nearly 200 native ferns and lycophytes, 77% of which are endemic to the islands. Because the Hawaiian Islands are volcanic in origin, all abiotically dispersed organisms must have arrived there via the wind or the water. Fern spores are most likely dispersed through the air, and thus patterns of air movement have undoubtedly played a significant role in determining the geographic origins of the ancestors of the Hawaiian ferns. We have identified four possible climate-based or weather-based spore dispersal hypotheses that could have resulted in the movement of ancestral spores to the Hawaiian Islands: (1) the northern subtropical jetstream, moving spores from Indo-Pacific regions; (2) the trade winds, dispersing spores from Central and North America; (3) storms carrying spores from southern Mexico and/or Central America; and (4) a dispersal mechanism carrying spores from the South Pacific across the equator resulting from the combined influence of a seasonal southern shift of the Intertropical Convergence Zone (ITCZ), Hadley Cell air movement, and the trade winds. Utilizing recently published molecular phylogenetic studies of three fern genera (Dryopteris, Polystichum, andHymenophyllum) and new analyses of three additional genera (Adenophorus, Grammitis, andLellingeria), each of which is represented in the Hawaiian Islands by at least one endemic lineage, we reviewed the biogeographical implications for the Hawaiian taxa in light of the possible common dispersal patterns and pathways. We hypothesize that three of the five endemicDryopteris lineages, both of the endemicPolystichum lineages, at least one endemicHymenophyllum lineage in the Hawaiian Islands, and, perhaps, one endemicGrammitis lineage resulted from ancestral spores of each lineage dispersing to the Hawaiian Islands via the northern subtropical jetstream.Adenophorus is sister to a mostly neotropical clade, therefore, it is likely that the ancestor of the Hawaiian clade dispersed to the Hawaiian Islands via the trade winds or a storm system. The ancestor of the endemicLellingeria lineage may have dispersed to the Hawaiian Islands from the neotropics via the trade winds or a storm system, or from the South Pacific across the equator through the combination of a seasonal southern shift of the ITCZ, Hadley Cells, and the trade winds. 相似文献
3.
Lyliana Y. Rentería Víctor J. Jaramillo Angelina Martínez-Yrízar Alfredo Pérez-Jiménez 《Trees - Structure and Function》2005,19(4):431-441
Resorption efficiency (RE) and proficiency, foliar nutrient concentrations, and relative soil nutrient availability were determined during 3 consecutive years in tree species growing under contrasting topographic positions (i.e., top vs. bottom and north vs. south aspect) in a tropical dry forest in Mexico. The sites differed in soil nutrient levels, soil water content, and potential radiation interception. Leaf mass per area (g m–2) increased during the growing season in all species. Soil P availability and mean foliar P concentrations were generally higher at the bottom than at the top site during the 3 years of the study. Leaf N concentrations ranged from 45.4 to 31.4 mg g–1. Leaf P varied from 2.3 to 1.8 mg g–1. Mean N and P RE varied among species, occasionally between top and bottom sites, and were higher in the dry than in the wet years of study. Senesced-leaf nutrient concentrations (i.e., a measure of resorption proficiency) varied from 13.7 to 31.2 mg g–1 (N) and 0.4 to 3.3 mg g–1 (P) among the different species and were generally indicative of incomplete nutrient resorption. Phosphorus concentrations in senesced leaves were higher at the bottom than at the top site and decreased from the wettest to the the driest year. Soil N and P availability were significantly different in the north- and south-facing slopes, but neither nutrient concentrations of mature and senesced leaves nor RE differed between aspects. Our results suggest that water more than soil nutrient availability controls RE in the Chamela dry forest, while resorption proficiency may be interactively controlled by both nutrient and water availability. 相似文献
4.
Isoprene emission from vegetation is the single most important source of photochemically active reduced compounds to the atmosphere. We present the first controlled-environment measurements of isoprene emission from leaves of tropical forest trees. Our studies were conducted in the Guanica State Forest in Puerto Rico. We report the effects of temperature and light variations on biogenic isoprene emissions during 1995. Maximum emission rates varied among species from 0 to 268 nmol m?2 s?1. Values at the upper end of this range of maximum emission rates are 2–3 times higher than values reported from any temperate taxa. Isoprene emission showed strong sensitivity to light and temperature variations. In contrast to temperate plants, whose emissions tend to saturate at a light intensity of ~1000 μmol m?2 s?1, emissions from the tropical species increased with light intensity up to 2500 μmol m?2 s?1. The temperature optima for emissions from these plants were similar to those previously reported for temperate plants: ~40 °C. The high maximum emission rates and lack of light saturation indicate that estimates of isoprene emission from tropical forests need to be revised upwards. 相似文献
5.
