首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many ecosystems of high conservation value have been shaped by human impacts over centuries. Today, traditional management of semi-natural habitats is a common conservation measure in Europe. However, despite traditional management, habitat remnants may still loose specialist species due to surrounding land-use change or atmospheric nitrogen deposition. To detect trends in species density (2-m2 plot scale) and habitat quality in calcareous fens in the pre-Alps of Switzerland, we surveyed 36 traditionally managed fens in 1995/97 and again in 2005/06 (five plots per fen). The fens occurred at three altitudinal levels (800–1000, 1000–1200, 1200–1400 m asl) and were either extensively grazed or mown once a year. Despite these traditional management regimes, species density of fen specialists and of all bryophytes decreased during this decade (vascular plant specialists: ?9.4%, bryophyte specialists: ?14.9%, all bryophytes: ?5.7%). Management had no effect on the number of Red-List species and habitat specialists of vascular plants per plot. However, bryophyte species density was more strongly reduced in grazed fens. Species density of vascular plant generalists increased between the two surveys (+8.2%) but not of bryophytes. Among vascular plants, Red-List species decreased from 1.01 to 0.78 species per plot. Furthermore, between the two surveys aboveground plant biomass, mean plant-community indicator values for nutrients and species density of nutrient indicators increased, whereas mean plant indicator values for soil moisture, light and peat, and species density for peat indicators, decreased. We attribute these changes and the loss of specialist species over the past decade mainly to land-use change in the surrounding area and to nutrient inputs. Thus, despite traditional management, calcareous fens in the pre-Alps suffer from ongoing habitat deterioration and endangered plant species remain threatened. For their long-term protection, we suggest to reduce nutrient inputs and, where necessary, to restore hydrology and adjust grazing management.  相似文献   

2.

Aims

Shallow soils on acidic bedrock in dry areas of Central Europe support dry grasslands and heathlands that were formerly used as extensive pastures. These habitats are of high conservation value, but their abandonment in the 20th century triggered slow natural succession that poses a threat to specialized plant species. We asked how this vegetation and its plant diversity have changed over the past three decades and whether protected areas have positively affected habitat quality.

Location

Southwestern and central Moravia, Czech Republic.

Methods

In 2018–2019, we resurveyed 94 vegetation plots first sampled in 1986–1991 at 47 acidic dry grassland and heathland sites. We compared the number of all vascular plant species, Red List species and alien species per plot using parametric and non-parametric tests, life-form spectra using the chi-square test, species composition using detrended correspondence analysis, and indicator values using a permutation test. We also compared these changes between sites within and outside protected areas.

Results

Vegetation changes over the past three decades have been relatively small. However, we detected a decrease in total species richness, the number of Red List species and the number of characteristic species of dry grasslands. Neophytes were infrequent, while archaeophytes increased slightly. The competitive tall grass Arrhenatherum elatius, annual species and young woody plants increased in abundance or newly established at many sites. Indicator values did not change except for a slight increase in nutrient values. These negative trends occurred both within and outside protected areas but were more pronounced outside.

Conclusions

Formerly grazed acidic dry grasslands and heathlands in Moravia are slowly losing habitat specialists, including threatened plant species, and are increasingly dominated by Arrhenatherum elatius. Conservation management, especially cutting in protected areas, slows down the negative trends of decline in plant diversity and habitat quality but is insufficient to halt these processes completely.  相似文献   

3.
Luca Borghesio 《Plant Ecology》2009,201(2):723-731
This study focuses on the effect of fire on lowland heathlands at the extreme southern edge of their European distribution (Vauda Nature Reserve, NW Italy). Forty-nine plots (50 m radius) were surveyed between 1999 and 2006. Each year, fire occurrences were recorded and per cent cover of four vegetation types (grassland, heath, low shrubland, and tall shrubland) was estimated in each plot. Vascular plant species richness was also recorded in 255, 1 m2 quadrats. After a fire, grassland vegetation expanded, but then declined rapidly as heath and shrubland recovered: 7 years after a fire, tall shrubland encroached on to more than 40% of the plots, and grassland declined from 50% to 20% cover. Between 1999 and 2006, Betula pendula shrubland greatly expanded, while grassland decreased over most of the Reserve, even where fire frequency was high. Tall shrubland had low plant diversity and was dominated by widespread species of lower conservation value. By contrast, early successional vegetation (grassland and low shrubland) had higher richness and more narrowly distributed species, indication that the development of tall shrubland causes significant species loss in the heathland. Italian lowland heathlands are characterized by high rates of shrubland encroachment that threatens both habitat and species diversity. Burning frequencies of once in 3–6 years seem appropriate in this habitat, but burning alone might not suffice without actions to increase herbivore grazing.  相似文献   

