首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present contribution is the first report of parasitosis by a chytrid fungus in wild anuran amphibians in Argentina, as well as the first case of amphibian mortality documented to date in Argentina. We report the presence of the chytrid fungus in dead adult Leptodactylus ocellatus. It has been suggested that chytridiomycosis is the main cause of death in several amphibian populations worldwide. Our study demonstrates that chytridiomycosis afflicts L. ocellatus, a common widespread amphibian species, and is the first report of chytridiomycosis in the Argentinian lowlands. The occurrence at this latitude would indicate an extended distribution of this fungus in wildlife populations. It is also the first report of amphibian mortality due to chytrid fungus in our country. It is noteworthy that the site of collection is situated very close to sea level in a temperate climate zone and that this represents the southern most record for South American wild amphibians.  相似文献   

2.
The amphibian chytrid fungus Batrachochytrium dendrobatidis is a recently emerged pathogen that causes the infectious disease chytridiomycosis and has been implicated as a contributing factor in the global amphibian decline. Since its discovery, research has been focused on developing various methods of mitigating the impact of chytridiomycosis on amphibian hosts but little attention has been given to the role of antifungal agents that could be added to the host's environment. Sodium chloride is a known antifungal agent used routinely in the aquaculture industry and this study investigates its potential for use as a disease management tool in amphibian conservation. The effect of 0-5 ppt NaCl on the growth, motility and survival of the chytrid fungus when grown in culture media and its effect on the growth, infection load and survivorship of infected Peron's tree frogs (Litoria peronii) in captivity, was investigated. The results reveal that these concentrations do not negatively affect the survival of the host or the pathogen. However, concentrations greater than 3 ppt significantly reduced the growth and motility of the chytrid fungus compared to 0 ppt. Concentrations of 1-4 ppt NaCl were also associated with significantly lower host infection loads while infected hosts exposed to 3 and 4 ppt NaCl were found to have significantly higher survival rates. These results support the potential for NaCl to be used as an environmentally distributed antifungal agent for the prevention of chytridiomycosis in susceptible amphibian hosts. However, further research is required to identify any negative effects of salt exposure on both target and non-target organisms prior to implementation.  相似文献   

3.
壶菌病与两栖动物的种群衰退   总被引:2,自引:0,他引:2  
两栖类种群全球性衰退是21世纪最紧迫的环境问题之一。越来越多的证据表明壶菌(Batrachochytrium dendrobatidis)与澳大利亚、美洲北部、中部、南部及欧洲的两栖类种群衰退有关。由壶菌引起的壶菌病是变态后的无尾类所患的一种显性传染病,其令人质疑的快速传播及广泛爆发对世界范围内的两栖类种群构成重大威胁。本文对这种致病壶菌的病理学、生态学、生物地理学及其治疗方面的进展进行了综述。  相似文献   

4.
Spread of the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) has caused the decline and extinction of frogs, but the distribution of Bd is not completely known. This information is crucial to implementing appropriate quarantine strategies, preparing for outbreaks of chytridiomycosis due to introduction of Bd, and for directing conservation actions towards affected species. This survey protocol provides a simple and standard method for sampling all frog populations in Australia to maximise the chances of detecting Bd. In order to structure and prioritise the protocol, areas are divided by bioregion and frog species are allocated depending on the water bodies they utilize into 3 groups representing different levels of risk of exposure to Bd. Sixty individuals per population need to be tested to achieve 95% certainty of detecting 1 positive frog, based on the minimum apparent prevalence of > or =5% in infected Australian frog populations and using a quantitative real-time TaqMan PCR test. The appropriate season to sample varies among bioregions and will ideally incorporate temperatures favourable for chytridiomycosis (e.g. maximum air temperatures generally <27 degrees C). Opportunistic collection and testing of sick frogs and tadpoles with abnormal mouth-parts should also be done to increase the probability of detecting Bd. The survey priorities in order are (1) threatened species that may have been exposed to Bd, (2) bioregions surrounding infected bioregions/ecological groups, and (3) species of frogs of unknown infection status in infected bioregions. Within these priority groups, sampling should first target ecological groups and species likely to be exposed to Bd, such as those associated with permanent water, and areas within bioregions that have high risk for Bd as indicated by climatic modelling. This protocol can be adapted for use in other countries and a standard protocol will enable comparison among amphibian populations globally.  相似文献   