Temporal and spatial partitioning of water resources among eight woody species in a Hawaiian dry forest 总被引:14,自引:0,他引:14
Lowland dry forests are unique in Hawaii for their high diversity of tree species compared with wet forests. We characterized spatial and temporal partitioning of soil water resources among seven indigenous and one invasive dry forest species to determine whether the degree of partitioning was consistent with the relatively high species richness in these forests. Patterns of water utilization were inferred from stable hydrogen isotope ratios (δD) of soil and xylem water, zones of soil water depletion, plant water status, leaf phenology, and spatial patterns of species distribution. Soil water δD values ranged from –20‰ near the surface to –48‰ at 130 cm depth. Metrosideros polymorpha, an evergreen species, and Reynoldsia sandwicensis, a drought-deciduous species, had xylem sap δD values of about –52‰, and appeared to obtain their water largely from deeper soil layers. The remaining six species had xylem δD values ranging from –33 to –42‰, and apparently obtained water from shallower soil layers. Xylem water δD values were negatively correlated with minimum annual leaf water potential and positively correlated with leaf solute content, an integrated measure of leaf water deficit. Seasonal patterns of leaf production ranged from dry season deciduous at one extreme to evergreen with near constant leaf expansion rates at the other. Species tapping water more actively from deeper soil layers tended to exhibit larger seasonality of leaf production than species relying on shallower soil water sources. Individuals of Myoporum sandwicense were more spatially isolated than would be expected by chance. Even though this species apparently extracted water primarily from shallow soil layers, as indicated by its xylem δD values, its nearly constant growth rates across all seasons may have been the result of a larger volume of soil water available per individual. The two dominant species, Diospyros sandwicensis and Nestegis sandwicensis, exhibited low leaf water potentials during the dry season and apparently drew water mostly from the upper portion of the soil profile, which may have allowed them to exploit light precipitation events more effectively than the more deeply rooted species. Character displacement in spatial and temporal patterns of soil water uptake was consistent with the relatively high diversity of woody species in Hawaiian dry forests. Received: 20 May 1999 / Accepted: 2 March 2000 相似文献
6.
Non‐native plants are invading terrestrial ecosystems across the globe, yet little is known about how invasions impact carbon (C) cycling or how these impacts will be influenced by climate change. We quantified the effect of a non‐native C4 grass invasion on soil C pools and fluxes in a Hawaiian tropical dry forest over 2 years in which annual precipitation was average (Year 1) and ~60% higher than average (Year 2). Work was conducted in a series of forested plots where the grass understory was completely removed (removal plots) or left intact (grass plots) for 3 years before experiment initiation. We hypothesized that grass invasion would: (i) not change total soil C pools, (ii) increase the flux of C into and out of soils, and (iii) increase the sensitivity of soil C flux to variability in precipitation. In grass plots, grasses accounted for 25–34% of litter layer C and ~70% of fine root C. However, no differences were observed between treatments in the size of any soil C pools. Moreover, grass‐derived C constituted a negligible fraction of the large mineral soil C pool (< 3%) despite being present in the system for ≥50 years. Tree litterfall was ~45% lower in grass plots, but grass‐derived litterfall more than compensated for this reduction in both years. Annual cumulative soil‐surface CO2 efflux (Rsoil) was ~40% higher in grass plots in both years, and increased in both treatments by ~36% in the wetter Year 2. Despite minimal grass‐derived mineral soil C, > 75% of Rsoil in grass plots was of C4 (i.e. grass) origin. These results demonstrate that grass invasion in forest ecosystems can increase the flux of C into and out of soils without changing total C pools, at least over the short term and as long as the native tree canopy remains intact, and that invasion‐mediated changes in belowground C cycling are sensitive to precipitation. 相似文献
7.