4.
We used historical and contemporary records to determine the scale of plant extinction in Bedfordshire and Northamptonshire, and to assess whether extinct species share a range of ecological and phytogeographical traits. Since 1700 both counties have lost 94 species (11% of their native floras) with the rate of extinction increasing from 3.8 to 4.8 species per decade in the 19th century to 6–8 species per decade after 1950. The most important predictors of extinction risk were English range size and traits associated with habitat specialisation and competitive ability: poor competitors (i.e. short stress-tolerators) associated with open habitats with very low or high pH and soil moisture (e.g. lowland bogs, dwarf-shrub heath and acid and calcareous grassland) were much more likely to have become extinct in the study region than would have been expected by chance alone. Many of these species have very localised distributions and/or occur at the northern, southern or eastern edges of their range in southern England (i.e. Northern and Oceanic). In contrast, there was no clear or significant relationship between extinction and dispersal ability or reproductive mode. These findings, which parallel national trends, indicate that habitat loss and eutrophication have been the main causes of population extinction in lowland England over the last 300 years. However, more fine-scaled studies are required to assess whether ‘low-level’ stresses, such as habitat fragmentation, climate change and atmospheric pollution, are having additional impacts on populations already severely depleted by habitat loss, as well as to quantify changes in the abundance of more widespread species which are known to have declined over the same period.  相似文献   

5.

Questions

Small, remnant habitats embedded in degraded, human-dominated landscapes are generally not a priority in conservation, despite their potential role in supporting landscape-scale biodiversity. To warrant their inclusion in conservation management and policy, we question under which conditions they may exhibit the largest conservation value.

Location

Nine landscapes spread across the counties of Stockholm and Södermanland, Sweden.

Methods

Per landscape, plant communities were surveyed in 6 and 12 1 × 1 m2 plots across large, intact semi-natural grasslands and small remnant grasslands, respectively. These two contrasting grassland types served as a model system. A topsoil sample was taken in each plot to determine habitat quality in terms of soil pH, plant-available P, and C:N ratio. We used a joint species distribution model to analyse the extent to which grassland type and habitat quality define and predict resident community diversity and composition, including whether they support grassland specialists.

Results

At the landscape scale, the combined remnant grasslands sustained diverse plant communities which did include a significant subset of habitat specialists. Yet, the contribution of individual remnants clearly varied with local-scale habitat quality; soil phosphorus availability lowered plot-level species richness, mostly by constraining the occurrence of grassland specialists. Semi-natural grassland communities were comparatively insensitive to variation in soil phosphorus availability.

Conclusions

The combined habitat amount and the significant number of habitat specialists sustained by remnant grasslands with high habitat quality, shows they can represent a valuable resource to support landscape-scale biodiversity conservation. This offers no wildcard to neglect the continued biotic and abiotic threats on semi-natural grassland plant diversity such as chronic and accumulating P eutrophication, discontinuation of management or poor matrix permeability, as semi-natural grasslands harbour the majority of habitat specialists, while sourcing surrounding remnant grassland communities.
  相似文献   

