首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
RNA interference (RNAi), a conserved RNA‐mediated gene regulatory mechanism in eukaryotes, plays an important role in plant growth and development, and as an antiviral defence system in plants. As a counter‐strategy, plant viruses encode RNAi suppressors to suppress the RNAi pathways and consequently down‐regulate plant defence. In geminiviruses, the proteins AC2, AC4 and AV2 are known to act as RNAi suppressors. In this study, we have designed a gene silencing vector using the features of trans‐acting small interfering RNA (tasiRNA), which is simple and can be used to target multiple genes at a time employing a single‐step cloning procedure. This vector was used to target two RNAi suppressor proteins (AC2 and AC4) of the geminivirus, Tomato leaf curl New Delhi virus (ToLCNDV). The vector containing fragments of ToLCNDV AC2 and AC4 genes, on agro‐infiltration, produced copious quantities of AC2 and AC4 specific siRNA in both tobacco and tomato plants. On challenge inoculation of the agro‐infiltrated plants with ToLCNDV, most plants showed an absence of symptoms and low accumulation of viral DNA. Transgenic tobacco plants were raised using the AC2 and AC4 tasiRNA‐generating constructs, and T1 plants, obtained from the primary transgenic plants, were tested for resistance separately against ToLCNDV and Tomato leaf curl Gujarat virus. Most plants showed an absence of symptoms and low accumulation of the corresponding viruses, the resistance being generally proportional to the amounts of siRNA produced against AC2 and AC4 genes. This is the first report of the use of artificial tasiRNA to generate resistance against an important plant virus.  相似文献   

2.
Viral resistance can be effectively induced in transgenic plants through their silencing machinery. Thus, we designed nine short hairpin RNAs (shRNA) constructs to target nuclear inclusion protein b (NIb), helper component proteinase (HC-Pro), cylindrical inclusion protein (CI) and viral protein genome linked (VPg) genes of Potato virus Y (PVYN) and Tobacco etch virus (TEV-SD1). The shRNAs were completely complementary to the genes of PVYN, and contained 1–3 nt mismatches to the genes of TEV-SD1. To study the specificity of gene silencing in shRNA-mediated viral resistance, the constructs were introduced into tobacco plants. The results of viral resistance assay revealed that these nine kinds of transgenic tobacco plants can effectively induce viral resistance against both PVYN and TEV-SD1, and the shRNA construct targeting the NIb gene showed higher silencing efficiency. Northern blot and short interfering RNA (siRNA) analyses demonstrated that the viral resistance can be attributed to the degradation of the target RNA through the RNA silencing system. Correlation analysis of siRNA sequence characteristics with its activity suggested that the secondary structure stability of the antisense strand did not influence siRNA activity; 1 to 3 nt 5’ end of the sense strand caused a significant effect on siRNA activity where the first base such as U was favourable for silencing; the base mismatch between the siRNA and the target gene may be more tolerated in the 5’ end.  相似文献   

3.
RNA silencing technology has become the tool of choice for inducing resistance against viruses in plants. A significant discovery of this technology is that double-stranded RNA (dsRNA), which is diced into small interfering RNAs (siRNAs), is a potent trigger for RNA silencing. By exploiting this phenomenon in transgenic plants, it is possible to confer high level of virus resistance by specific targeting of cognate viral RNA. In order to maximize the efficiency and versatility of the vector-based siRNA approach, we have constructed a chimeric expression vector containing three partial gene sequences derived from the ORF2 gene of Potato virus X, Helper Component Protease gene of Potato virus Y and Coat protein gene of Potato leaf roll virus. Solanum tuberosum cv. Desiree and Kuroda were transformed with this chimeric gene cassette via Agrobacterium tumefaciens-mediated transformation and transgenic status was confirmed by PCR, Southern and double antibody sandwich ELISA detection. Due to simultaneous RNA silencing, as demonstrated by accumulation of specific siRNAs, the expression of partial triple-gene sequence cassette depicted 20% of the transgenic plants are immune against all three viruses. Thus, expression of a single transgene construct can effectively confer resistance to multiple viruses in transgenic plants.  相似文献   