Relations between stomatal closure, leaf turgor and xylem vulnerability in eight tropical dry forest trees 总被引:15,自引:2,他引:15
T. J. BRODRIBB N. M. HOLBROOK E. J. EDWARDS & M. V. GUTIÉRREZ 《Plant, cell & environment》2003,26(3):443-450
This study examined the linkage between xylem vulnerability, stomatal response to leaf water potential (ΨL), and loss of leaf turgor in eight species of seasonally dry tropical forest trees. In order to maximize the potential variation in these traits species that exhibit a range of leaf habits and phenologies were selected. It was found that in all species stomatal conductance was responsive to ΨL over a narrow range of water potentials, and that ΨL inducing 50% stomatal closure was correlated with both the ΨL inducing a 20% loss of xylem hydraulic conductivity and leaf water potential at turgor loss in all species. In contrast, there was no correlation between the water potential causing a 50% loss of conductivity in the stem xylem, and the water potential at stomatal closure (ΨSC) amongst species. It was concluded that although both leaf and xylem characters are correlated with the response of stomata to ΨL, there is considerable flexibility in this linkage. The range of responses is discussed in terms of the differing leaf‐loss strategies exhibited by these species. 相似文献
8.
Floristic biogeography of the Hawaiian Islands: influences of area, environment and paleogeography 总被引:1,自引:1,他引:1
Jonathan P. Price 《Journal of Biogeography》2004,31(3):487-500
Aim A detailed database of distributions and phylogenetic relationships of native Hawaiian flowering plant species is used to weigh the relative influences of environmental and historical factors on species numbers and endemism. Location The Hawaiian Islands are isolated in the North Pacific Ocean nearly 4000 km from the nearest continent and nearly as distant from the closest high islands, the Marquesas. The range of island sizes, environments, and geological histories within an extremely isolated archipelago make the Hawaiian Islands an ideal system in which to study spatial variation in species distributions and diversity. Because the biota is derived from colonization followed by extensive speciation, the role of evolution in shaping the regional species assemblage can be readily examined. Methods For whole islands and regions of each major habitat, species–area relationships were assessed. Residuals of species–area relationships were subjected to correlation analysis with measures of endemism, isolation, elevation and island age. Putative groups of descendents of each colonist from outside the Hawaiian Islands were considered phylogenetic lineages whose distributions were included in analyses. Results The species–area relationship is a prominent pattern among islands and among regions of each given habitat. Species number in each case correlates positively with number of endemics, number of lineages and number of species per lineage. For mesic and wet habitat regions, island age is more influential than area on species numbers, with older islands having more species, more single‐island endemics, and higher species : lineage ratios than their areas alone would predict. Main conclusions Because species numbers and endemism are closely tied to speciation in the Hawaiian flora, particularly in the most species‐rich phylogenetic lineages, individual islands’ histories are central in shaping their biota. The Maui Nui complex of islands (Maui, Moloka‘i, Lāna‘i and Kaho‘olawe), which formed a single large landmass during most of its history, is best viewed in terms of either the age or area of the complex as a whole, rather than the individual islands existing today. 相似文献
9.
Marco V. Gutiérrez-Soto Adriana Pacheco N. Michele Holbrook 《Trees - Structure and Function》2008,22(3):393-401
We used experimental defoliations to examine the effect of leaf age on the timing of leaf shedding in two tropical dry forest
trees. Trees of the deciduous Bombacopsis quinata (bombacaceae, a.k.a. Pachira quinata) and the brevi-deciduous Astronium graveolens (anacardiaceae) were manually defoliated for three times during the rainy season. All trees started to produce a new crown
of leaves 2 weeks after defoliation, and continued expanding leaves throughout the rainy season. At the transition to the
dry season, the experimental groups consisted of trees with known differences in maximum leaf age. Defoliations resulted in
declines in stem growth but did not affect the mineral content or water relations of the leaves subsequently produced. There
was no effect of leaf age on the timing of leaf abscission in B. quinata. In A. graveolens, the initiation of leaf shedding followed in rank order, the maximum leaf age of the four treatments, but there was substantial
coherence among treatments in the major period of leaf abscission such that trees completed leaf shedding at the same time.
In the two species, leaf water potential (ΨL) and stomatal conducantce (g
S) declined with the onset of the dry season, reaching minimum values of –0.9 MPa in P. quinata and <–2.0 MPa in A. graveolens. Within each species, leaves of different age exhibited similar ΨL and g
S at the onset of drought, and then decreased at a similar rate as the dry season progressed. Overall, our study suggests that
the environmental factors were more important than leaf age in controlling the timing of leaf shedding. 相似文献
10.