6.
Grasslands are constructed for soil and wildlife conservation in agricultural landscapes across Europe and North America. Constructed grasslands may mitigate habitat loss for grassland-dependent animals and enhance ecosystem services that are important to agriculture. The responses of animal species richness and abundance to grassland habitat quality are often highly variable, however, and monitoring of multiple taxa is often not feasible. We evaluated whether multiple animal taxa responded to variation in constructed grassland habitats of southwest Ohio, USA, in ways that could be predicted from indicators based on quality assessment indices, Simpson diversity, and the species richness of ants and plants. The quality assessment indices included a widely used Floristic Quality Assessment (FQA) index, and a new Ant Quality Assessment (AntQA) index, both based on habitat specificity and species traits. The ant and plant indicators were used as predictor variables in separate general linear models of four target taxa—bees, beetles, butterflies and birds—with response variables of overall species richness and abundance, and subsets of taxa that included the abundance of ecosystem-service providers and grassland-associated species. Plant Simpson diversity was the best-fitting predictor variable in models of overall bee and beetle abundance, and the abundance of bees classified as ecosystem-service (ES) providers. FQA and plant richness were the best predictors of overall butterfly species richness and abundance. Ant species richness was the best predictor of overall bird species richness and abundance as well as the abundance of ES birds, while the AntQA index was the best predictor for the abundance of grassland bird and butterfly species. Thus, plant Simpson diversity and ant species richness were the most effective indicators for complementary components of grassland animal communities, whereas quality assessment indices were less robust as indicators and require more knowledge on the habitat specificity of individual ant and plant species.  相似文献   

7.
Islands are vulnerable ecosystems worldwide, increasingly exposed to human pressure, global climate change and invasive species. Thus, understanding island species diversity is key for nature conservation. Recent studies on insular plant communities indicated that habitat-specific species composition and richness might largely affect diversity patterns observed at the island scale. In consequence, habitat-based approaches are needed to (i) estimate how environmental changes at the habitat scale may affect island diversity, and to (ii) estimate the contribution of different patches of the same habitat to island diversity with respect to habitat-specific environmental constraints.In the present study, we tested these habitat-to-island diversity relationships for shoreline habitats (brackish reeds, salt marsh, rocky shore, tall herbs) and island interior habitats (rocks, semi-natural grassland, pioneer forest, coniferous forest, mixed forest) using 108 islands of three Baltic archipelagos in Sweden. These islands differed in terms of island-scale variables describing effects of island configuration and distance, and habitat-scale variables representing the effects of habitat area, abiotic environment and land-use.The studied habitats differed in their contribution to island species diversity, called habitat specificity. Shoreline habitats shared many common specialist species adapted to extreme conditions like sea salt or bird grazing, while habitats of the island interior harbored mainly species adapted to the specific conditions of a single habitat. We found high variability in habitat specificity as a consequence of habitat-specific environmental factors. Variability was highest for grasslands, where it was related to abandonment and soil fertility, stressing the importance of grassland management for maintaining island biodiversity. Habitats with high habitat specificity through either high species richness or many habitat-specific specialists should be the primary targets for biodiversity management.  相似文献   

8.
Habitat fragmentation resulting from anthropogenic land-use change may negatively affect both biodiversity and ecosystem structure and function. However, susceptibility to fragmentation varies between species and may be influenced by for instance specialization, functional traits and trophic level. We examined how total and specialist species richness, species composition and functional trait composition at two trophic levels (vascular plants and sap-feeding hoppers) vary with habitat fragmentation (patch size and connectivity) in dry calcareous grasslands in southeast Norway. We found that fragmentation affected plant and hopper species composition both totally and of habitat specialists, but with a net species loss only for the specialists, indicating greater susceptibility of specialized species. Reductions in patch size and increasing isolation negatively affected plant specialists with different sets of traits, effectively reducing the number of species with trait combinations suitable to persist in small and isolated patches. Fragmentation influenced trait composition of the total hopper community, but not of habitat specialists. A lesser degree of habitat association could explain why hoppers, despite belonging to a higher tropic level, seemed to be less susceptible to fragmentation than plants. Nonetheless, our study shows that habitat fragmentation affects both species richness, species composition and trait composition of plants and hoppers, indicating that fragmentation leads not only to a loss of species, but also alters dominance hierarchies and the functionality of grassland communities.  相似文献   