4.
Wheat yellow mosaic virus (WYMV) has spread rapidly and causes serious yield losses in the major wheat‐growing areas in China. Because it is vectored by the fungus‐like organism Polymyxa graminis that survives for long periods in soil, it is difficult to eliminate by conventional crop management or fungicides. There is also only limited resistance in commercial cultivars. In this research, fourteen independent transgenic events were obtained by co‐transformation with the antisense NIb8 gene (the NIb replicase of WYMV) and a selectable gene bar. Four original transgenic lines (N12, N13, N14 and N15) and an offspring line (N12‐1) showed high and durable resistance to WYMV in the field. Four resistant lines were shown to have segregated and only contain NIb8 (without bar) by PCR and herbicide resistance testing in the later generations. Line N12‐1 showed broad‐spectrum resistance to WYMV isolates from different sites in China. After growing in the infested soil, WYMV could not be detected by tissue printing and Western blot assays of transgenic wheat. The grain yield of transgenic wheat was about 10% greater than the wild‐type susceptible control. Northern blot and small RNA deep sequencing analyses showed that there was no accumulation of small interfering RNAs targeting the NIb8 gene in transgenic wheat plants, suggesting that transgene RNA silencing, a common mechanism of virus‐derived disease resistance, is not involved in the process of WYMV resistance. This durable and broad‐spectrum resistance to WYMV in transgenic wheat will be useful for alleviating the damage caused by WYMV.  相似文献   

5.
Yang  Xiangdong  Niu  Lu  Zhang  Wei  He  Hongli  Yang  Jing  Xing  Guojie  Guo  Dongquan  Zhao  Qianqian  Zhong  Xiaofang  Li  Haiyun  Li  Qiyun  Dong  Yingshan 《Transgenic research》2019,28(1):129-140

Viruses constitute a major constraint to soybean production worldwide and are responsible for significant yield losses every year. Although varying degrees of resistance to specific viral strains has been identified in some soybean genetic sources, the high rate of mutation in viral genomes and mixed infections of different viruses or strains under field conditions usually hinder the effective control of viral diseases. In the present study, we generated transgenic soybean lines constitutively expressing the double-strand RNA specific ribonuclease gene PAC1 from Schizosaccharomyces pombe to evaluate their resistance responses to multiple soybean-infecting virus strains and isolates. Resistance evaluation over three consecutive years showed that the transgenic lines displayed significantly lower levels of disease severity in field conditions when challenged with soybean mosaic virus (SMV) SC3, a prevalent SMV strain in soybean-growing regions of China, compared to the non-transformed (NT) plants. After inoculation with four additional SMV strains (SC7, SC15, SC18, and SMV-R), and three isolates of bean common mosaic virus (BCMV), watermelon mosaic virus (WMV), and bean pod mottle virus (BPMV), the transgenic plants exhibited less severe symptoms and enhanced resistance to virus infections relative to NT plants. Consistent with these results, the accumulation of each virus isolate was significantly inhibited in transgenic plants as confirmed by quantitative real-time PCR and double antibody sandwich enzyme-linked immunosorbent assays. Collectively, our results showed that overexpression of PAC1 can increase multiple virus resistance in transgenic soybean, and thus provide an efficient control strategy against RNA viruses such as SMV, BCMV, WMV, and BPMV.

  相似文献   

6.
7.
8.
In an attempt to generate soybean plants resistant to soybean dwarf virus (SbDV), we transformed a construct containing inverted repeat-SbDV coat protein (CP) genes spaced by β-glucuronidase (GUS) sequences into soybean somatic embryos via microprojectile bombardment. Three T0 plants with an introduced CP gene were obtained, and one generated T1 seeds. The presence of the transgene in T1 plants was confirmed by PCR and Southern blot hybridization analysis, but expression of CP was not detected by northern blot hybridization analysis. Two months after inoculation of SbDV by aphid, T2 plants contained little SbDV-specific RNA and remained symptomless. These plants contained SbDV-CP-specific siRNA. These results suggest that the T2 plants achieved resistance to SbDV by an RNA-silencing-mediated process.  相似文献   