Water relations of evergreen and drought-deciduous trees along a seasonally dry tropical forest chronosequence 总被引:1,自引:0,他引:1
Seasonally dry tropical forests (SDTF) are characterized by pronounced seasonality in rainfall, and as a result trees in these
forests must endure seasonal variation in soil water availability. Furthermore, SDTF on the northern Yucatan Peninsula, Mexico,
have a legacy of disturbances, thereby creating a patchy mosaic of different seral stages undergoing secondary succession.
We examined the water status of six canopy tree species, representing contrasting leaf phenology (evergreen vs. drought-deciduous)
at three seral stages along a fire chronosequence in order to better understand strategies that trees use to overcome seasonal
water limitations. The early-seral forest was characterized by high soil water evaporation and low soil moisture, and consequently
early-seral trees exhibited lower midday bulk leaf water potentials (ΨL) relative to late-seral trees (−1.01 ± 0.14 and −0.54 ± 0.07 MPa, respectively). Although ΨL did not differ between evergreen and drought-deciduous trees, results from stable isotope analyses indicated different strategies
to overcome seasonal water limitations. Differences were especially pronounced in the early-seral stage where evergreen trees
had significantly lower xylem water δ18O values relative to drought-deciduous trees (−2.6 ± 0.5 and 0.3 ± 0.6‰, respectively), indicating evergreen species used
deeper sources of water. In contrast, drought-deciduous trees showed greater enrichment of foliar 18O (∆18Ol) and 13C, suggesting lower stomatal conductance and greater water-use efficiency. Thus, the rapid development of deep roots appears
to be an important strategy enabling evergreen species to overcome seasonal water limitation, whereas, in addition to losing
a portion of their leaves, drought-deciduous trees minimize water loss from remaining leaves during the dry season. 相似文献
11.
Effects of grazing intensity on soil carbon stocks following deforestation of a Hawaiian dry tropical forest 总被引:2,自引:0,他引:2
The effects of forest-to-pasture conversion on soil carbon (C) stocks depend on a combination of climatic and management factors, but factors that relate to grazing intensity are perhaps the least understood. To understand the long-term impact of grazing in converted pastures, methods are needed that accurately measure the impact of grazing on recent plant inputs to soil C in a variety of pasture management and climate settings. Here, we present an analysis from Hawai'i of changes in vegetation structure and soil organic carbon (SOC) along gradients of grazing intensity and elevation in pastures converted from dry tropical forest 100 years ago. We used hyperspectral remote sensing of photosynthetic vegetation, nonphotosynthetic vegetation (NPV) and exposed substrate to understand the effects of grazing on plant litter cover, thus, estimating recent plant inputs to soils (the NPV component). Forest-to-pasture conversion caused a shift from C3 to C4 plant physiology, thus the δ 13 C method was used in soil cores to measure the fraction of SOC accumulated from pasture vegetation sources following land conversion. SOC decreased in pasture by 5–9 kg C m−2 , depending upon grazing intensity. SOC derived from C3 (forest) sources was constant across the grazing gradient, indicating that the observed variation in SOC was attributable to changes in C inputs following deforestation. Soil C stocks were also reduced in pastures relative to forest soils. We found that long-term grazing lowers SOC following Hawaiian forest-to-pasture conversion, and that these changes are larger in magnitude that those occurring with elevation (climate). Further we demonstrate a relationship between remotely sensed measurements of surface litter and field SOC measurements, allowing for regional analysis of pasture condition and C storage where limited field data are available. 相似文献
12.
