首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Plains anthropologist》2013,58(96):109-123
Abstract

Interaction plays a central role in archaeological interpretations, yet it has remained theoretically underdeveloped and has often been misused. A framework for dealing with interaction is presented, consisting of: 1) ultimate adaptive conditions for interaction; 2) specific reasons for various types of interaction; 3) modifications of interaction due to aspects of the social matrix; 4) interaction mechanisms; and 5) the artifact patterns resulting from all of these factors. It is clear that “interaction” cannot be treated as a monolithic phenomenon; rather there are many types of interaction with many different outcomes for artifact patterning. The transition from the Paleo-Indian to Archaic stages is analyzed within this framework, and it is suggested that in the simplified interaction context of generalized hunter/ gatherers the size of interaction networks is largely a function of resource reliability and the relative need to maintain subsistence-related alliances between bands.  相似文献   

2.
The interactions of hemoglobin (Hb) with sodium dodecyl sulfate (SDS) and dodecyl trimethylammonium bromide (DTAB) are investigated by several methods. We observed the formation of hemichrome below the critical micelle concentration (cmc) of surfactant and the release of heme from Hb above the cmc. When pH value of Hb/surfactant system is lower than isoelectric point (pI) of Hb, the interaction of SDS with Hb is both electrostatic and hydrophobic, while the interaction of DTAB with Hb is hydrophobic mainly. On the contrary, when pH > pI, the interaction of SDS with Hb is hydrophobic mainly, while the interaction of DTAB with Hb is both electrostatic and hydrophobic. In the case where both the electrostatic interaction and hydrophobic interaction exist, the electrostatic interaction plays a more important role. Thus, SDS tends to interact with Hb more obviously than DTAB does when pH < pI and the interaction between DTAB and Hb is stronger when pH > pI.  相似文献   

3.
The problem of specific and nonspecific interaction of serum immunoglobulins and antigens was considered. It was shown that high-sensitive methods allow to reveal low-affinity non-specific interaction of immunoglobulins and antigens. If the concentration of the specific antibodies in a studied sample of serum is low, the non-specific interaction of serum immunoglobulins may exceed substantially the effect of specific reaction. In this case the obtained results could be misinterpreted. In this connection the conclusion has been done that in such a case it is necessary to take into account the capability of serum immunoglobulins to interact non-specifically with antigens and to discriminate between specific and non-specific interaction. The methods of the diminishing the non-specific interaction are suggested.  相似文献   

4.
Centrobin is a daughter centriole protein that is essential for centrosome duplication. However, the molecular mechanism by which centrobin functions during centriole duplication remains undefined. In this study, we show that centrobin interacts with tubulin directly, and centrobin-tubulin interaction is pivotal for the function of centrobin during centriole duplication. We found that centrobin is recruited to the centriole biogenesis site via its interaction with tubulins during the early stage of centriole biogenesis, and its recruitment is dependent on hSAS-6 but not centrosomal P4.1-associated protein (CPAP) and CP110. The function of centrobin is also required for the elongation of centrioles, which is likely mediated by its interaction with tubulin. Furthermore, disruption of centrobin-tubulin interaction led to destabilization of existing centrioles and the preformed procentriole-like structures induced by CPAP expression, indicating that centrobin-tubulin interaction is critical for the stability of centrioles. Together, our study demonstrates that centrobin facilitates the elongation and stability of centrioles via its interaction with tubulins.  相似文献   

5.
The anthracnose fungus, Colletotrichum gloeosporioides, was previously shown to have an incompatible interaction with ripe-red fruit of pepper (Capsicum annuum). However, the fungus had a compatible interaction with unripe-mature-green fruit. Using mRNA differential display, we isolated and characterized a PepCYP gene expressed in the incompatible interaction. The PepCYP gene encodes a protein homologous to cytochrome P450 proteins containing a heme-binding domain. The expression level of PepCYP is higher in the incompatible interaction than in the compatible interaction, and then remains elevated in the incompatible interaction. In the compatible interaction, the expression of PepCYP is transient. The induction of PepCYP gene is up-regulated by wounding or jasmonic acid treatment during ripening. Analysis of PepCYP expression by in situ hybridization shows that the accumulation of PepCYP mRNA is localized in the epidermal cell layers, but not in the cortical cell layers. An examination of transverse sections of the fruits inoculated with the fungus shows that the fungus invades and colonizes the epidermal cell layers of the unripe fruit at 24 and 72 h after inoculation, respectively, but not those of the ripe fruit. These results suggest that the PepCYP gene product plays a role in the defense mechanism when the fungus invades and colonizes the epidermal cells of fruits in the incompatible interaction during the early fungal infection process.  相似文献   