9.
Species colonization in a new habitat patch is an efficiency indicator of biodiversity conservation. Colonization is a two‐step process of dispersal and establishment, characterized by the compatibility of plant traits with landscape structure and habitat conditions. Therefore, ecological trait profiling of specialist species is initially required to estimate the relative importance of colonization filters. Old planted parks best satisfy the criteria of a newly created and structurally matured habitat for forest‐dwelling plant species. We sampled species in 230 ancient deciduous forests (source habitat), 74 closed‐canopy manor parks (target habitats), 151 linear wooded habitats (landscape corridors), and 97 open habitats (isolating matrix) in Estonia. We defined two species groups of interest: forest (107 species) and corridor specialists (53 species). An extra group of open habitat specialists was extracted for trait scaling. Differing from expectations, forest specialists have high plasticity in reproduction mechanisms: smaller seeds, larger dispersules, complementary selfing ability, and diversity of dispersal vectors. Forest specialists are shorter, less nutrient‐demanding and mycorrhizal‐dependent, stress‐tolerant disturbance‐sensitive competitors, while corridor specialists are large‐seeded disturbance‐tolerant competitors. About 40% of species from local species pools have immigrated into parks. The historic forest area, establishment‐related traits, and stand quality enhance the colonization of forest specialists. The openness of landscape and mowing in the park facilitate corridor specialists. Species traits in parks vary between a forest and corridor specialist, except for earlier flowering and larger propagules. Forest species are not dispersal limited, but they continue to be limited by habitat properties even in the long term. Therefore, the shady parts of historic parks should be appreciated as important forest biodiversity‐enhancing landscape structures. The habitat quality of secondary stands can be improved by nurturing a heterogeneous shrub and tree layer, and modest herb layer management.  相似文献   

10.
Fallows (i.e. fields temporarily taken out of production) provide important habitat for flower-visiting insects in intensively cultivated agricultural landscapes. Cost-efficiency of fallowing schemes could be enhanced through improved understanding of key characteristics of fallows and surrounding landscape that determine community composition and provide support for species of conservation concern. Impacts of fallow characteristics and landscape structure on the species composition of butterflies and bumblebees were studied in two types of perennial fallows in boreal farmland. To understand species’ responses to environmental factors from a conservation perspective, community composition was examined with respect to two species traits—niche breadth and dispersal capacity. Whereas overall species composition of butterflies and bumblebees was strongly affected by forest cover in the surrounding landscape, the studied species traits were most related to fallow type and the cover of perennial grasslands. Habitat breadth of butterflies was narrowest in long-term grassland fallows in landscapes with high grassland cover. Dispersal capacity of butterflies was also lowest in grassland-rich landscapes. Diet breadth of bumblebees was narrower in long-term grassland fallows than in short-term fallows. The results confirm that the diversity of butterflies and bumblebees can be enhanced by establishing and managing fallows both in open and forested landscapes. For conservation of habitat specialists and less mobile species, retention of long-term fallows in grassland-rich landscapes is apparently the best option. The results provide no justification for exempting forested regions or farms with high grassland cover from the ecological focus area requirement under the European Union’s current agricultural policy.  相似文献   

11.
In competition‐dominated communities, traits promoting resource conservation and competitive ability are expected to have an important influence on species relative abundance (SRA). Yet, few studies have tested the trait‐abundance relations in the line of species trade‐off in resource conservation versus acquisition, indicating by multiple traits coordination. We measured SRA and key functional traits involving leaf economic spectrum (SLA, specific leaf area; LDMC, leaf dry matter content; LCC, leaf carbon concentration; LNC, leaf nitrogen concentration; LPC, leaf phosphorus concentration; Hs, mature height) for ten common species in all plots subjected to addition of nitrogen fertilizer (N), phosphorus fertilizer (P), or both of them (NP) in a Tibetan alpine meadow. We test whether SRA is positively related with traits promoting plant resource conservation, while negatively correlated with traits promoting plant growth and resource acquisition. We found that species were primarily differentiated along a trade‐off axis involving traits promoting nutrient acquisition and fast growth (e.g., LPC and SLA) versus traits promoting resource conservation and competition ability (e.g., large LDMC). We further found that SRA was positively correlated with plant height, LDMC, and LCC, but negatively associated with SLA and leaf nutrient concentration irrespective of fertilization. A stronger positive height‐SRA was found in NP‐fertilized plots than in other plots, while negative correlations between SRA and SLA and LPC were found in N or P fertilized plots. The results indicate that species trade‐off in nutrient acquisition and resource conservation was a key driver of SRA in competition‐dominated communities following fertilization, with the linkage between SRA and traits depending on plant competition for specific soil nutrient and/or light availability. The results highlight the importance of competitive exclusion in plant community assembly following fertilization and suggest that abundant species in local communities become dominated at expense of growth while infrequent species hold an advantage in fast growth and dispersals to neighbor meta‐communities.  相似文献   