Molecular phylogenetics and historical biogeography of Hawaiian Dryopteris (Dryopteridaceae) 总被引:8,自引:0,他引:8
The fern genus Dryopteris (Dryopteridaceae) is represented in the Hawaiian Islands by 18 endemic taxa and one non-endemic, native species. The goals of this study were to determine whether Dryopteris in Hawai'i is monophyletic and to infer the biogeographical origins of Hawaiian Dryopteris by determining the geographical distributions of their closest living relatives. We sequenced two chloroplast DNA fragments, rbcL and the trnL-F intergenic spacer (IGS), for 18 Hawaiian taxa, 45 non-Hawaiian taxa, and two outgroup species. For individual fragments, we estimated phylogenetic relationships using Bayesian inference and maximum parsimony. We performed a combined analysis of both cpDNA fragments employing Bayesian inference, maximum parsimony, and maximum likelihood. These analyses indicate that Hawaiian Dryopteris is not monophyletic, and that there were at least five separate colonizations of the Hawaiian Islands by different species of dryopteroid ferns, with most of the five groups having closest relatives in SE Asia. The results suggest that one colonizing ancestor, perhaps from SE Asia, gave rise to eight endemic taxa (the glabra group). Another colonizing ancestor, also possibly from SE Asia, gave rise to a group of five endemic taxa (the exindusiate group). Dryopteris fusco-atra and its two varieties, which are endemic to Hawai'i, most likely diversified from a SE Asian ancestor. The Hawaiian endemic Nothoperanema rubiginosum has its closest relatives in SE Asia, and while the remaining two species, D. wallichiana and D. subbipinnata, are sister species, their biogeographical origins could not be determined from these analyses due to the widespread distributions of D. wallichiana and its closest non-Hawaiian relative. 相似文献
13.
Water uptake and transport in lianas and co-occurring trees of a seasonally dry tropical forest 总被引:5,自引:0,他引:5
José Luis Andrade Frederick C. Meinzer Guillermo Goldstein Stefan A. Schnitzer 《Trees - Structure and Function》2005,19(3):282-289
Water uptake and transport were studied in eight liana species in a seasonally dry tropical forest on Barro Colorado Island, Panama. Stable hydrogen isotope composition (D) of xylem and soil water, soil volumetric water content (v), and basal sap flow were measured during the 1997 and 1998 dry seasons. Sap flow of several neighboring trees was measured to assess differences between lianas and trees in magnitudes and patterns of daily sap flow. Little seasonal change in v was observed at 90–120 cm depth in both years. Mean soil water D during the dry season was –19 at 0–30 cm, –34 at 30–60 cm, and –50 at 90–120 cm. Average values of xylem D among the liana species ranged from –28 to –44 during the middle of the dry season, suggesting that water uptake was restricted to intermediate soil layers (30–60 cm). By the end of the dry season, all species exhibited more negative xylem D values (–41 to –62), suggesting that they shifted to deeper water sources. Maximum sap flux density in co-occurring lianas and trees were comparable at similar stem diameter (DBH). Furthermore, lianas and trees conformed to the same linear relationship between daily sap flow and DBH. Our observations that lianas tap shallow sources of soil water at the beginning of the dry season and that sap flow is similar in lianas and trees of equivalent stem diameter do not support the common assumptions that lianas rely primarily on deep soil water and that they have higher rates of sap flow than co-occurring trees of similar stem size. 相似文献
14.
F. C. Meinzer José Luis Andrade Guillermo Goldstein N. Michele Holbrook Jaime Cavelier S. Joseph Wright 《Oecologia》1999,121(3):293-301
Little is known about partitioning of soil water resources in species-rich, seasonally dry tropical forests. We assessed spatial
and temporal patterns of soil water utilization in several canopy tree species on Barro Colorado Island, Panama, during the
1997 dry season. Stable hydrogen isotope composition (δD) of xylem and soil water, soil volumetric water content (θv), and sap flow were measured concurrently. Evaporative fractionation near the soil surface caused soil water δD to decrease
from about –15‰ at 0.1 m to –50 to –55‰ at 1.2 m depth. Groundwater sampled at the sources of nearby springs during this period
yielded an average δD value of –60‰. θv increased sharply and nearly linearly with depth to 0.7 m, then increased more slowly between 0.7 and 1.05 m. Based on xylem
δD values, water uptake in some individual plants appeared to be restricted largely to the upper 20 cm of the soil profile
where θv dropped below 20% during the dry season. In contrast, other individuals appeared to have access to water at depths greater
than 1 m where θv remained above 45% throughout the dry season. The depths of water sources for trees with intermediate xylem δD values were
less certain because variation in soil water δD between 20 and 70 cm was relatively small. Xylem water δD was also strongly
dependent on tree size (diameter at breast height), with smaller trees appearing to preferentially tap deeper sources of soil
water than larger trees. This relationship appeared to be species independent. Trees able to exploit progressively deeper
sources of soil water during the dry season, as indicated by increasingly negative xylem δD values, were also able to maintain
constant or even increase rates of water use. Seasonal courses of water use and soil water partitioning were associated with
leaf phenology. Species with the smallest seasonal variability in leaf fall were also able to tap increasingly deep sources
of soil water as the dry season progressed. Comparison of xylem, soil, and groundwater δD values thus pointed to spatial and
temporal partitioning of water resources among several tropical forest canopy tree species during the dry season.