5.
The pathogenic chytrid fungus, Batrachochytrium dendrobatidis, has been implicated as the main driver of many enigmatic amphibian declines in neotropical sites at high elevation. Batrachochytrium dendrobatidis is thought to be a waterborne pathogen limited by temperature, and the extent to which it persists and causes disease in amphibians at lower elevations in the neotropics is not known. It also is unclear by what mechanism(s) B. dendrobatidis has emerged as a pathogenic organism. To test whether B. dendrobatidis is limited by elevation in Panamá, we sought to determine the prevalence and intensity of B. dendrobatidis in relation to anuran abundance and diversity using quantitative PCR (qPCR) analyses. Sites were situated at varying elevations, from 45 to 1215 m, and were at varying stages of epizootic amphibian decline, including pre-epizootic, mid-epizootic, 2 years post-epizootic, and 10 years post-epizootic. Batrachochytrium dendrobatidis was found in all sites regardless of elevation or stage of epizootic decline. Levels of prevalence and infection intensity were comparable across all sites except at the mid-epizootic site, where both prevalence and intensity were significantly higher than at other sites. Symptoms of chytridiomycosis and corresponding declines in amphibian populations were variably seen at all elevations along a post-epizootic gradient. Because it is inherently difficult to prove a negative proposition, it can neither be proven that B. dendrobatidis is truly not present where it is not detected nor proven that it is only recently arrived where it is detected. Thus, there will always be doubts about whether B. dendrobatidis is enzootic or invasive. In any case, our results, coupled with current knowledge, suggest most clearly that the disease, chytridiomycosis, may be novel and invasive, and that the pathogen, B. dendrobatidis either is, or is becoming, globally ubiquitous.  相似文献   

6.
The chytrid fungus Batrachochytrium dendrobatidis has been implicated as the causative agent of mass mortalities, population declines and the extinctions of amphibian species worldwide. Although several studies have shown that the prevalence of chytridiomycosis (the disease caused by the fungus) increases in cooler months, the magnitude and timing of these seasonal fluctuations have yet to be accurately quantified. We conducted disease sampling in a single population of stony creek frogs Litoria wilcoxii on 13 occasions over a 21-month period and used quantitative real-time polymerase chain reaction to detect and quantify the number of B. dendrobatidis zoospores present on samples. Disease prevalence varied significantly across sampling sessions, peaking at 58.3% (in early spring) and dropping to as low as 0% on two occasions (late summer and early autumn). There was a significant negative relationship between disease prevalence and mean air temperature in the 30 days prior to sampling. These large-scale seasonal fluctuations in chytridiomycosis levels will strongly influence conservation programs and amphibian disease research.  相似文献   

7.
Batrachochytrium dendrobatidis, the causal agent of chytridiomycosis, is implicated in the global decline of amphibians. This chytrid fungus invades keratinised epithelial cells, and infection is mainly associated with epidermal hyperplasia and hyperkeratosis. Since little is known about the pathogenesis of chytridiomycosis, this study was designed to optimise the conditions under which primary keratinocytes and epidermal explants of amphibian skin could be maintained ex vivo for several days. The usefulness of the following set-ups for pathogenesis studies was investigated: a) cultures of primary keratinocytes; b) stripped epidermal (SE) explants; c) full-thickness epidermal (FTE) explants on Matrigel?; d) FTE explants in cell culture inserts; and e) FTE explants in Ussing chambers. SE explants proved most suitable for short-term studies, since adherence of fluorescently-labelled zoospores to the superficial epidermis could be observed within one hour of infection. FTE explants in an Ussing chamber set-up are most suitable for the study of the later developmental stages of B. dendrobatidis in amphibian skin up to five days post-infection. These models provide a good alternative for in vivo experiments, and reduce the number of experimental animals needed.  相似文献   