12.
Abstract Patch formation is common in grazed grasslands but the mechanisms involved in the formation and maintenance of patches are not clear. To increase our knowledge on this subject we examined possible reasons for patch formation and the influence of management on changes between patch states in three experiments in native pasture communities in the Crows Nest district, south‐east Queensland. In these communities, small‐scale patches (tall grassland (dominated by large and medium tussock grasses), short swards (dominated by short tussock grasses and sedges), and lawns (dominated by stoloniferous and/or rhizomatous grasses)) are readily apparent. We hypothesized that the formation of short sward and lawn patches in areas of tall grassland was due to combinations of grazing and soil fertility effects. This was tested in Experiment 1 by applying a factorial combination of defoliation, nutrient application and transplants of short tussock and stoloniferous species to a uniform area of tall grassland. Total species density declined during the experiment, was lower with high nutrient applications, but was not affected by defoliation. There were significant changes in abundance of species that provided support for our hypotheses. With light defoliation and low nutrients, the tall grassland remained dominated by large tussock grasses and contained considerable amounts of forbs. With heavy defoliation, the pastures were dominated by medium tussock grasses and there were significant decreases in forbs and increases in sedges (mainly with low nutrients) and stoloniferous grasses (mainly with high nutrients). Total germinable seed densities and those of most species groups were significantly lower in the heavy defoliation than the light defoliation plots. Total soil seed numbers were not affected by nutrient application but there were fewer seeds of the erect forbs and more sedge seeds in plots with high nutrients. The use of resting from grazing and fire to manage transitions between patches was tested. In Experiment 2 , changes in species density and abundance were measured for 5 years in the three patch types with and without grazing. Experiment 3 examined the effects of fire, grazing and resting on short sward patches over 4 years. In Experiment 2 , total species density was lower in lawn than short sward or tall grassland patches, and there were more species of erect forbs than other plant groups in all patch types. The lawn patches were originally dominated by Cynodon spp. This dominance continued with grazing but in ungrazed patches the abundance of Cynodon spp. declined and that of forbs increased. In the short sward patches, dominance of short tussock grasses continued with grazing but in ungrazed plots their abundance declined while that of large tussock grasses increased. The tall grassland patches remained dominated by large and medium tussock species. In Experiment 3 , fire had no effect on species abundance. On the grazed plots the short tussock grasses remained dominant but where the plots were rested from grazing the small tussock grasses declined and the large tussock grasses increased in abundance. The slow and relatively small changes in these experiments over 4 or 5 years showed how stable the composition of these pastures is, and that rapid changes between patch types are unlikely.  相似文献   

13.
Calcareous grasslands harbor specialized species and are cultural relics. Therefore, they are prime habitates for conservation and restoration, but negative effects of inappropriate management, eutrophication and fragmentation continue to exist. These effects also influence grasslands which serve as target for restoration. Unfortunately, monitoring of long-term vegetation dynamics in calcareous grassland is rare. Here, we studied such changes over 35 years in the nature reserve ‘Garchinger Heide’, which is well known for its high abundance of rare species. Furthermore, it has been managed for conservation for more than 100 years. Therefore, species composition, total species richness, numbers of habitat specialists, red-list species and the proportion of graminoids were examined in 42 plots with frequency recording (1984–2018), and in 40 plots based on vegetation relevés (2003–2018). Ellenberg indicator values, specific leaf area, seed mass, and canopy height were analysed to detect patterns in trait response to environmental change. Within 35 years there were considerable vegetation dynamics. Specialist plants of calcareous grassland and red list species decreased, and insect-pollinated species declined in contrast to wind-pollinated species. Ellenberg N as well as graminoid abundance, canopy height, seed mass, and multi-trait functional dispersion increased, while specific leaf area showed no such change. Our results suggest that environmental change like deposition of atmospheric nitrogen, management regime, pollinator decline or isolation could be correlated with vegetation dynamics, while these correlations would need experimental confirmation. The grassland management certainly helped achieving several conservation goals, although it was not able to stop a decrease of rare species. The results show that also in nature reserves with long-term conservation management monitoring is essential to detect vegetation dynamics and to adjust the management to these changes.  相似文献   