9.
10.
11.
Three hundred and ninety‐four sweet potato accessions from Latin America and East Africa were screened by polymerase chain reaction (PCR) for the presence of begomoviruses, and 46 were found to be positive. All were symptomless in sweet potato and generated leaf curling and/or chlorosis in Ipomoea setosa. The five most divergent isolates, based on complete genome sequences, were used to study interactions with Sweet potato chlorotic stunt virus (SPCSV), known to cause synergistic diseases with other viruses. Co‐infections led to increased titres of begomoviruses and decreased titres of SPCSV in all cases, although the extent of the changes varied notably between begomovirus isolates. Symptoms of leaf curling only developed temporarily in combination with isolate StV1 and coincided with the presence of the highest begomovirus concentrations in the plant. Small interfering RNA (siRNA) sequence analysis revealed that co‐infection of SPCSV with isolate StV1 led to relatively increased siRNA targeting of the central part of the SPCSV genome and a reduction in targeting of the genomic ends, but no changes to the targeting of StV1 relative to single infection of either virus. These changes were not observed in the interaction between SPCSV and the RNA virus Sweet potato feathery mottle virus (genus Potyvirus), implying specific effects of begomoviruses on RNA silencing of SPCSV in dually infected plants. Infection in RNase3‐expressing transgenic plants showed that this protein was sufficient to mediate this synergistic interaction with DNA viruses, similar to RNA viruses, but exposed distinct effects on RNA silencing when RNase3 was expressed from its native virus, or constitutively from a transgene, despite a similar pathogenic outcome.  相似文献   

12.
Ko TS  Lee S  Farrand SK  Korban SS 《Planta》2004,218(4):536-541
Agrobacterium tumefaciens strain KYRT1 harboring the virulence helper plasmid pKYRT1 induces transgenic somatic embryos (SEs) at high frequency from infected immature soybean cotyledons. KYRT1 is derived from the highly oncogenic strain Chry5. However, pKYRT1 is not completely disarmed and still contains an entire T-right (TR) and a portion of T-left (TL). In this report, binary strains, each carrying fully disarmed vir helper plasmids including pKPSF2, which is a fully disarmed version of pKYRT1, were compared to strain KYRT1 for their ability to induce transgenic SEs on immature cotyledons of soybean. Six weeks following cocultivation, histochemical GUS assays of cultured explants indicated that all fully disarmed vir helper plasmids transferred their binary T-DNA, containing a GUS-intron gene, into soybean tissues. However, none of these transformed tissues developed SEs on medium with or without 2,4-dichlorophenoxyactic acid (2,4-D). On the other hand, immature cotyledons cocultivated with strain KYRT1 exhibited high induction of transgenic SEs, but only on medium supplemented with 2,4-D. Derivatives of strain Chry5 harboring other vir helper plasmids did not induce transgenic SEs under any conditions tested, thus suggesting that the chromosomal background of KYRT1 alone was not sufficient to promote somatic embryogenesis. PCR analysis indicated that 55% of transgenic embryogenic cultures and 29% of transgenic T0 soybean plants derived by transformation using strain KYRT1 contained TR from pKYRT1 in addition to the uidA gene from the binary construct. None of the transgenic tissues or T0 plants contained TL DNA. These results suggest that some function coded for by TR of pKYRT1 influences somatic embryogenesis in conjunction with exposure of the plant tissues to 2,4-D. Since the co-transformation frequency of the undesirable T-DNA sequences from the vir helper plasmid was relatively low, the partially disarmed strain KYRT1 will likely be very useful for the production of normal transgenic plants of diverse soybean cultivars.Abbreviations 2,4-D 2,4-Dichlorophenoxyactic acid - GUS -Glucuronidase - hpt Hygromycin phosphotransferase gene - SE Somatic embryo - uidA -Glucuronidase gene  相似文献   