8.
The sixth mass extinction is a consequence of complex interplay between multiple stressors with negative impact on biodiversity. We here examine the interaction between two globally widespread anthropogenic drivers of amphibian declines: the fungal disease chytridiomycosis and antifungal use in agriculture. Field monitoring of 26 amphibian ponds in an agricultural landscape shows widespread occurrence of triazole fungicides in the water column throughout the amphibian breeding season, together with a negative correlation between early season application of epoxiconazole and the prevalence of chytrid infections in aquatic newts. While triazole concentrations in the ponds remained below those that inhibit growth of Batrachochytrium dendrobatidis, they bioaccumulated in the newts' skin up to tenfold, resulting in cutaneous growth-suppressing concentrations. As such, a concentration of epoxiconazole, 10 times below that needed to inhibit fungal growth, prevented chytrid infection in anuran tadpoles. The widespread presence of triazoles may thus alter chytrid dynamics in agricultural landscapes.  相似文献   

9.
Chytridiomycosis is an emerging fungal disease that has been implicated in the global decline of amphibian populations. Identifying climatic and geographic factors associated with its presence may be useful in control and prevention measures. Factors such as high altitude, cool temperature, and wet climate have been associated with chytridiomycosis outbreaks. Although some of these factors have been studied in a laboratory setting, there have been few studies in a natural setting. In this investigation, the relationship between altitude, average summer maximum temperature, or the amount of rainfall and the presence or absence of chytridiomycosis are statistically tested using data from 56 study sites in Australia. Currently, in Australia, 48 native species of wild amphibians have been found infected with chytridiomycosis. The 56 sites in the present study, extending along approximately 50% of the coastline of Australia, have been identified as either a chytrid site, where > or = 1 species are infected with chytridiomycosis, or a no-decline site, where none of the species present at the site are experiencing a decline or are known to be infected. The odds-ratio test and two-proportions test applied to this data indicate that the presence of chytridiomycosis in Australia is significantly related to temperature. In particular, the presence of chytridiomycosis is more likely at sites where the average summer maximum temperature is < 30 degrees C. The results of the analyses do not indicate a significant relationship between the presence of chytridiomycosis and altitude or rainfall.  相似文献   

10.
Pathogen spread can cause population declines and even species extinctions. Nonetheless, in the absence of tailored monitoring schemes, documenting pathogen spread can be difficult. In the case of worldwide amphibian declines the best present understanding is that the chytrid fungus Batrachochytrium dendrobatidis (Bd) has recently spread, causing amphibian declines and extinction in the process. However, good evidence demonstrating pathogen arrival followed by amphibian decline is rare, and analysis of putative evidence is often inadequate. Here we attempt to examine the relationship between Bd arrival and amphibian decline across north-eastern Australia, using sites where a wave-like pattern of amphibian decline was first noticed and at which intensive research has since been conducted. We develop an analytical framework that allows rigorous estimation of pathogen arrival date, which can then be used to test for a correlation between the time of pathogen arrival and amphibian decline across sites. Our results show that, with the current dataset, the earliest possible arrival date of Bd in north-eastern Australia is completely unresolved; Bd could have arrived immediately before sampling commenced or may have arrived thousands of years earlier, the present data simply cannot say. The currently available data are thus insufficient to assess the link between timing of pathogen arrival and population decline in this part of the world. This data insufficiency is surprising given that there have been decades of research on chytridiomycosis in Australia and that there is a general belief that the link between Bd arrival and population decline is well resolved in this region. The lack of data on Bd arrival currently acts as a major impediment to determining the role of environmental factors in driving the global amphibian declines, and should be a major focus of future research.  相似文献   

11.
Amphibian chytridiomycosis, caused by infection with the non-hyphal, zoosporic chytrid fungus Batrachochytrium dendrobatidis (Bd), is an emerging infectious disease recognised as a cause of recent amphibian population declines and extinctions worldwide. The Do?ana National Park (DNP) is located in southwestern Spain, a country with widespread Bd infection. This protected area has a great diversity of aquatic habitats that constitute important breeding habitats for 11 native amphibian species. We sampled 625 amphibians in December 2007 and February to March 2008, months that correspond to the early and intermediate breeding seasons for amphibians, respectively. We found 7 of 9 sampled species to be infected with Bd and found differences in prevalence between sampling periods. Although some amphibians tested had higher intensities of infection than others, all animals sampled were apparently healthy and, so far, there has been no evidence of either unusually high rates of mortality or amphibian population declines in the DNP.  相似文献   