14.
The distribution of Auchenorrhyncha species assemblages on 174 grassland sites in northern England and Scotland was investigated using ordination and classification techniques. Altitude appeared to be the most important environmental variable influencing assemblage distribution but the effects of altitude on soil type and moisture, and on plant composition, either herbaceous or woody, and structure were likely to have been primary influences. The main differences between sites in the eight habitat groups of the classification were products of these soil and plant variables, with the geographical position of sites in the survey area having less of an effect on site classification. A considerable number of nationally and regionally rare and scarce species were recorded. The results indicate that Auchenorrhyncha could be used in site conservation based on invertebrate species assemblages and rare species distribution but that more information is required to assess both habitat diversity and species rarity. More survey work would also be required to identify appropriate site management procedures for the conservation of Auchenorrhyncha within an overall programme for terrestrial invertebrates.  相似文献   

15.
Few studies have examined how life history traits and the climate envelope influence the ability of species to respond to climate change and habitat degradation. In this study, we test whether 18 species-specific variables, related to the climate envelope, ecological envelope and life history, could predict recent population trends (over 17 years) of 71 common breeding bird species in France. Habitat specialists were declining at a much higher rate than generalists, a sign that habitat quality is decreasing globally. The lower the thermal maximum (temperature at the hot edge of the climate envelope), the more negative are the population trends and the less tolerant these species are climate warming, regardless of the thermal range over which these species occur. The life history trait 'the number of broods per year' was positively related to recent trends, suggesting that single-brooded species might be more sensitive to advances in food peak due to climate change, as it increases the risk of mistiming their single-breeding event. Annual fecundity explained long-term declines, as it is a good proxy for most other demographic rates, with shorter-lived species being more sensitive to global change: individuals of species with higher fecundity might have too short a life to learn to adapt to directional changes in their environment. Finally, there was evidence that natal dispersal was a predictor of recent trends, with species with high natal dispersal experiencing smaller population declines than species with low natal dispersal. This is expected if the higher the natal dispersal, the larger the ability to shift spatially when facing changes in local habitat or climate, in order to track optimal conditions and adapt to global change. Identifying decline-promoting factors allow us to infer mechanisms responsible for observed declines in wild bird populations facing global change, and by doing so allow for a more pre-emptive approach to conservation planning.  相似文献   

16.
Plants vary widely in how common or rare they are, but whether commonness of species is associated with functional traits is still debated. This might partly be because commonness can be measured at different spatial scales, and because most studies focus solely on aboveground functional traits. We measured five root traits and seed mass on 241 central European grassland species, and extracted their specific leaf area, height, mycorrhizal status and bud-bank size from databases. Then we tested if trait values are associated with commonness at seven spatial scales, ranging from abundance in 16-m2 grassland plots, via regional and European-wide occurrence frequencies, to worldwide naturalization success. At every spatial scale, commonness was associated with at least three traits. The traits explained the greatest proportions of variance for abundance in grassland plots (42%) and naturalization success (41%) and the least for occurrence frequencies in Europe and the Mediterranean (2%). Low root tissue density characterized common species at every scale, whereas other traits showed directional changes depending on the scale. We also found that many of the effects had significant non-linear effects, in most cases with the highest commonness-metric value at intermediate trait values. Across scales, belowground traits explained overall more variance in species commonness (19.4%) than aboveground traits (12.6%). The changes we found in the relationships between traits and commonness, when going from one spatial scale to another, could at least partly explain the maintenance of trait variation in nature. Most importantly, our study shows that within grasslands, belowground traits are at least as important as aboveground traits for species commonness. Therefore, belowground traits should be more frequently considered in studies on plant functional ecology.  相似文献   

17.