13.
Maize dwarf mosaic virus (MDMV) is a widespread pathogenic virus that causes serious loss of yield in maize (Zea mays). RNA interference (RNAi) triggered by hairpin RNA (hpRNA) transcribed from a transgenic inverted-repeat sequence is an effective way to defend against viruses in plants. In this study, an hpRNA expression vector containing a sense arm and an antisense arm of 150 bp separated by an intron of the maize actin gene was constructed to target the P1 protein (protease) gene of MDMV and used to transform Agrobacterium tumefaciens strain EHA105. The transformed Agrobacterium strain was used to transform maize embryonic calli isolated from immature embryos by an improved culture technique. In all, 46 plants were regenerated after stringent hygromycin B selection, and 18 of them were certified to be positive by PCR amplification. Of these positive plants, 13 were grown to produce offspring, and nine were identified by Southern blotting to have the transgene integrated with one or two copies. The resistance of three T2 lines was evaluated in a field trial of dual MDMV inoculation in two environments and was found to be improved compared with the non-transformed control. The disease indexes of the transgenic plant lines h2, 13, and h1 were not significantly different from the highly resistant control line H9-21. The viral titers of the inoculated plants were detected by double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), and the result was in accord with the resistance evaluated in the field trial. The addition of uniconazole S3307 (0.25 mg l−1) and ABT root-promoting powder (0.5 mg l−1) showed a significant improvement of hardening in regenerated plantlets, which were stronger and generated a better fibrous root system than the control. This improvement could facilitate the transgenic operation of maize.  相似文献   

14.
15.
Expression of double-stranded RNA (dsRNA) homologous to virus sequences can effectively interfere with RNA virus infection in plant cells by triggering RNA silencing. Here we applied this approach against a DNA virus, African cassava mosaic virus (ACMV), in its natural host cassava. Transgenic cassava plants were developed to express small interfering RNAs (siRNA) from a CaMV 35S promoter-controlled, intron-containing dsRNA cognate to the common region-containing bidirectional promoter of ACMV DNA-A. In two of three independent transgenic lines, accelerated plant recovery from ACMV-NOg infection was observed, which correlates with the presence of transgene-derived siRNAs 21–24 nt in length. Overall, cassava mosaic disease symptoms were dramatically attenuated in these two lines and less viral DNA accumulation was detected in their leaves than in those of wild-type plants. In a transient replication assay using leaf disks from the two transgenic lines, strongly reduced accumulation of viral single-stranded DNA was observed. Our study suggests that a natural RNA silencing mechanism targeting DNA viruses through production of virus-derived siRNAs is turned on earlier and more efficiently in transgenic plants expressing dsRNA cognate to the viral promoter and common region.  相似文献   

16.
Sweetpotato chlorotic stunt virus (SPCSV; genus Crinivirus , family Closteroviridae) is one of the most important pathogens of sweetpotato ( Ipomoea batatas L.). It can reduce yields by 50% by itself and cause various synergistic disease complexes when co-infecting with other viruses, including sweetpotato feathery mottle virus (SPFMV; genus Potyvirus , family Potyviridae). Because no sources of true resistance to SPCSV are available in sweetpotato germplasm, a pathogen-derived transgenic resistance strategy was tested as an alternative solution in this study. A Peruvian sweetpotato landrace 'Huachano' was transformed with an intron-spliced hairpin construct targeting the replicase encoding sequences of SPCSV and SPFMV using an improved genetic transformation procedure with reproducible efficiency. Twenty-eight independent transgenic events were obtained in three transformation experiments using a highly virulent Agrobacterium tumefaciens strain and regeneration through embryogenesis. Molecular analysis indicated that all regenerants were transgenic, with 1–7 transgene loci. Accumulation of transgene-specific siRNA was detected in most of them. None of the transgenic events was immune to SPCSV, but ten of the 20 tested transgenic events exhibited mild or no symptoms following infection, and accumulation of SPCSV was significantly reduced. There are few previous reports of RNA silencing-mediated transgenic resistance to viruses of Closteroviridae in cultivated plants. However, the high levels of resistance to accumulation of SPCSV could not prevent development of synergistic sweet potato virus disease in those transgenic plants also infected with SPFMV.  相似文献   