6.
Insulin receptor substrate 1 (IRS-1) is a major substrate of the insulin receptor and has been implicated in insulin signaling. Although IRS-1 is thought to interact with the insulin receptor, the nature of the interaction has not been defined. In this study, we used the two-hybrid assay of protein-protein interaction in the yeast Saccharomyces cerevisiae to study the interaction between human IRS-1 and the insulin receptor. We demonstrate that IRS-1 forms a specific complex with the cytoplasmic domain of the insulin receptor when both are expressed as hybrid proteins in yeast cells. We show that the interaction is strictly dependent upon receptor tyrosine kinase activity, since IRS-1 shows no interaction with a kinase-inactive receptor hybrid containing a mutated ATP-binding site. Furthermore, mutation of receptor tyrosine 960 to phenylalanine eliminates IRS-1 interaction in the two-hybrid assay. These data suggest that the interaction between IRS-1 and the receptor is direct and provide evidence that the juxtamembrane domain of the receptor is involved. Furthermore, we show that a 356-amino-acid region encompassed by amino acids 160 through 516 of IRS-1 is sufficient for interaction with the receptor in the two-hybrid assay. Lastly, in agreement with our findings for yeast cells, we show that the insulin receptor is unable to phosphorylate an IRS-1 protein containing a deletion of amino acids 45 to 516 when expressed in COS cells. The two-hybrid assay should provide a facile means by which to pursue a detailed understanding of this interaction.  相似文献   

7.
8.
Recently, a theoretical hypothesis was proposed that the coexistence of antagonism and mutualism may stabilize ecological community and even give rise to a positive complexity-stability relationship (interaction-type diversity hypothesis). This hypothesis was derived from an analysis of community model, which was developed based on two specific assumptions about the interaction strengths: those are, (i) different interaction types, antagonism and mutualism, have quantitatively comparable magnitude of effects to population growth; and (ii) interaction strength decreases with increasing interaction links of the same interaction type. However, those assumptions do not necessarily hold in real ecosystems, leaving unclear how robust this hypothesis is. Here, using a model with those two assumptions relaxed, we show (i) that the balance of interaction strength is necessary for the positive complexity effect to arise and (ii) that interaction-type diversity hypothesis may still hold when interaction strength decreases with increasing links of all interaction type for some species.  相似文献   

9.
We previously identified a minimal 12-amino-acid domain in the C terminus of the herpes simplex virus type 1 (HSV-1) scaffolding protein which is required for interaction with the HSV-1 major capsid protein. An alpha-helical structure which maximizes the hydropathicity of the minimal domain is required for the interaction. To address whether cytomegalovirus (CMV) utilizes the same strategy for capsid assembly, several glutathione S-transferase fusion proteins to the C terminus of the CMV assembly protein precursor were produced and purified from bacterial cells. The study showed that the glutathione S-transferase fusion containing 16 amino acids near the C-terminal end was sufficient to interact with the major capsid protein. Interestingly, no cross-interaction between HSV-1 and CMV could be detected. Mutation analysis revealed that a three-amino-acid region at the N-terminal side of the central Phe residue of the CMV interaction domain played a role in determining the viral specificity of the interaction. When this region was converted so as to correspond to that of HSV-1, the CMV assembly protein domain lost its ability to interact with the CMV major capsid protein but gained full interaction with the HSV-1 major capsid protein. To address whether the minimal interaction domain of the CMV assembly protein forms an alpha-helical structure similar to that in HSV-1, peptide competition experiments were carried out. The results showed that a cyclic peptide derived from the interaction domain with a constrained (alpha-helical structure competed for interaction with the major capsid protein much more efficiently than the unconstrained linear peptide. In contrast, a cyclic peptide containing an Ala substitution for the critical Phe residue did not compete for the interaction at all. The results of this study suggest that (i) CMV may have developed a strategy similar to that of HSV-1 for capsid assembly; (ii) the minimal interaction motif in the CMV assembly protein requires an alpha-helix for efficient interaction with the major capsid protein; and (iii) the Phe residue in the CMV minimal interaction domain is critical for interaction with the major capsid protein.  相似文献   