12.
Batrachochytrium dendrobatidis (hereafter Batrachochytrium), a fungal pathogen of amphibians, causes the disease chytridiomycosis which is responsible for unprecedented population declines and extinctions globally. Host defenses against chytridiomycosis include cutaneous symbiotic bacteria and anti-microbial peptides, and proposed treatment measures include use of fungicides and bioaugmentation. Efforts to eradicate the fungus from localized areas of disease outbreak have not been successful. Instead, control measures to mitigate the impacts of the disease on host populations, many of which are already persisting with Batrachochytrium in an endemic state, may be more realistic. The infective stage of the fungus is an aquatic zoospore, 3–5 μm in diameter. Here we show that zoospores of Batrachochytrium are consumed by the zooplankter Daphnia magna. This species inhabits amphibian breeding sites where Batrachochytrium transmission occurs, and consumption of Batrachochytrium zoospores may lead to effective biological control of Batrachochytrium.  相似文献   

13.
The African clawed frog Xenopus laevis is by far the most widely used amphibian species in laboratories. In the wild, X. laevis is an asymptomatic carrier of an emerging infectious disease called chytridiomycosis. The vector is the chytrid fungus Batrachochytrium dendrobatidis (Bd), which has devastating effects on wild amphibian populations around the world. The impact of Bd on the metabolism of X. laevis has not been comprehended yet. However, even if asymptomatic, an infection is likely to affect the individual's physiology, immunology, development, reproduction and overall response to stress from a purely medical point of view, which will introduce noise and therefore increase variance within experimental groups of X. laevis. This could have implications on the scientific results from studies using this species. Here, we review the current knowledge on treatments of infected amphibians and propose a hygiene protocol adapted to laboratory populations and amphibian husbandry. Following the presented sanitation guidelines could further prevent the spread of Bd and probably of other amphibian pathogens. The sanitation guidelines will help to reduce the impact of amphibian husbandry on natural populations and must be considered a crucial contribution to amphibian conservation, as today 32% of all amphibians are considered threatened.  相似文献   

14.
EcoHealth - Global amphibian populations are facing a novel threat, chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), which is responsible for the severe decline of a...  相似文献   

15.
Chytridiomycosis is a disease of amphibians caused by the chytrid fungus Batrachochytrium dendrobatidis. It can be highly virulent and is unusual in that it appears to drive many host species to local extinction during outbreaks. One mechanism that could facilitate this is the ability to grow saprophytically or on alternative hosts. This is common in other chytrids but has not been demonstrated for B. dendrobatidis in the field. B. dendrobatidis can grow on arthropod exoskeletons in the laboratory, and freshwater shrimp can be the most abundant animals in tropical rain forest streams. We therefore used diagnostic quantitative polymerase chain reaction to determine the infection status of freshwater shrimp from areas in which they are sympatric with frog species that have suffered declines in association with outbreaks of chytridiomycosis. We detected B. dendrobatidis on three individual shrimp belonging to two genera and collected from two widely separated streams. Two of the individuals had high levels of infection. This indicates that the presence of alternative hosts is likely to contribute to the extreme virulence of chytridiomycosis outbreaks in some systems. The presence of alternative hosts may allow B. dendrobatidis to remain in the environment after local extinctions of amphibian hosts, preventing the recovery of amphibian populations.  相似文献   

16.
Batrachochytrium dendrobatidis ( Bd ), a chytrid fungus, is a causative agent of chytridiomycosis and amphibian population declines worldwide. The sequenced genome of Bd provides information necessary for studying the fungus and its molecular biology. Fluorescent microscopy is a technique used to image targeted molecules in live or fixed organisms to understand cellular trafficking and localization, but the use of fluorescent microscopy with Bd has not yet been demonstrated. Two fluorescent stains were tested for their use in live-cell imaging of Bd , i.e., the cell wall-specific fluorophore Solophenyl Flavine 7GFE and the DNA-specific fluorophore DRAQ5. These specific staining patterns were observed in live cultures of Bd when visualized with laser-scanning confocal microscopy.  相似文献   