17.
18.
Wheat (Triticum aestivum L. cv. Hi-Line) immature embryos were transformed with the replicase gene (NIb) of wheat streak mosaic virus (WSMV) by the biolistic method. Six independent transgenic plant lines were analyzed for transgene expression and for resistance to mechanical inoculation of WSMV at R3 or R4 generation. Four out of the six lines showed various degree of resistance to WSMV. These lines had initially milder symptoms than controls, and the new growth ranged from milder symptoms, a substantial delay in symptom development, or asymptomatic. Two lines displayed higher resistance with very mild virus symptoms after inoculation and the new growth of 72% and 32% plants from these lines were asymptomatic and had no detectable virus through the plant life cycle. Interestingly, five out of the six transgenic lines had no detectable transgene mRNA expression by RNA gel blot hybridization. The only line that had detectable transgene mRNA did not show delay in the symptom development but had overall milder symptom to the virus.  相似文献   

19.
RNA silencing is a conserved antiviral defence mechanism that has been used to develop robust resistance against plant virus infections. Previous efforts have been made to develop RNA silencing‐mediated resistance to criniviruses, yet none have given immunity. In this study, transgenic Nicotiana benthamiana plants harbouring a hairpin construct of the Lettuce infectious yellows virus (LIYV) RNA‐dependent RNA polymerase (RdRp) sequence exhibited immunity to systemic LIYV infection. Deep sequencing analysis was performed to characterize virus‐derived small interfering RNAs (vsiRNAs) generated on systemic LIYV infection in non‐transgenic N. benthamiana plants as well as transgene‐derived siRNAs (t‐siRNAs) derived from the immune‐transgenic plants before and after LIYV inoculation. Interestingly, a similar sequence distribution pattern was obtained with t‐siRNAs and vsiRNAs mapped to the transgene region in both immune and susceptible plants, except for a significant increase in t‐siRNAs of 24 nucleotides in length, which was consistent with small RNA northern blot results that showed the abundance of t‐siRNAs of 21, 22 and 24 nucleotides in length. The accumulated 24‐nucleotide sequences have not yet been reported in transgenic plants partially resistant to criniviruses, and thus may indicate their correlation with crinivirus immunity. To further test this hypothesis, we developed transgenic melon (Cucumis melo) plants immune to systemic infection of another crinivirus, Cucurbit yellow stunting disorder virus (CYSDV). As predicted, the accumulation of 24‐nucleotide t‐siRNAs was detected in transgenic melon plants by northern blot. Together with our findings and previous studies on crinivirus resistance, we propose that the accumulation of 24‐nucleotide t‐siRNAs is associated with crinivirus immunity in transgenic plants.  相似文献   

20.
This paper reports on the successful Agrobacterium-mediated transformation of oat, and on some factors influencing this process. In the first step of the experiments, three cultivars, two types of explant, and three combinations of strain/vectors, which were successfully used for transformation of other cereals were tested. Transgenic plants were obtained from the immature embryos of cvs. Bajka, Slawko and Akt and from leaf base explants of cv. Bajka after transformation with A. thumefaciens strain LBA4404(pTOK233). The highest transformation rate (12.3%) was obtained for immature embryos of cv. Bajka. About 79% of the selected plants proved to be transgenic; however, only 14.3% of the T0 plants and 27.5% of the T1 showed GUS expression. Cell competence of both types of explant differed in terms of their transformation ability and transgene expression. The next step of the study was to test the suitability for oat transformation of the pGreen binary vector combined with different selection cassettes: nptII or bar under the nos or 35S promoter. Transgenic plants were selected in combinations transformed with nos::nptII, 35S::nptII and nos::bar. The highest transformation efficiency (5.3%) was obtained for cv. Akt transformed with nos::nptII. A detailed analysis of the T0 plants selected from a given callus line and their progeny revealed that they were the mixture of transgenic, chimeric-transgenic and non-transgenic individuals. Southern blot analysis of T0 and T1 showed simple integration pattern with the low copy number of the introduced transgenes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号