10.
The 70-kDa heat shock proteins are molecular chaperones that participate in a variety of cellular functions. This chaperone function is stimulated by interaction with hsp40 proteins. The Saccharomyces cerevisiae gene encoding the essential hsp40 homologue, SIS1, appears to function in translation initiation. Mutations in ribosomal protein L39 (rpl39) complement loss-of-function mutations in SIS1 as well as PAB1 (poly(A)-binding protein), suggesting a functional interaction between these proteins. However, while a direct interaction between Sis1 and Pab1 is not detectable, both of these proteins physically interact with the essential Ssa (and not Ssb) family of hsp70 proteins. This interaction is mediated by the variable C-terminal domain of Ssa. Subcellular fractionations demonstrate that the binding of Ssa to ribosomes is dependent upon its C terminus and that its interaction with Sis1 and Pab1 occurs preferentially on translating ribosomes. Consistent with a function in translation, depletion of Ssa protein produces a general translational defect that appears similar to loss of Sis1 and Pab1 function. This translational effect of Ssa appears mediated, at least in part, by its affect on the interaction of Pab1 with the translation initiation factor, eIF4G, which is dramatically reduced in the absence of functional Ssa protein.  相似文献   

11.
The toxic deposition of misfolded amyloidogenic proteins is associated with more than fifty protein misfolding diseases (PMDs), including Alzheimer's disease, Parkinson's disease and type 2 diabetes mellitus. Protein deposition is a multi-step process modulated by a variety of factors, in particular by membrane–protein interaction. The interaction results in permeabilization of biomembranes contributing to the cytotoxicity that leads to PMDs. Different biological and physiochemical factors, such as protein sequence, lipid composition, and chaperones, are known to affect the membrane-protein interaction. Here, we provide a comprehensive review of the mechanisms and contributing factors of the interaction between biomembranes and amyloidogenic proteins, and a summary of the therapeutic approaches to PMDs that target this interaction. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.  相似文献   

12.
Receptor interacting protein 140 (RIP140) interacts with retinoic acid receptor (RAR) and retinoid X receptor (RXR) constitutively, but hormone binding enhances this interaction. The ligand-independent interaction is mediated by the amino and central regions of RIP140 which contain a total of nine copies of the LXXLL motif, whereas the agonist-induced interaction is mediated by its carboxyl terminus which contains a novel motif (1063-1076, LTKTNPILYYMLQK). The ligand-independent interaction could be enhanced slightly by agonists, whereas the ligand-dependent interaction was strictly agonist dependent for both RAR and RXR. In the context of heterodimers, ligand occupancy of RXR played a more dominant role for both molecular interaction and biological activity of RIP140. Competition and mutation studies demonstrated an essential role for (1067)Asn and (1073)Met for a ligand-dependent interaction. A model was proposed to address the constitutive and agonist-dependent interaction of RIP140 with RAR/RXR.  相似文献   