Received: 5 October 1998 / Accepted: 23 June 1999 相似文献
15.
We examined carbon-gain, water-use, and leaf-allocation traits for six tree species of a Hawaiian dry forest to better understand the functional diversity within this threatened ecosystem. Tropical dry forests are among the most endangered ecosystems on Earth, and in Hawaii, as elsewhere, declining biodiversity threatens ecosystem processes that may depend on forest functional diversity. We found broad variation among species including a two-fold difference for mean photosynthetic rate, a greater than three-fold difference for predawn water potential, and a nearly three-fold difference for leaf life span. Principal component analysis showed a clear separation of species based on carbon-gain vs. water-use related axes, and δ(13)C analysis revealed differing limitations (supply vs. demand) on carbon assimilation. The broad functional variation not only spanned traditional classifications (avoiders vs. tolerators), but also included unusual strategies (e.g., fast growth with drought tolerance). Correlations among traits, including leaf life span, leaf mass per area, and %N, followed typical global patterns, but some exceptions appeared as a result of unique life-history characteristics, such as latex-rich sap and root parasitism. Elucidating functional variation provides important information that can be used to link plant biodiversity with ecosystem processes and also facilitate the management and preservation of tropical dry forests and other threatened communities. 相似文献
16.
Cladistic analysis, phylogeny and biogeography of the Hawaiian Platynini (Coleoptera: Carabidae) 总被引:2,自引:0,他引:2
The 128 known native Hawaiian species of the tribe Platynini are analysed cladistically. Cladistic analysis is based on 206 unit-coded morphological characters, and also includes forty-one outgroup taxa from around the Pacific Rim. Strict consensus of the multiple equally parsimonious cladograms supports the monophyly of the entire species swarm. The closest outgroup appears to be the south-east Asian-Pacific genus Lorostema Motschulsky, whose species are distributed from India and Sri Lanka to Tahiti, supporting derivation of the Hawaiian platynines from a source in the western or south-western Pacific. The biogeographic relationships of the Hawaiian taxa are analysed using tree mapping, wherein items of error are minimized. The area cladogram found to be most congruent with the phylogenetic relationships, and most defensible based on underlying character data is {Kauai[Oahu(Hawaii{Lanai[East Maui(West Maui + Molokai)]})]}. This progressive vicariant pattern incorporates progressive colonization from Kauai, and vicariance of the former Maui Nui into the present islands of Molokai, Lanai, West Maui and East Maui. The evolution of flightlessness, tarsal structure, pronotal setation and bursal asymmetry are evaluated in the context of the cladogram. Brachyptery is a derived condition for which reversal is not mandated by the cladogram, although repeated evolution of reduced flight wings is required. Tarsal structure supports Sharp's (1903) recognition of Division 1 as a monophyletic assemblage, but exposes his Division 2 as a paraphyletic group requiring removal of the genus Colpocaccus Sharp. Pronotal setation is exceedingly homoplastic, and is not useful for delimiting natural groups. Left-right asymmetry of the bursa copulatrix reversed twice independently, resulting in mirror-image bursal configurations in B. rupicola and Prodisenochus terebratus of East Maui. The amount of character divergence is greater among species comprising Division 1 than among species of its sister group, the redefined Division 2. Based on superior fit of Division 1 relationships to the general biogeographic pattern, a greater speciation rate coupled with more extensive extinction is rejected as the cause for this greater divergence. Intrinsic differentiation in the processes underlying cuticular evolution appears to be more consistent with the observed biogeographic and morphological patterns. 相似文献
17.
18.