17.
Amphibian chytridiomycosis is a fungal disease caused by the chytrid fungus Batrachochytrium dendrobatidis. It is arguably the most significant recorded infectious disease of any vertebrate class. The disease is reducing amphibian biodiversity across most continents and regions of the world, affecting the resilience of surviving populations and driving multiple species to extinction. It is now recognised by the World Organisation for Animal Health (OIE) as an internationally notifiable disease. Collaborative research in areas including the development of diagnostic assays, distribution and impact of the disease, and management (treatment and policy) has assisted in leading a paradigm shift in accepting infectious disease as a major factor influencing wildlife population stability and biodiversity.  相似文献   

18.
Chytridiomycosis is an emerging infectious disease of amphibians caused by the chytrid Batrachochytrium dendrobatidis. The disease has been associated with global amphibian declines and species extinctions, however the principle drivers that underly the emergence of chytridiomycosis remain unclear. Current evidence suggests that the world trade in amphibians is implicated in the emergence of chytridiomycosis. Here, we review the evidence that the amphibian trade is driving the emergence of chytridiomycosis by (1) spreading infected animals worldwide, (2) introducing non-native infected animals into naïve populations and (3) amplifying infection of amphibians by co-housing, followed by untreated discharge of infectious zoospores into water supplies. We conclude that the evidence that the amphibian trade is contributing to the spread of Batrachochytrium dendrobatidis is strong, and that specific actions are necessary to prevent the introduction of the pathogen into thus-far uninfected areas. Specifically, we recommend the development of national risk-abatement plans, focused on firstly preventing introduction of Bd into disease free areas, and secondly, decreasing the impact of the disease on populations that are currently infected.  相似文献   

19.
Amphibians worldwide are experiencing devastating declines, some of which are due to the amphibian chytrid fungus (Batrachochytrium dendrobatidis, Bd). Populations in the southeastern United States, however, have not been noticeably affected by the pathogen. The green treefrog (Hyla cinerea) is abundant and widespread in the southeastern United States, but has not been documented to harbor Bd infection. This study examined the susceptibility of H. cinerea to two strains of Bd in the lab and the prevalence of infection in wild populations of this species in southeastern Louisiana. Although we were able to infect H. cinerea with Bd in the lab, we did not observe any clinical signs of chytridiomycosis. Furthermore, infection by Bd does not appear to negatively affect body condition or growth rate of post-metamorphic individuals. We found no evidence of infection in surveys of wild H. cinerea. Our results suggest that H. cinerea is not susceptible to chytridiomycosis post-metamorphosis and probably is not an important carrier of the fungal pathogen Bd in the southeastern United States, although susceptibility at the larval stage remains unknown.  相似文献   

20.
The amphibian chytrid fungus, Batrachochytrium dendrobatidis, Bd, has been implicated in the decimation and extinction of many amphibian populations worldwide, especially at mid and high elevations. Recent studies have demonstrated the presence of the pathogen in the lowlands from Australia and Central America. We extend here its elevational range by demonstrating its presence at the sea level, in the lowland forests of Gorgona Island, off the Pacific coast of Colombia. We conducted two field surveys, separated by four?years, and diagnosed Bd by performing polymerase chain reactions on swab samples from the skin of five amphibian species. All species, including the Critically Endangered Atelopus elegans, tested positive for the pathogen, with prevalences between 3.9?% in A. elegans (in 2010) and 52?% in Pristimantis achatinus. Clinical signs of chytridiomycosis were not detected in any species. To our knowledge, this is the first report of B. dendrobatidis in tropical lowlands at sea level, where temperatures may exceed optimal growth temperatures of this pathogen. This finding highlights the need to understand the mechanisms allowing the interaction between frogs and pathogen in lowland ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号