13.
Zhang Y  Luo Y  Deng Y  Mu Y  Wei G 《PloS one》2012,7(5):e38191
The aggregation of human islet amyloid polypeptide (hIAPP or amylin) is associated with the pathogenesis of type 2 diabetes mellitus. Increasing evidence suggests that the interaction of hIAPP with β-cell membranes plays a crucial role in cytotoxicity. However, the hIAPP-lipid interaction and subsequent membrane perturbation is not well understood at atomic level. In this study, as a first step to gain insight into the mechanism of hIAPP-induced cytotoxicity, we have investigated the detailed interactions of hIAPP monomer and dimer with anionic palmitoyloleolyophosphatidylglycerol (POPG) bilayer using all-atom molecular dynamics (MD) simulations. Multiple MD simulations have been performed by employing the initial configurations where the N-terminal region of hIAPP is pre-inserted in POPG bilayer. Our simulations show that electrostatic interaction between hIAPP and POPG bilayer plays a major role in peptide-lipid interaction. In particular, the N-terminal positively-charged residues Lys1 and Arg11 make a dominant contribution to the interaction. During peptide-lipid interaction process, peptide dimerization occurs mostly through the C-terminal 20-37 region containing the amyloidogenic 20-29-residue segment. Membrane-bound hIAPP dimers display a pronounced ability of membrane perturbation than monomers. The higher bilayer perturbation propensity of hIAPP dimer likely results from the cooperativity of the peptide-peptide interaction (or peptide aggregation). This study provides insight into the hIAPP-membrane interaction and the molecular mechanism of membrane disruption by hIAPP oligomers.  相似文献   

14.
Conformational abnormalities and aggregation of alpha-synuclein (alpha-syn) have been linked to the pathogenesis of Parkinson's (PD) and related diseases. It has been shown that alpha-syn can stably bind artificial phospholipid vesicles through alpha-helix formation in its N-terminal repeat region. However, little is known about the membrane interaction in cells. In the current study, we determined the membrane-binding properties of alpha-syn to biological membranes by using bi-functional chemical crosslinkers, which allow the detection of transient, but specific, interactions. By utilizing various point mutations and deletions within alpha-syn, we demonstrated that the membrane interaction of alpha-syn in cells is also mediated by alpha-helix formation in the N-terminal repeat region. Moreover, the PD-linked A30P mutation causes reduced membrane binding, which is concordant with the artificial membrane studies. However, contrary to the interaction with artificial membranes, the interaction with biological membranes is rapidly reversible and is not driven by electrostatic attraction. Furthermore, the interaction of alpha-syn with cellular membranes occurs only in the presence of non-protein and non-lipid cytosolic components, which distinguishes it from the spontaneity of the interaction with artificial membranes. More interestingly, addition of the cytosolic preparation to artificial membranes resulted in the transient, charge-independent binding of alpha-syn similar to the interaction with biological membranes. These results suggest that in cells, alpha-syn is engaged in a fundamentally different mode of membrane interaction than the charge-dependent artificial membrane binding, and the mode of interaction is determined by the intrinsic properties of alpha-syn itself and by the cytoplasmic context.  相似文献   

15.
This two year longitudinal study of managers investigated whether the level of interaction with other individuals was a job stressor that influences coronary risk factors. The results presented here show that increased levels of interaction were associated with increased serum triglyceride and increased serum uric acid levels. It is suggested that past research positing stress effects from responsibility for people may be due to interaction levels rather than responsibility per se. It was also found that Type A behavior and physical activity levels moderated these effects. While it is difficult to say that personal interaction, as a job stressor, contributes very significantly to either coronary risk factors or coronary heart disease the evidence supports the hypothesis that the amount of interaction has some specific stress effects.  相似文献   

16.
Magnetic interaction between molybdenum and one of the iron-sulphur centres in milk xanthine oxidase [Lowe, Lynden-Bell & Bray (1972) Biochem. J. 130, 239-249] was studied further, with particular reference to the newly discovered Mo(V) e.p.r.(electron-paramagnetic-resonance) signal, Resting II [Lowe, Barber, Pawlik & Bray (1976) Biochem. J. 155, 81-85]. E.p.r. measurements at 35GHz near to 4.2K showed that the interaction has the same sign at all molybdenum orientations and is ferromagnetic. The predicted splitting of the e.p.r. signal from the reduced iron-sulphur centre, Fe/S I, was observed, Providing positive identification of this as the other interacting species. Chemical modification of the molybdenum environment in xanthine oxidase can change the size of the interaction severalfold, but interaction always remains approximately isotropic. The interaction in turkey liver xanthine dehydrogenase is indistinguishable from that in the oxidase. However, a bacterial xanthine dehydrogenase with different iron-sulphur centres shows rather larger interaction. Guanidinium chloride disturbs the iron-sulphur centres of the oxidase, and when this occurs there is a parallel and relatively small change in the interaction. Removal of flavin from the molecule, or raising the pH to 12.0, changes the interaction slightly without affecting the chromophores themselves. It is concluded that the Fe/S I centre and the Mo are at least 1.0nm and probably nearer 2.5nm apart, and that the conformation of the protein between them is relatively stable up to pH 12.  相似文献   