Stem water storage capacity and efficiency of water transport: their functional significance in a Hawaiian dry forest 总被引:14,自引:3,他引:14
We investigated the contribution of internal water storage and efficiency of water transport to the maintenance of water balance in six evergreen tree species in a Hawaiian dry forest. Wood‐saturated water content, a surrogate for relative water storage capacity, ranged from 70 to 105%, and was inversely related to its morphological correlate, wood density, which ranged between 0·51 and 0·65 g cm?3. Leaf‐specific conductivity (kL) measured in stem segments from terminal branches ranged from 3 to 18 mmol m?1 s?1 MPa?1, and whole‐plant hydraulic efficiency calculated as stomatal conductance (g) divided by the difference between predawn and midday leaf water potential (ΨL), ranged from 70 to 150 mmol m?2 s?1 MPa?1. Hydraulic efficiency was positively correlated with kL (r2 = 0·86). Minimum annual ΨL ranged from ? 1·5 to ? 4·1 MPa among the six species. Seasonal and diurnal variation in ΨL were associated with differences among species in wood‐saturated water content, wood density and kL. The species with higher wood‐saturated water content were more efficient in terms of long‐distance water transport, exhibited smaller diurnal variation in ΨL and higher maximum photosynthetic rates. Smaller diurnal variation in ΨL in species with higher wood‐saturated water content, kL and hydraulic efficiency was not associated with stomatal restriction of transpiration when soil water deficit was moderate, but avoidance of low minimum seasonal ΨL in these species was associated with a substantial seasonal decline in g. Low seasonal minimum ΨL in species with low kL, hydraulic efficiency, and wood‐saturated water content was associated with higher leaf solute content and corresponding lower leaf turgor loss point. Despite the species‐specific differences in leaf water relations characteristics, all six evergreen tree species shared a common functional relationship defined primarily by kL and stem water storage capacity. 相似文献
19.
Casandra Reyes-García José Luis Andrade J. Luis Simá Roberth Us-Santamaría Paula C. Jackson 《Trees - Structure and Function》2012,26(4):1317-1330
We investigated vegetation structure, seasonal water use and leaf deciduousness in a seasonally dry forest of Dzibilchaltún, Mexico. Legumes, species which tend to dominate these forests, have an array of water-saving traits. We explored whether legume species had reduced water use under similar growth conditions as other non-legume species of this seasonally dry forest. Sap flux and conductive sapwood area were measured for eight legume and 12 non-legume species. Species abundance, diameter at breast height (DBH), wood density and seasonal leaf cover were characterized in 16, 10 × 10 m2 plots. Seasonal stand water use was calculated using the sap flux and ecological data. As predicted, legumes presented lower whole-tree water use compared with sympatric non-legume species. This difference, however, was related to a higher allocation to non-conductive heartwood in legumes and not to differences in sap flux density. Differences in allocation were higher in wider stems (>10 cm DBH); legumes above 25 cm DBH presented nearly half the daily water use of non-legumes of similar size. Wet (July) and dry (March) season stand water use was 629,000 and 156,000 kg ha?1 month?1, respectively. During the wet season three non-legume species with high basal area dominated the stand water use, but due to early leaf fall in these species, dry season stand water use was dominated by the legumes. 相似文献
20.
Cowie RH Holland BS 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2008,363(1508):3363-3376
Oceanic islands have played a central role in biogeography and evolutionary biology. Here, we review molecular studies of the endemic terrestrial fauna of the Hawaiian archipelago. For some groups, monophyly and presumed single origin of the Hawaiian radiations have been confirmed (achatinelline tree snails, drepanidine honeycreepers, drosophilid flies, Havaika spiders, Hylaeus bees, Laupala crickets). Other radiations are derived from multiple colonizations (Tetragnatha and Theridion spiders, succineid snails, possibly Dicranomyia crane flies, Porzana rails). The geographic origins of many invertebrate groups remain obscure, largely because of inadequate sampling of possible source regions. Those of vertebrates are better known, probably because few lineages have radiated, diversity is far lower and morphological taxonomy permits identification of probable source regions. Most birds, and the bat, have New World origins. Within the archipelago, most radiations follow, to some degree, a progression rule pattern, speciating as they colonize newer from older islands sequentially, although speciation often also occurs within islands. Most invertebrates are single-island endemics. However, among multi-island species studied, complex patterns of diversification are exhibited, reflecting heightened dispersal potential (succineids, Dicranomyia). Instances of Hawaiian taxa colonizing other regions are being discovered (Scaptomyza flies, succineids). Taxonomy has also been elucidated by molecular studies (Achatinella snails, drosophilids). While molecular studies on Hawaiian fauna have burgeoned since the mid-1990s, much remains unknown. Yet the Hawaiian fauna is in peril: more than 70 per cent of the birds and possibly 90 per cent of the snails are extinct. Conservation is imperative if this unique fauna is to continue shedding light on profound evolutionary and biogeographic questions. 相似文献