Semi-natural grasslands in Japan have decreased due to management abandonment and urbanization over the last 100 years, but they remain in suburban areas in addition to rural areas. Because suburban grasslands have various land-use histories and disturbance regimes, plant and herbivorous insect communities are likely to differ among grassland types. To identify grasslands with high conservation value, we conducted a comprehensive survey of grasshoppers and plants in 150 grasslands with 5 grassland types differing in land-use history and current management in northern Chiba prefecture, Japan. We then analyzed the association of the distributions of grasshopper and plant species compositions. Our results showed that grasshoppers were classified into habitat specialists and generalists. Three out of four habitat specialists were almost exclusively found in semi-natural grasslands and vacant lots, while habitat generalists were commonly observed at the cropland margins. This habitat specialist–generalist distribution gradient corresponded well to that found in plant communities, which was probably due to current disturbance regimes. We suggest that vacant lots as well as semi-natural grasslands have high conservation value for grassland organisms of various taxa in suburban areas, and grasshoppers are candidate indicator species for monitoring grassland environments.

  相似文献   

18.
以内蒙古锡林河流域沿水分梯度分布的灰脉苔草(Carex appendiculata)、贝加尔针茅(Stipa baicalensis)、羊草(Leymus chinensis)、大针茅(Stipa grandis)、小叶锦鸡儿(Caragana microphylla)和冷蒿(Artemisia frigida) 6个草地群落为对象, 研究了围封禁牧与放牧样地中144个共有植物种的高度、丛幅面积、茎、叶和株(丛)生物量、茎叶比等性状。结果表明: 1)在个体水平上, 放牧样地中植物的生殖枝高度、营养枝高度、丛幅面积、单株(丛)生物量、茎、叶生物量和茎叶比均显著低于围封禁牧样地, 植物在放牧干扰下表现出明显的小型化现象; 2)在群落水平上, 放牧亦显著降低了群落总生物量和茎、叶生物量; 3)过度放牧显著改变了物种的资源分配策略, 使生物量向叶的分配比例增加, 向茎的分配比例减少。资源优先向同化器官分配可能是植物对长期放牧干扰的一种重要适应对策; 4)轻度放牧对物种的资源分配没有显著影响, 单株(丛)生物量和群落茎、叶及总生物量均表现出增加趋势, 这与过度放牧的影响正好相反。过度放牧引起的植物个体小型化改变了生态系统中物种的资源分配策略, 进而对生态系统功能产生重要的影响。  相似文献   

19.
Changes in plant community traits along an environmental gradient are caused by interspecific and intraspecific trait variation. However, little is known about the role of interspecific and intraspecific trait variation in plant community responses to the restoration of a sandy grassland ecosystem. We measured five functional traits of 34 species along a restoration gradient of sandy grassland (mobile dune, semi‐fixed dune, fixed dune, and grassland) in Horqin Sand Land, northern China. We examined how community‐level traits varied with habitat changes and soil gradients using both abundance‐weighted and non‐weighted averages of trait values. We quantified the relative contribution of inter‐ and intraspecific trait variation in specific leaf area (SLA), leaf dry matter content (LDMC), leaf carbon content (LCC), leaf nitrogen content (LNC), and plant height to the community response to habitat changes in the restoration of sandy grassland. We found that five weighted community‐average traits varied significantly with habitat changes. Along the soil gradient in the restoration of sandy grassland, plant height, SLA, LDMC, and LCC increased, while LNC decreased. For all traits, there was a greater contribution of interspecific variation to community response in regard to habitat changes relative to that of intraspecific variation. The relative contribution of the interspecific variation effect of an abundance‐weighted trait was greater than that of a non‐weighted trait with regard to all traits except LDMC. A community‐level trait response to habitat changes was due largely to species turnover. Though the intraspecific shift plays a small role in community trait response to habitat changes, it has an effect on plant coexistence and the maintenance of herbaceous plants in sandy grassland habitats. The context dependency of positive and negative covariation between inter‐ and intraspecific variation further suggests that both effects of inter‐ and intraspecific variation on a community trait should be considered when understanding a plant community response to environmental changes in sandy grassland ecosystems.  相似文献   

20.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号