17.
The interaction between B- and T-lymphocyte attenuator (BTLA), an inhibitory receptor whose extracellular domain belongs to the immunoglobulin superfamily, and herpesvirus-entry mediator (HVEM), a co-stimulatory tumour-necrosis factor receptor, is unique in that it is the only receptor-ligand interaction that directly bridges these two families of receptors. This interaction has raised many questions about how receptors from two different families could interact and what downstream signalling events might occur as a result of receptor ligation. As we discuss, recent studies show that engagement of HVEM with its endogenous ligand (LIGHT) from the tumour-necrosis factor family induces a powerful immune response, whereas HVEM interactions with BTLA negatively regulate T-cell responses.  相似文献   

18.
The nuclear receptor (NR) coactivator TIF2 possesses a single NR interaction domain (NID) and two autonomous activation domains, AD1 and AD2. The TIF2 NID is composed of three NR-interacting modules each containing the NR box motif LxxLL. Mutation of boxes I, II and III abrogates TIF2-NR interaction and stimulation, in transfected cells, of the ligand-induced activation function-2 (AF-2) present in the ligand-binding domains (LBDs) of several NRs. The presence of an intact NR interaction module II in the NID is sufficient for both efficient interaction with NR holo-LBDs and stimulation of AF-2 activity. Modules I and III are poorly efficient on their own, but synergistically can promote interaction with NR holo-LBDs and AF-2 stimulation. TIF2 AD1 activity appears to be mediated through CBP, as AD1 could not be separated mutationally from the CBP interaction domain. In contrast, TIF2 AD2 activity apparently does not involve interaction with CBP. TIF2 exhibited the characteristics expected for a bona fide NR coactivator, in both mammalian and yeast cells. Moreover, in mammalian cells, a peptide encompassing the TIF2 NID inhibited the ligand-induced AF-2 activity of several NRs, indicating that NR AF-2 activity is either mediated by endogenous TIF2 or by coactivators recognizing a similar surface on NR holo-LBDs.  相似文献   

19.
The influence of structural modifications in sterols and phospholipids on the rate of polyene antibiotic-sterol interaction was studied. For filipin and amphotericin B association with sterols in vesicles, a preferential interaction was found with sterols whose side chain length is close to that of cholesterol. Introduction of trans double bonds into the sterol side chain did not alter the rate of interaction in vesicles. The delta 7-bond of the sterol appears to be of critical importance in amphotericin B-sterol interaction, whereas the delta 5-bond is not essential. These observations are relevant to the well-known effects of amphotericin B on cell membranes containing ergosterol compared with those containing cholesterol. The dependence of the rates of sterol-polyene antibiotic interaction on the phospholipid composition of the vesicles indicates that phospholipid vesicles may be an inadequate model for reaching a comprehensive understanding of the effects exerted on biological membranes by these agents.  相似文献   

20.
王弋 《生物工程学报》2020,36(12):2877-2891
有机小分子与DNA相互作用机理研究已经成为药物作用机理研究与新药筛选的重要手段之一。槲皮素 (Quercetin) 是一种多羟基黄酮类化合物,具有抗癌、抗炎、抗菌、抗病毒、降糖降压、免疫调节及保护心血管的作用。实验研究的目的是发现与确认槲皮素与DNA之间是否具有相互作用,以及确定其相互作用的类型。根据荧光光谱法和共振散射荧光光谱法的分析结果,发现槲皮素与鲱鱼精DNA之间存在相互作用;使用紫外-可见分光光度法和荧光偏振分析,发现槲皮素与鲱鱼精DNA之间的相互作用模式不属于嵌插作用,而是沟槽嵌合或者静电相互作用;最后通过分子对接实验,成功佐证槲皮素与鲱鱼精DNA之间的相互作用模式是沟槽结合。该工作有利于理解槲皮素与DNA之间的体外作用方式,助力于相应疾病的药物开发。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号